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On the Alber equation for shoaling water waves
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The problem of unidirectional shoaling of a water-wave field with a narrow energy
spectrum is treated by using a new Alber equation. The stability of the linear stationary
solution to small non-stationary disturbances is analysed; and numerical solutions for its
subsequent long-distance evolution are presented. The results quantify the physics which
causes the gradual decay in the probability of freak-wave occurrence, when moving from
deep to shallow coastal waters.
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1. Introduction

Beginning with a Schrödinger equation in infinite or constant depth as their starting
point, Longuet-Higgins (1976) and Alber (1978) obtained two rather different stochastic
evolution equations.

Longuet-Higgins assumed that the wave field is a homogeneous and nearly Gaussian
random process. His result is actually the narrow-band limit of the Hasselmann kinetic
equation.

Alber, on the other hand, enabled the random process to be inhomogeneous but required
Gaussianity. He used his equation to study the instability of a homogeneous wave field to
inhomogeneous disturbances. Alber’s findings are actually the stochastic counterpart of
the well-known deterministic Benjamin–Feir instability, which can be described with the
cubic Schrödinger equation.

From the cubic Schrödinger equation, it is known that the Benjamin–Feir instability
leads not to a permanent end state, but to an unsteady series of modulation and
demodulation cycles, called the Fermi–Pasta–Ulam recurrence phenomenon. Stiassnie,
Regev & Agnon (2008) solved the Alber equation in infinite depth numerically and
showed that a stochastic parallel to the Fermi–Pasta–Ulam recurrence exists. This
stochastic recurrence enabled them to study the probability of waves that are higher than
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twice or three times the significant wave height, which are usually called freak waves.
Regev et al. (2008) used the one-dimensional Alber equation to study the probability of
freak waves initialized by a Gaussian-shaped spectrum.

The Alber equation used by Stiassnie et al. (2008) is limited to infinite depths. Here we
devote our attention to waves on the continental shelf and the following coastal waters.
We use the appropriate cubic Schrödinger equation, and derive from it the relevant Alber
equation designed for finite variable depths.

There are three fundamental differences between the model of Alber (1978) and the
one presented in this study. In Alber’s original equation, in the absence of a disturbance,
the linear solution is homogeneous and it is valid for the entire free surface at any time.
The inhomogeneous disturbance is introduced over the entire free surface at t = 0 and its
subsequent nonlinear long-time evolution is valid for t ≥ 0, it is periodic in x and often also
recurrent in t. In our model, in the absence of disturbances the linear solution is stationary,
and valid for x ≥ x0 and any time t, where x0 is a reference point. The non-stationary
disturbance (periodic in time) is introduced at x = x0 as some type of boundary condition.
Last, the nonlinear long-distance evolution is valid for x ≥ x0, is assumed periodic in t,
and for constant depth is often recurrent in x.

Herein we choose to treat two types of bathymetries: (i) with constant depth h = 100 m
or h = 1000 m; (ii) with constant slope, having a variable depth h = −0.005x, for x ∈
[x0, xe] = [−20 km,−2 km], with h ∈ [100 m, 10 m] correspondingly, and x = 0 at the
coastline.

For the attacking stationary wave field, we take a narrow rectangular spectrum, with
steepness ε = 0.1, and with carrier frequency Ω = 0.77 s−1, which corresponds to a
deep-water wavelength of approximately 104 m. Note that for h = 20 m, Kh ≈ 1.36, where
K is the carrier wavenumber.

This paper is organized as follows. In § 2 we present the shoaling model, a variable
coefficient cubic Schrödinger equation with its corresponding Alber equation. Section 3
deals with the stability of a stationary shoaling wave field. Section 4 describes the
numerical method used to compute the long-distance evolution of an unstable wave field,
and in § 5 the computations are used to establish the spatio-temporal distribution of wave
energy density. The probability of freak-wave occurrence along the shoaling region is
calculated in § 6.

2. Background and formulation

The deterministic evolution of a nonlinear, shoaling, ocean wave field (in time t and along
the x-axis) with a narrow spectral band is governed by a cubic Schrödinger equation, see
(Iusim & Stiassnie 1985):

i
∂ψ

∂X
+ ∂2ψ

∂T2 + μ(X) |ψ |2 ψ = 0, (2.1)

where ψ(T,X) is a dimensionless complex envelope, centred around the carrier wave with
constant frequency Ω , related to the free surface elevation by

η (x, t) = ε

2

(
g3

2Ω5Ω ′

)1/2 [
ψ exp i

(∫ x

x0

K dx −Ωt
)

+ c.c.
]
. (2.2)

In (2.1) the dimensionless parameter μ and dimensionless coordinates are given by

μ = −g3Ω ′α1

Ω7Ω ′′ , X = ε2Ω2
∫ x

x0

Ω ′′ dx

2 (Ω ′)3
, T = εΩ

(∫ x

x0

dx
Ω ′ − t

)
. (2.3a–c)
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Here K is the carrier local wavenumber given by the linear dispersion relation

Ω2 = gK tanh (Kh(x)) , (2.4)

with h(x) the variable depth, where Ω ′ = dΩ/dK (the carrier group velocity), Ω ′′ =
d2Ω/dK2, g is the acceleration due to gravity, ε is the typical wave steepness and

α1 = gK3

2Ω
9 tanh4 (Kh)− 10 tanh2 (Kh)+ 9

8 tanh3 (Kh)
−
(

g2K
2Ω

+ gKΩ ′

2 sinh (2Kh)

)
K

gh − (Ω ′)2

−
(

gKh
2 sinh (2Kh)

+ gKΩ ′

2Ω

)
gK2

2Ω
[
gh − (Ω ′)2

]
cosh2 (Kh)

. (2.5)

The parameter μ is a variable depth extension of the Zakharov kernel for finite depth
TK,K,K,K ; the latter was obtained by Janssen & Onorato (2007). This kernel governs the
modulational instability of narrow-banded wave trains. In shallow depths μ < 0, and in
deep waterμ > 0, it changes sign for Kh close to 1.363. Note that Iusim & Stiassnie (1985)
have derived the current Schrödinger equation (2.1) from their equation (3.1) which has
the same left-hand side as equation (1) in the recent paper by Rajan, Bayram & Henderson
(2016).

Generally, it is assumed that (2.1) and (2.2) describe the evolution also when the
envelope ψ(T,X), and therefore η(x, t), are random functions. Using an approach similar
to that of Alber (1978), and using a fourth-order moment-closure hypothesis, (2.1) yields
the Alber equation for shoaling waves:

i
∂ρ (T, τ,X)

∂X
+ 2

∂2ρ (T, τ,X)
∂T∂τ

+ 2μ(X)ρ (T, τ,X)
[
ρ
(

T + τ

2
, 0,X

)
−ρ

(
T − τ

2
, 0,X

)]
= 0, (2.6)

where

ρ (T, τ,X) =
〈
ψ
(

T + τ

2
,X
)
ψ∗

(
T − τ

2
,X
)〉

(2.7)

is the two-time correlation function and 〈·〉 denotes the ensemble average.
In Appendix A, we show that for a linear stochastic shoaling problem, with spectrum

S0(ω) at x0, ρ(T, τ,X) depends only on τ and is given by

ρs(τ ) = 2Ω4

ε2g2

∫ ∞

0
exp i

[
(ω −Ω)τ/(εΩ)

]
S0(ω) dω, (2.8)

which is a trivial solution of Alber equation (2.6).

3. Linear stability analysis

In order to study the instability of stationary shoaling wave fields to non-stationary
disturbances, we adapt and follow the approach of Stiassnie et al. (2008), whereby a
solution is considered in the form

ρ (T, τ,X) = ρs (τ )+ δR (τ ) (exp [i (αT − βX)] + c.c.) , (3.1)

where δ = o(1) is a dimensionless non-stationarity parameter, α is the frequency of the
disturbance and β is its wavenumber. The instability occurs when Im(β) is non-zero.
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Figure 1. Growth rate as a function of α andμ for fixed Ŵ = 1. The growth rate vanishes for shallow water, i.e.
for negative μ. The dashed line shows μ = 0.825, whereas the solid line shows α = 1.48 which is a maximum
for μ = 1.

Substituting (3.1) into (2.6) and neglecting all terms of order δ2, leads to a first-order linear
ordinary differential equation for R(τ ), which has a straightforward solution decaying
when τ tends to infinity. Using (2.8) for ρs and evaluating at τ = 0 produces the following
dispersion relation for the disturbance:

1 = −8μ (X)Ω6g−2α2
∫ ∞

0

S0(ω) dω

[2 (Ω − ω) α + εΩβ]2 − ε2Ω2α4
, (3.2)

which is independent of the choice of R(τ ).
For a rectangular spectrum of width 2W and height s0,

S0 = s0 for Ω − W < ω < Ω + W, s0 = g2ε2

4WΩ4 , (3.3)

(3.2) reduces to

β2

α2 =
(

Ŵ − α
)2 −

(
Ŵ + α

)2
exp

[
−αŴ/μ

]
1 − exp

[
−αŴ/μ

] , where Ŵ = 2W
εΩ

. (3.4)

Note that the rectangular spectrum (3.3) and (2.8) give the following stationary solution:

ρs (τ ) =
sin
(

0.5Ŵτ
)

0.5Ŵτ
. (3.5)

The growth rate, which is the imaginary part of β, depends on three variables: α, Ŵ and
μ. Figure 1 presents the values of the growth rate for Ŵ = 1, which is the value that we
have chosen in our examples.

From figure 1, one can see that the maximum growth rate for infinite depth (μ = 1) is at
α = 1.48, and the maximum growth rate at 100 m depth (where μ = 0.825) is α = 1.36.
We have decided to use α = 1.5 as input in our calculations.
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On the Alber equation for shoaling water waves

Note that in our presentation, we have defined the small parameter ε through the
spectrum S0(ω) and the carrier wavenumber K0 (both at x0), by:

ε = K0

(
2
∫ ∞

0
S0(ω) dω

)1/2

. (3.6)

4. Numerical approach

In order to study the nonlinear long-distance evolution of a non-stationary shoaling wave
field, we adapt the numerical method developed by Stiassnie et al. (2008) to our case.

Since the Alber equation is given for three variables (T, τ,X), the numerical domain
consists of a finite box [0, Tend] × [0, τend] × [0,Xend]. Along the T-axis the domain is
divided into N + 1 evenly spaced points, with spacing T . Along the τ -axis the domain
consists of M + 1 evenly spaced points. The ratio T/τ = 0.4 is kept fixed. Along
the X-axis we took L + 1 steps. The size of the step Xl is variable. It was chosen as
the image, of a uniform grid of L + 1 steps in the physical domain [x0, xe], through the
second equation in (2.3a–c). In our calculation herein, we use N = 100, M = 1200, L =
2 000 000.

Next, we employ a finite difference scheme. The X derivative is approximated by
a forward difference and the second partial derivative with respect to T and τ is
approximated by a central difference. This gives the following scheme:

ρ (n,m, l + 1) = ρ (n,m, l)+ iXl

2Tτ
(ρ (n + 1,m + 1, l)− ρ (n − 1,m + 1, l)

−ρ (n + 1,m − 1, l)+ ρ (n − 1,m − 1, l))+ 2iμ (l)Xlρ (n,m, l)

×
[
ρ

(
n + mτ

2T
, 0, l

)
− ρ

(
n − mτ

2T
, 0, l

)]
. (4.1)

for n = 0, . . . ,N, m = 0, . . . ,M, l = 0, . . . , L, where ρ(n,m, l) is a shorthand notation
for ρ(n,m, l) = ρ(nt,mτ, lXl).

The boundary condition (at X = 0) is derived from (3.1) by choosing R(τ ) to be the
stationary solution, and thus

ρ (T, τ, 0) = ρs (τ ) (1 + 2δ cos (αT)) . (4.2)

In our examples, we took δ = 0.05, α = 1.5, and for ρs(τ ) we take the expression (3.5)
derived for the rectangular spectrum (3.3) with W = 0.5εΩ and s0 = g2ε/2Ω5.

A periodicity condition is used along the T-axis with period 2π/α, where α is the
frequency of the initial disturbance. We also use the symmetry condition arising from
the definition (2.7) of the two-time correlation function: ρ(n,−m, t) = ρ∗(n,m, t). Last,
a condition for large τ is introduced, for which we use an equation similar to (A7) in Ribal
et al. (2013).

To check the quality of our numerical results, we used the fact that (2.6) has three
invariants, as outlined in Appendix B.

5. Long-distance evolution

The variance of the free-surface elevation, associated with a random wave field, can be
written as

〈η2(x, t)〉 = ε2g3

4Ω5Ω ′ρ(T, 0,X). (5.1)
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Figure 2. Long-distance evolution of the normalized variance ρ̃, for constant depth, h = 1000 m. The upper
x-axis shows the value of Kh.

Its significance comes from the fact that it is proportional to the energy density of the wave
field, see Holthuijsen (2010). Thus the importance of the Alber equation is related to the
fact that it models the long-distance evolution of wave energy.

In the linear case, by means of (A4), the variance of the linear solution of the free
surface, at x = x0, reduces to

〈η2
L(x0)〉 = ε2g2

2Ω4ρs(0), (5.2)

which is used to normalize the variance (5.1):

ρ̃ = 〈η2〉
〈η2

L(x0)〉
= g

2ΩΩ ′
ρ

ρs(0)
. (5.3)

In order to get a clear picture of the evolution of ρ̃ across the space–time domain, and
owing to the spacial periodicity with respect to t, the results were shifted periodically
so that its maximum always appears at t = 0. The long-distance evolution of ρ̃, for the
different examples, is shown in figures 2–4.

From figures 2 and 3, one can see that for constant depths the evolution is recurrent.
The solution exhibits the typical behaviour of a homogeneous wave field in infinite depth
with an initial inhomogeneous disturbance as input. The evolution of ρ̃ can be described
as a sequence of consecutive recurrent cells. In each cell, the variance begins close to rest
(all values close to 1) and then there is a concentration of wave energy, and ρ̃ attains its
maximum value. Then the process is reverted and the variance falls back to a somewhat
relaxed state around the rest position ρ̃ ≡ 1.

Depth influences the particular details of the evolution; for 1000 m depth the cell length
is 6.4 km and reaches a maximum value of 4.8, meaning that at such a specific point
the wave energy is almost fivefold that of the input wave field. At x ≈ −17 (where the
maximum occurs) for most of the values of t, ρ̃ < 0.5, showing that the wave energy is
being concentrated in the vicinity of a single point. Note that the total energy is conserved,
as given by the first invariant in Appendix B. For 100 m depth, the cell length increases to
7.6 km and the maximum of ρ̃ decreases to 4.2.
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Figure 3. Long-distance evolution of the normalized variance ρ̃, for constant depth, h = 100 m. The upper
x-axis shows the value of Kh.

For the shoaling case, the behaviour is dramatically different. From figure 4, one can
see that the cellular structure is persistent but the cells are different from each other. The
variance goes through a sequence of four cells, each of which shows focusing of wave
energy albeit decaying as the depth decreases. Over the first 6 km (cell I), the effect of
variable depth is negligible and ρ̃ behaves as in constant depth; it shows a similar pattern
and reaches almost the same maximum value as shown in figure 3. Over the next 5 km (cell
II), one can see a second and somewhat shorter cell where the maximum of ρ̃ decreases to
2.8. Along the next 4 km (cell III), there is less energy concentration with a maximum of
ρ̃ decreasing to 1.8; the energy concentration is reduced almost by half compared with the
initial cell. Over the last 2 km of the domain (cell IV), there is no meaningful concentration
of energy; the phenomena has disappeared and the sea state is effectively similar to a
stationary wave field. Over the last cell μ < 0 and, similar to the deterministic case, the
instability vanishes.

