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The prevalence of cardiometabolic diseases is a significant public health burden worldwide.
Emerging evidence supports the inverse association between greater dairy consumption and
reduced risk of cardiometabolic diseases. Dairy proteins may have an important role in the
favourable impact of dairy on human health such as blood pressure (BP), blood lipid and
glucose control. The purpose of this review is to update and critically evaluate the evidence
on the impacts of casein and whey protein in relation to metabolic function. Evidence from
short-term clinical studies assessing postprandial responses to milk protein ingestion suggests
benefits on vascular function independent of BP, as well as improvement in glycaemic
homeostasis. Long-term interventions have been less conclusive, with some showing benefits
and others indicating a lack of improvement in vascular function. During chronic consump-
tion BP appears to be lowered and both dyslipidaemia and hyperglacaemia seem to be con-
trolled. Limited number of trials investigated the effects of dairy proteins on oxidative stress
and inflammation. Although the underlying mechanisms of milk proteins on cardiometa-
bolic homeostasis remains to be elucidated, the most likely mechanism is to improve insulin
resistance. The incorporation of meals enriched with dairy protein in the habitual diet may
result in the beneficial effects on cardiometabolic health. Nevertheless, future well-designed,
controlled studies are needed to investigate the relative effects of both casein and whey pro-
tein on BP, vascular function, glucose homeostasis and inflammation.

Dairy protein: Metabolic health: Blood pressure: Vascular function

Milk and dairy products are widely consumed around
the world on a daily basis. They are not only an import-
ant source of nutrients in the human diet, but they also
represent important value in the food chain providing
opportunities for farmers, food processors and retailers
to contribute to increased food security and poverty alle-
viation(1). Therefore any change in milk and dairy con-
sumption will have multiple impacts on human and
animal health, environment, food security and

economics. Indeed, according to an OECD-FAO report,
milk production is projected to increase by 180 million
tonnes in the next decade, predominantly in developing
countries(2). Moreover, the inclusion of animal-derived
products adds diversity to plant-based diets, providing
an important source of many essential nutrients, the diet-
ary requirements of which would be more difficult to
meet by plant-based diets. However, the potential health
impacts of animal-derived foods, and more specifically
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milk and dairy consumption, have been questioned
owing to their high saturated fat content (for review,
see(3)). However, emerging epidemiological evidence sup-
ports the beneficial effects of milk and dairy consumption
on health, particularly cardiometabolic health(4–6).

Milk is a complex food, a unique package of many
nutrients such as calcium, magnesium, iodine, phos-
phorus, vitamin B12, pantothenic acid, riboflavin, high-
quality protein, peptides and oligosaccharides. In the
human body, these bioactive components may interact
with each other and exert synergistic effects, making it
difficult to assign the specific health effect of a single
component. Bovine milk, which is widely consumed
around the world, contains approximately 32–34 g/l pro-
tein of which 80 % (w/w) is casein and 20 % (w/w) is
whey protein. Both milk proteins consist of smaller pro-
tein fractions such as casein: α-s1, α-s2, β and κ-casein;
and whey: β-lactoglobulin, α-lactalbumin, lactoferrin,
immunoglobulins, serum albumin, glycomacropeptide,
enzymes and growth factors. Milk proteins are consid-
ered to be high-quality proteins. Whey protein is rich in
branched-chain amino acids (AA; BCAA) such as leu-
cine, isoleucine and valine, whilst casein contains more
histidine, methionine, phenylalanine, proline, serine,
tyrosine and valine. It is well established that casein
and whey have differential effects on gastric emptying
and kinetics of digestion and absorption(7). Intact micel-
lar casein clots in the stomach due to the low pH, and is,
therefore, digested more slowly, which results in a pro-
longed and more sustained AA release. In contrast, intact
whey (which is acid soluble) or hydrolysed whey and
caseinate are absorbed more rapidly, with a faster AA re-
lease and half-life(7). It is, however, of note that micellar
casein is different from Ca or Na caseinate (micellar ca-
sein is acidified and neutralised with alkali e.g. NaOH or
Ca(OH)2 in order to form caseinate), as the latter are sol-
uble and thus may show similarities to whey in terms of
digestion rates(8,9). As a result of their different inherent
AA compositions leading to distinct absorption and
kinetic behaviour, they may also have differential effects
on human health.

The aim of this review is to update and critically evalu-
ate the existing evidence on the effects of casein and whey
on metabolic function, including blood pressure (BP),
vascular function, glucose and lipid metabolism, and
inflammation.

Comprehensive literature search

A comprehensive literature search was conducted using
the electronic databases Medline, the Cochrane
Library, EMBASE and Web of Science using the follow-
ing terms: intervention, randomised controlled trials
(RCT), clinical trials, high BP, hypertension, anti-
hypert*, vascular function, endothelial function, vascular
stiffness, milk protein, milk peptide*, casein, hydrolysate,
human subjects, lipids, insulin, glucose, inflammation.
Furthermore, hand-searching was performed on the ref-
erence lists of both studies and review articles. In add-
ition, Google and Google Scholar were used to confirm

that the search was complete. The search period covered
studies published until September 2015.

Blood pressure

CVD remain the leading cause of death in most countries
worldwide. In the UK, there has been a significant de-
crease in death rates since 1961, and due to a combin-
ation of better healthcare and preventative strategies, in
2012 CVD became the second main cause of death
(CVD caused 28 % of all death and cancer 29 %)(10).
Approximately seven million people live with CVD in
the UK, which costs £19 billion each year (including pre-
mature death, lost productivity, hospital treatment and
prescriptions) resulting in a significant economic bur-
den(10). Premature death from CVD can be prevented
by improving modifiable risk factors. For example, it
has been estimated that in the general population increas-
ing physical activity, smoking cessation and dietary
changes can lead to 50, 20–30 and 15–40 % mortality
risk reduction, respectively(11).

High BP (hypertension) is the key modifiable risk fac-
tor of CVD and of stroke in particular. Nearly 30 % of
adults in the UK have high BP; however, only half of
them are aware of it and even less receive treatment(10).
High BP is present when systolic blood pressure (SBP)
is ≥140 mmHg and/or diastolic blood pressure (DBP) is
≥90 mmHg(12). It is important to treat hypertension
and maintain BP in the normal range as elevated BP
can cause irreversible damage to different organs such
as kidneys, heart and eyes(12).

Long-term studies on blood pressure

We have recently reviewed the evidence from RCT on the
antihypertensive effects of milk proteins and peptides(13).
For that review we systematically searched and reviewed
the literature until December 2012. There was an imbal-
ance in the literature as more RCT were conducted using
mainly one type of casein-derived peptides, called lacto-
tripeptides (LTP). We, therefore conducted an updated
meta-analysis on the impact of LTP on BP(14), which
included all available and relevant RCT and detailed
subgroup and regression analyses, which were somewhat
limited in previous meta-analyses in this area(15–18). We
found a small, but significant reduction in both SBP
(−2·95 mmHg (95 % CI −4·17, −1·73; P < 0·001)) and
DBP (−1·51 mmHg (95 % CI −2·21, −0·80; P < 0·001))
after 4 weeks of LTP supplementation in pre- and hyper-
tensive populations. Since there was a statistically signifi-
cant heterogeneity of treatment effects across studies,
sub-group analyses were performed. These analyses sug-
gested differences in countries where RCT were con-
ducted: Japanese studies reported significantly greater
BP-lowering effect of LTP (−5·54 mmHg for SBP; and
−3·01 mmHg for DBP), compared with European stud-
ies (−1·36 mmHg for SBP; and −0·83 mmHg for DBP;
P= 0·002 for SBP and <0·001 for DBP). This was
confirmed in a recent meta-analysis which focused on
Asian RCT only. However, it only assessed SBP and
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the authors reported a very similar reduction of
−5·63 mmHg in SBP compared to our −5.54 mmHg(19).
There may be several explanations for this observation.
Firstly Japanese diets contains less milk and dairy
products than European diets, therefore consumption
of milk proteins may have a greater overall impact
when compared with populations that consume these
proteins more regularly and in higher quantities(20).
Furthermore, there are reported ethnic differences in
the response to drug administration, BP lowering in par-
ticular(21) which could impact on the response to these
bioactive proteins. Finally differences in response may
also have resulted from different spatial conformations
(cis/trans) of LTP used in the studies, due to production
processes(22). Intriguingly, we also found a small-study
effect, and when all bias was considered it shifted
the treatment effect towards a less significant SBP and
non-significant DBP reduction in response to LTP sup-
plementation. We concluded that with potential bias con-
sidered, LTP consumption may still be effective in
lowering BP in mildly hypertensive or hypertensive
groups(14).

During our systematic literature search(13)we found that
there were very few studies investigating the BP-lowering
effects of other casein-derived peptides in human sub-
jects(23–27). Furthermore these studies were limited, used
different types of peptides and were often uncontrolled
with poor methodological and study design. Due to these
inconsistencies in the studydesign, itwas impossible to com-
pare these data and no firm conclusion could be drawn on
the antihypertensive effects of casein-derived peptides.
Similarly, we found a limited number of RCT conducted
using intact whey or whey-derived peptides assessing their
antihypertensive effects in human subjects (28–33). These
trials seem to be of higher quality than studies on casein-
derived peptides; however, the findings of these studies
were also inconsistent(13).

Since our review, published in 2013, three new studies
which assessed the effects of milk proteins on BP as pri-
mary outcome were published. Petyaev et al.(34) exam-
ined the impacts of whey protein embedded in a
protective lycopene matrix, a new proprietary formula-
tion, the so-called whey protein lycosome, in a pilot
study. Authors hypothesised that this formulation
would protect whey protein from gastrointestinal degrad-
ation which would increase the bioavailability of the pro-
tein, and thus reduce the need for a high dose. They
administered 70 mg whey protein along with 7 mg lyco-
pene in the form of a capsule (WPL) and compared
this with whey protein (70 mg) and lycopene (7 mg) sep-
arately (taken once daily for a month). A significant de-
crease in BP (−7 mmHg in SBP and −4 mmHg in DBP,
P < 0·05) in the WPL group was reported compared with
baseline only and no effect relative to the whey and lyco-
pene given separately. Due to the nature of this pilot
study, there was no information on blinding, the sample
size was small (ten/treatment group) and due to the lim-
ited statistical analysis further investigation is needed to
evaluate the potential antihypertensive effect of WPL.
Another RCT was conducted in overweight and obese
adolescents (aged 12–15 years), who were asked to

consume 1 litre/d of either water, skimmed milk, whey
or casein (milk-based treatment drink contained 35 g/l
protein) for 12 weeks(35). A decrease in brachial and cen-
tral aortic DBP compared with baseline and control
group (consuming water) was observed, whereas whey
protein appeared to increase brachial and central aortic
SBP, and central DBP. The authors acknowledged sev-
eral limitations of the study, including difficulties in re-
cruitment, changes in the research protocol after study
commencement and not controlling for the extra energy
intake that 1 litre/d treatment drinks provided, which
led to an increase in weight in those in the treatment
groups compared with a loss in the control group
which consumed water. Therefore, due to these limita-
tions it was difficult to draw firm conclusions from
these data. A study of Figueroa et al.(36) examined the
effects of both whey and casein on BP and vascular func-
tion combined with exercise training in obese, hyperten-
sive women. In their 4-week trial, participants were
assigned to consume 30 g casein, whey or 34 g maltodex-
trin (control) and perform resistance and endurance exer-
cises 3 d/week under a qualified instructor’s supervision.
They reported significant reduction in both brachial
and aortic SBP in both whey and casein groups com-
pared with the control, although this was not observed
for DBP. The exercise training did not have additional
effects on BP or arterial function, owing the beneficial ef-
fect on the cardiovascular system to the milk proteins
(Table 1).

In summary, emerging evidence suggest that milk pro-
tein consumption for at least 4 weeks may result in small
BP lowering; however, further well-controlled studies in-
volving 24-h ambulatory BP monitor should be per-
formed for confirmation.

Short-term studies on blood pressure

According to a typical Western eating pattern, people
spend up to 18 h/d in a postprandial state consuming
three or more meals daily. Furthermore elevated post-
prandial lipeamia, glycaemia and inflammation have
been linked with increased risk for chronic disease devel-
opment, including diabetes and CVD(37–39). Therefore
dietary strategies that attenuate the postprandial meta-
bolic disturbance are urgently required.

To date only two studies have evaluated the acute
(short-term) effects of milk proteins on BP. Pal and
Ellis compared 45 g whey protein isolate, 45 g
Na-caseinate with 45 g glucose in conjunction with a
breakfast in normotensive overweight and obese
women(32), but found no effect of treatment. A more re-
cent study compared the postprandial effects of several
dietary proteins (milk protein, pea protein and egg-white)
and carbohydrate-rich meals on BP-related responses(40).
Although the authors failed to specify the specific type of
milk protein isolate used, its BP-lowering effect was not
significantly different to pea protein, although both
milk and pea protein were significantly lower than egg-
white (P≤ 0·01; Table 1). The lack of evidence on the
acute BP effects of milk proteins warrants further
research.
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Vascular function

Vascular dysfunction is often used as an umbrella term
for abnormalities of the vascular system, such as endo-
thelial dysfunction and arterial stiffness(41). The endothe-
lium, the inner layer of cells of the vasculature, plays a key
regulatory role in the vascular system. Any disturbance in
endothelial function, such as increased permeability,
reduced vasodilation and activation of thrombotic and
inflammatory pathways, can lead to atherosclerotic devel-
opment(42). Due to the central role of the endothelium in
the development of atherosclerosis, several non-invasive
methods have been developed to assess endothelial dys-
function. Flow-mediated dilation (FMD) is considered
to be the gold standard method of assessing endothelial
function and may surpass the predictive value of trad-
itional risk factors such as smoking, elevated cholesterol
level in predicting cardiovascular events in patients with
established CVD(43). However, it is of note that this tech-
nique requires extensive training and is operator depend-
ent, which may limit its value.

Arterial stiffness is a measure of arterial elasticity
which is the ability to expand and contract along with
cardiac pulsation and relaxation. CVD risk factors
such as ageing, hypertension, smoking and diet have
been shown to have a detrimental effect on arterial dis-
tensibility, inducing an imbalance between the synthesis
and degradation of elastin and types 1 and 3 collagen(44).
Pulse wave velocity is considered to be the gold standard
to measure arterial stiffness and has a substantial pre-
dictive value for CVD events(45).

Long-term studies on vascular function

Our previous review also evaluated the health effects
of milk proteins and/or their peptides on vascular func-
tion(13). In brief, we identified nine chronic

RCT(33,46–53), of which eight used LTP(46–54) and one
trial used intact casein and whey(33). These studies were
diverse in several aspects of methodologies such as de-
sign, length and dose of treatment, subject characteristics
and measures of vascular function, and most importantly
type of milk proteins used. Due to this heterogeneity, it is
not possible to draw firm conclusions on the relative
effects of milk proteins on the vascular function.

We have identified three further RCT: Petyaev et al.(34)

examined the impacts of WPL not only on BP, but also
on vascular reactivity, using FMD. They reported statis-
tically significant improvements in FMD in the WPL
group only (+2·6 %, P < 0·05) compared with baseline.
Arnberg et al. also evaluated the effects of intact whey,
casein and semi-skimmed milk on arterial stiffness
using pulse wave velocity, however, failed to show any
changes in vascular function(35). Figueroa et al.(36)

reported favourable changes in augmentation index (a
measure of arterial stiffness) and brachial-pulse wave vel-
ocity in both whey and casein groups combined with ex-
ercise, compared with the control group. It is of note that
the randomisation may not have been adequate as the
baseline values for both BP and arterial stiffness were dif-
ferent in the treatment groups, which may have con-
founded the study (Table 2).

Short-term studies on vascular function

Only four RCT were conducted to evaluate the effects of
milk proteins on vascular function in a postprandial set-
ting(32,54–56). Pal and Ellis failed to show any acute effects
of whey and casein ingestion with a meal in normotensive
obese postmenopausal women on arterial stiffness mea-
sured by pulse wave analysis(32). Likewise, Turpeinen
et al.(54) also did not observe any statistically significant
change in arterial stiffness measured by pulse wave vel-
ocity after acute ingestion of 25 mg LTP with 2 g plant

Table 1. Impacts of milk proteins on blood pressure

Reference Subjects
Study design
and duration Treatment (g) Comparison Treatment effect

Long-term
Petyaev et al.(34) Prehypertensive

(n 40)
Pilot, 4 weeks Whey protein isolate

(70 mg) embedded
into lycopene
micelles (7 mg)

Whey protein
isolate, lycopene
and placebo

↓BP

Arnberg et al.(35) Overweight
adolescents (n 193)

12 weeks Casein (35 g/l), whey
protein (35 g/l) and
skimmed milk (1 litre)

Water, pretest
control group

↓bBP and cDBP in
casein group, ↑cDBP,
bSBP and cSBP in
whey group

Figueroa et al.(36) Obese women (n 33) 4 weeks Casein, whey protein Carbohydrate ↓bSBP and aSBP in
casein and whey
groups

Short-term
Teunissen-Beekman et al.(40) Overweight or

obese (n 48)
240 min Milk protein, pea

protein, egg-white
protein

Maltodextrin ↓BP milk and pea
protein groups
compared to
egg-white protein
group

↑, Increase; ↓, decrease; BP, blood pressure; bBP, brachial blood pressure; cBP, central blood pressure; DBP, diastolic blood pressure; SBP, systolic blood
pressure.
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sterol ester mixed in a milk drink in mildly hypertensive
subjects. However, Ballard et al. reported significant
improvements in arterial reactivity assessed by FMD
(+4·3 %) at 120 min after ingestion compared with pla-
cebo corresponding time point (P< 0·05) in mildly hyper-
tensive, overweight individuals after whey hydrolysate (5 g
NOP-47) ingestion with water(55). Mariotti et al. failed to
report any significant effects of casein, whey or
α-lactalbumin enriched whey protein on digital volume
pulse (a measure of arterial stiffness)(57) (Table 2).

Intriguingly, BP-lowering effects of milk proteins were
not associated with changes in vascular function in the
reviewedRCT(13) which is confirmed by emerging evidence
on the relationship between BP and arterial stiffness. This
suggests that the interaction between BP and arterial stiff-
ness may be bi-directional(58,59) via complex interactions
between different pathways such as inflammatory(60,61),
hormonal (e.g. leptin and insulin)(61–63) and disturbances
in endothelial-derivedmediators(58). Therefore it is import-
ant to determine the effects of milk proteins on other med-
iators of CVD risk that may indirectly affect BP.

Glycaemic control

Insulin has a range of biological actions within the
human body(64), it not only has a key regulatory role in
metabolic energy disposal and storage in tissues, but
also it is responsible for cell growth and development(65),
ion transport(66) and sympathetic nervous system activ-
ity(67). In addition, insulin has haemodynamic activities
such as increasing blood flow and cardiac output, prob-
ably via increased NO production(64). Giugliano et al.
demonstrated insulin release after an intravenous infusion
of L-arginine resulted in improvements in FMD(68).
However, Gates et al.(69) showed an insulin-independent
vasodilation after L-arginine administration. Similarly,
Ballard et al. reported an insulin-independent FMD im-
provement in response to the acute ingestion of a whey-
derived peptide, NOP-47(55).

It is well established that food proteins and more spe-
cifically AA acutely stimulate insulin secretion(70) with
several AA possessing direct insulinotropic effects(71,72).

Both whey and casein appear to increase insulin secre-
tion, however, to different extents(73). This may be due
to their effect on gastric emptying, absorption and
kinetics, since the insulin responses seemed to correlate
with the increase in plasma AA concentration after pro-
tein ingestion(74). