A functorial version of a construction of Hochschild and Mostow for representations of Lie algebras

William H. Wilson

Let \mathfrak{g} be a Lie algebra, \mathfrak{h} a complemented ideal of \mathfrak{g}, and W an \mathfrak{h}-module. Hochschild and Mostow have described the construction of a \mathfrak{g}-module "induced" from W, which is finite-dimensional provided W is finite-dimensional and satisfies a nilpotent action condition. This note describes a modification of their construction which is functorial and a weak adjoint to the restriction functor from \mathfrak{g}-modules to \mathfrak{h}-modules.

Throughout this paper we shall suppose that \mathfrak{g} is a Lie algebra over a field k, that \mathfrak{h} is an ideal of \mathfrak{g}, and that there is a subalgebra \mathfrak{g}_0 of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{s}$. $U_\mathfrak{h}, U_\mathfrak{g}$ will denote the universal enveloping algebras of \mathfrak{h} and \mathfrak{g}. Clearly, every $g \in \mathfrak{g}$ can be written uniquely as $g = h + s$ with $h \in \mathfrak{h}$ and $s \in \mathfrak{s}$. This allows us to define, (with Hochschild and Mostow [1]), a composition $*$ by

\[(1) \quad g * u = hu + (su-us) \quad \text{for} \quad g \in \mathfrak{g}, \quad u \in U_\mathfrak{h}.
\]

It can be shown that $su-us \in U_\mathfrak{h}$, hence (1) determines a \mathfrak{g}-module structure on $U_\mathfrak{h}$.

We shall use $\text{mod-}\mathfrak{h}, \text{mod-}\mathfrak{g}$ to denote the categories of right \mathfrak{h}- and \mathfrak{g}-modules, and $F : \text{mod-}\mathfrak{g} \to \text{mod-}\mathfrak{h}$ to denote the restriction functor. Now let $W \in \text{mod-}\mathfrak{h}$. Then $\text{hom}_k(U_\mathfrak{h}, W)$ has a \mathfrak{g}-module structure given by

Received 8 November 1977. The material of this paper formed part of the author's PhD thesis, which was written under the supervision of Dr D.W. Barnes, to whom the author wishes to express his thanks.
\[f^g(u) = f(g \ast u) \] for \(f \in \text{hom}_K(U^n, W) \), \(g \in \mathbb{G} \), and \(u \in U^n \).

Construction of the functor \(I \)

Define a map \(\hat{j}_W : W \to \text{hom}_K(U^n, W) \) by setting \(\hat{j}_W(w)(u) = w \cdot u \) for \(w \in W \) and \(u \in U^n \). It is easy to check that \(\hat{j}_W \) is a \(U^n \)-monomorphism.

We define a \(\mathbb{G} \)-submodule \(IW \) of \(\text{hom}_K(U^n, W) \) by setting \(IW = \{ \text{im} \hat{j}_W \} \cdot U^n \).

Now let \(j_W \) be \(\hat{j}_W \) with codomain restricted to be \(FIW \). Let \(W, W' \in \text{mod-h} \) and \(\psi \in \text{hom}_{U^n}(W, W') \). We define \(I\psi : IW \to IW' \) by \([I\psi](f)(u) = (\psi \circ f)(u)\) for \(u \in U^n \) and \(f \in IW \). We must show \((I\psi)(f) \in IW'\). Since \(f \in IW \), \(f \) may be written as

\[f = \sum_{i=1}^n j_W(w_i) \cdot x_i \]

for suitable \(w_i \in W \), \(x_i \in U^n \). Then, for \(u \in U^n \),

\[([I\psi](f))(u) = \left[\psi \circ \sum_{i=1}^n j_W(w_i) \cdot x_i \right](u) \]

\[= \psi \left[\sum_{i=1}^n x_i (w_i \ast u) \right] \]

\[= \sum_{i=1}^n \psi(w_i) \cdot (x_i \ast u) \]

\[= \left[\sum_{i=1}^n j_W', \psi(w_i) \right] \cdot x_i(u), \]

so \((I\psi)(f) = \sum_{i=1}^n j_W', \psi(w_i) \cdot x_i \in IW'\). If \(W'' \) is another \(h \)-module and \(\psi' \in \text{hom}_{U^n}(W', W'') \), then \((\psi' \circ \psi) \circ f = \psi' \circ (\psi \circ f)\); it follows that \(I \) has the multiplicative property of a functor.

Lemma 1. \(j_W \) is natural in \(W \).

Proof. We must show that if \(\psi \in \text{hom}_{U^n}(W, W') \) then \(F I \psi \circ j_W = j_W' \circ \psi \). Suppose \(w \in W \) and \(u \in U^n \). Then

\[f^g(u) = f(g \ast u) \] for \(f \in \text{hom}_K(U^n, W) \), \(g \in \mathbb{G} \), and \(u \in U^n \).
\[(\Psi \circ j_\mathfrak{h})_W(u)(u) = (\Psi \circ j_\mathfrak{h}(\omega))(u) = \psi(\omega, u) = \psi(\omega) \cdot u = j_\mathfrak{h}, (\psi)(u) = (j_\mathfrak{h}, \circ \psi)(\omega)(u)\]
as required.

Lemma 2. \(I\) is a faithful functor.

Proof. If \(I\psi = 0\), then for all \(\omega \in \mathcal{W}\), \(0 = (I\psi)(j_\mathfrak{h}(\omega))\); so
\[0 = [(I\psi)(j_\mathfrak{h}(\omega))](I_{U^\mathfrak{h}}) = \psi(\omega)\]. That is, \(\psi = 0\). \(\Box\)

Theorem 3. The functor \(I : \text{mod-}\mathfrak{h} \rightarrow \text{mod-}g\), described above, is an injective weak left adjoint to \(F\). That is, for \(W \in \text{mod-}\mathfrak{h}\) and \(V \in \text{mod-}g\), there is an injection
\[\theta_{WV} : \text{hom}_{U^\mathfrak{h}}(IW, V) \rightarrow \text{hom}_{U^g}(W, FV)\]
which is natural in \(W\) and \(V\).

Proof. For \(\phi \in \text{hom}_{U^\mathfrak{h}}(IW, V)\), we define \(\theta_{WV}(\phi) = F\phi \circ j_\mathfrak{h}\). The naturality of \(\theta_{WV}\) follows from that of \(j_\mathfrak{h}\) and the definition of \(\theta_{WV}\).
We must show that \(\theta_{WV}\) is injective. Suppose that \(\phi_1, \phi_2 \in \text{hom}_{U^\mathfrak{h}}(IW, V)\), and that \(F\phi_1 \circ j_\mathfrak{h} = F\phi_2 \circ j_\mathfrak{h}\). Then \(\phi_1\) and \(\phi_2\) coincide on \(\text{im} j_\mathfrak{h}\).
Since \(\phi_1, \phi_2\) are \(U^g\)-homomorphisms, it follows that they must coincide on \((\text{im} j_\mathfrak{h})U^g = IW\). \(\Box\)

Theorem 4 (compare Hochschild and Mostow [1] and Zassenhaus [2]). Let \(\mathfrak{g}\) be a finite-dimensional Lie algebra over a field \(k\) of characteristic zero, and let \(\mathfrak{h}\) be an ideal of \(\mathfrak{g}\) with complementary subalgebra \(\mathfrak{g}\). Let \(W\) be a finite-dimensional \(\mathfrak{h}\)-module on which \([\mathfrak{h}, \mathfrak{h}]\) acts nilpotently. Then \(IW\), as defined above, is a finite-dimensional \(\mathfrak{g}\)-module.

Proof. If \(\{0\} = \mathcal{W}_0 < \mathcal{W}_1 < ... < \mathcal{W}_n = W\) is a composition series for \(W\), then set \(S(W) = (\mathcal{W}_n/\mathcal{W}_{n-1}) \oplus ... \oplus (\mathcal{W}_2/\mathcal{W}_1) \oplus (\mathcal{W}_1/\mathcal{W}_0)\). By the Jordan-Hölder theorem, \(S(W)\) is determined up to isomorphism. Clearly, a subalgebra of \(\mathfrak{h}\) acts nilpotently on \(W\) if and only if it annihilates \(S(W)\). Let us write \(d = \dim_k W\), and let \(\text{ann}_{U^\mathfrak{h}}(M)\) denote the annihilator in \(U^\mathfrak{h}\) of an \(\mathfrak{h}\)-module \(M\). Obviously,
Since, by hypothesis, $[\mathfrak{h}, \mathfrak{g}] \subseteq \text{ann}_{U_{\mathfrak{h}}}(S(W))$, it follows that \(\text{ann}_{U_{\mathfrak{h}}}(S(W)) \) is a \(\mathfrak{g} \)-submodule of \(W \). Hence \((\text{ann}_{U_{\mathfrak{h}}}(S(W)))^d \) is a \(\mathfrak{g} \)-submodule of \(U_{\mathfrak{h}} \).

If \(f \in \text{hom}_K(U_{\mathfrak{h}}, W) \) and \(f(\text{ann}_{U_{\mathfrak{h}}}(W)) = \{0\} \), then for all \(x \in U_{\mathfrak{g}} \),

\[
\tilde{f} \left[(\text{ann}_{U_{\mathfrak{h}}}(S(W)))^d \right] \subseteq f \left[x \cdot (\text{ann}_{U_{\mathfrak{h}}}(S(W)))^d \right] \subseteq f(\text{ann}_{U_{\mathfrak{h}}}(W)) \quad \text{by (2)},
\]

\[
= \{0\}.
\]

Now \(\text{im} j_W \) annihilates \(\text{ann}_{U_{\mathfrak{h}}}(W) \); so \(IW = (\text{im} j_W) \cdot U_{\mathfrak{g}} \) annihilates \((\text{ann}_{U_{\mathfrak{h}}}(S(W)))^d \). Let us write \(J = (\text{ann}_{U_{\mathfrak{h}}}(S(W)))^d \). Then it is easy to see that \(IW \) is embedded in \(\text{hom}_K(U_{\mathfrak{h}}/J, W) \). Since \(W \) is finite-dimensional, \(\text{ann}_{U_{\mathfrak{h}}}(W) \) is of finite codimension in \(U_{\mathfrak{h}} \). Hence, by (2), \(\text{ann}_{U_{\mathfrak{h}}}(S(W)) \) is of finite codimension in \(U_{\mathfrak{h}} \). Now we appeal to a result of Zassenhaus [2, page 263], which states that if \(X, Y \) are ideals of \(U_{\mathfrak{h}} \) of finite codimension, then so is \(XY \). We deduce from this that \(J \) is of finite codimension in \(U_{\mathfrak{h}} \), so that \(\dim_K \text{hom}_K(U_{\mathfrak{h}}/J, W) < \infty \), and so \(\dim_K IW < \infty \). \(\square \)

References

Department of Mathematics,
University of Queensland,
St Lucia, Queensland.