In order to assess the quality of our numerical simulations, we check the conservation of
the invariants, which are given in Appendix B. The first invariant is the most meaningful
because it is related to the total energy. In all the examples, I1 = 4.18 and it was
successfully preserved by the numerical solver, with relative errors of the order of
O(10−7). The second invariant is always zero. The third invariant, which is only valid
for constant depth, was I3 = 3.79 for h = 1000 m and I3 = 3.12 for h = 100 m. This
invariant depends both on the values along τ = 0 and the values along the τ -axis. The
relative deviation from its value at X = 0 did not exceed half a percentage throughout the
nonlinear computation.

6. Probability of freak-wave occurrence

The probability distribution of the wave height of a Gaussian narrow-banded wave field,
is given by the Rayleigh distribution, see Holthuijsen (2010). Thus, at any given (t, x) the
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Figure 4. Long-distance evolution of the normalized variance ρ̃, for shoaling waters. The upper x-axis shows
the local values of Kh.

probability to obtain waveheights H larger than Ĥ is:

F(Ĥ, t, x) = P(H > Ĥ) = exp

⎡
⎣−

(
Ĥ

Hrms(t, x)

)2
⎤
⎦ , (6.1)

where Hrms denotes the root-mean-square wave height and it is related to the variance of
the free-surface elevation by Hrms =

√
8〈η2(x, t)〉, where 〈η2(x, t)〉 is given by (5.1).

It is useful to compare Hrms with the root-mean-square wave height of the linear solution

taken at a reference point xR, so we define Hrms0 =
√

8〈η2
L(xR)〉, where 〈η2

L(xR)〉 is given
below in (6.4), and upon normalizing Hrms, the probability of wave height exceedance at
(x, t) becomes

F(Ĥ, t, x) = P(H > Ĥ) = exp

⎡
⎣−

(
Ĥ

Hrms0

)2 〈η2
L(xR)〉

〈η2(x, t)〉

⎤
⎦ . (6.2)

The relevant probability over a certain domain is found by averaging over such domain.
Since the evolution of ρ̃ naturally defines different regions of interest, i.e. the recurrent
cells shown in figures 2, 3 and the variable cells in figure 4, the probability of wave
exceedance over each cell is given by

P(H ≥ Ĥ) = 1
(x2 − x1)tmax

∫ tmax

0

∫ x2

x1

F(Ĥ, t, x) dx dt. (6.3)

Here tmax = 54s is the period of ρ̃ with respect to t, x1 is the beginning of the cell under
consideration and x2 is its endpoint. In the constant depth cases, the reference point xR =
x1 = x0. For the shoaling case, xR = (x1 + x2)/2, the middle point of each of the cells.

Equation (6.3) was derived by Andrade & Stiassnie (2020) and was shown to be
equivalent to the original equation derived by Regev et al. (2008).
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Case cell Hs P(H ≥ 2Hs) P/R P(H ≥ 3Hs) P/R

h = 1000 m any 4.67 m 6.60 × 10−3 19.67 0.35 × 10−3 2.32 × 104

h = 100 m any 4.67 m 5.99 × 10−3 17.86 0.23 × 10−3 1.56 × 104

Shoaling I 4.67 m 7.01 × 10−3 20.91 0.25 × 10−3 1.66 × 104

II 4.65 m 4.64 × 10−3 13.85 0.06 × 10−3 4.46 × 103

III 4.49 m 2.53 × 10−3 7.56 0.01 × 10−3 731.9
IV 4.27 m 0.58 × 10−3 1.73 0.13 × 10−6 8.55

Table 1. Probability of freak-wave occurrence. The values taken from the Rayleigh distribution are 0.33 ×
10−3 for wave heights higher than 2Hs, 0.15 × 10−7 for wave heights higher than 3Hs. The columns P/R are
the ratios between the calculated probabilities and their corresponding values from the Rayleigh distribution.

Following Holthuijsen (2010) the significant wave height is well approximated by Hs =
4
√

〈η2
L〉. The variance of the linear free surface at xR is

〈η2
L(xR)〉 = ε2g3

4Ω5Ω ′(xR)
. (6.4)

The main result of this section, the probabilities of freak-wave occurrence, is given in
table 1.

In the cases of constant depth, due to the recurrence, only the values obtained during
the first cell are shown in table 1 because they hardly differ from one cell to another. In
1000 m depth the probability of freak-wave occurrence is increased 20 times and in 100 m
depth it is increased by a factor of 17 with respect to the Rayleigh distribution. By looking
at extreme wave heights, higher than three times Hs, the probability is increased by 20 000
fold, making freak-waves encounter a feasible event.

In the case of shoaling, the results show that the probability of freak waves decreases
with depth. In the deeper region, the probabilities are similar to those obtained for constant
100 m depth. From there on they decrease rapidly and towards the end of domain, in the
shallower region, the probabilities are closer to the Rayleigh distribution.
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Appendix A

Following (Pierson 1955), a stationary Gaussian unidirectional wave field is given by the
integral

ηL(x, t) = 1
2

∫ ∞

0
exp i

[∫ x

x0

k(ω) dx − ωt + θ(ω)

]√
2S(x, ω) dω + c.c., (A1)

where k(ω) is given by the linear dispersion relation, θ(ω) is a random phase with uniform
distribution in (−π,π], and S(x, ω) is the energy spectrum at the point x.
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According to the linear theory of shoaling waves, for each x the following relation holds:

cg(x0, ω)S0(ω) = cg(x, ω)S(x, ω), (A2)

where cg denotes the local group velocity and S0(ω) is the wave spectrum at the reference
point x0. The general form of a stationary Gaussian, shoaling wave field is

ηL(x, t) = 1
2

∫ ∞

0
exp i

[∫ x

x0

k(ω) dx − ωt + θ(ω)

]√
2S0(ω)

cg(x0, ω)

cg(x, ω)
dω + c.c. (A3)

Assuming that the spectrum is narrow banded, the following approximation, valid to
order ε, is made: cg(x0, ω)/cg(x, ω) = Ω ′(x0)/Ω

′. This is substituted into (A3) to get

ηL(x, t) = 1
2

(
2Ω ′(x0)

Ω ′

)1/2 ∫ ∞

0
exp i

[∫ x

x0

k(ω) dx − ωt + θ(ω)

]√
S0(ω) dω + c.c.

(A4)
Comparing (A4) with (2.2) yields the complex envelope which is given by

ψ(x, t) = 2
ε

(
Ω5Ω ′(x0)

g3

)1/2 ∫ ∞

0
exp i

[∫ x

x0

(k − K) dx − (ω −Ω)t + θ(ω)

]√
S0(ω) dω,

(A5)
Note that ψ is a Gaussian stationary random process. Therefore, the two-time

correlation depends only on the time difference and so, for any x, t1 and t2,

〈ψ(x, t1)ψ∗(x, t2)〉 = 4Ω5Ω ′(x0)

ε2g3

∫ ∞

0
exp i [(ω −Ω)(t1 − t2)] S0(ω) dω. (A6)

Switching from the physical variables x and t to X and T , denoting by τ = εΩ(t1 − t2)
the dimensionless time separation, one obtains the correlation function of a stationary
(independent of T and X) shoaling wave field:

ρS(τ ) = ρ(T, τ,X) = 4Ω5Ω ′(0)
ε2g3

∫ ∞

0
exp i

[
(ω −Ω)τ/(εΩ)

]
S0(ω) dω. (A7)

Note that x0, the initial point of the physical domain, corresponds to X = 0 in the
dimensionless coordinates.

Last, assuming that at X = 0 the water depth is sufficiently deep so that Ω ′(0) =
g/(2Ω) in (A7), yields (2.8).

Appendix B

The Alber equation (2.6) has three invariants. Following a similar approach to that of
(Ribal et al. 2013), the first and second invariants are

I1 =
∫
ρ(T, τ,X)|τ=0 dT; I2 =

∫
∂

∂τ
ρ(T, τ,X)

∣∣∣∣
τ=0

dT = 0. (B1a,b)

The third invariant is

I3 = μ(X)
∫
ρ2(T, τ,X)

∣∣∣
τ=0

dT +
∫

∂2

∂τ 2ρ(T, τ,X)
∣∣∣∣
τ=0

dT. (B2)

Note that I3 is only valid for constant depths.
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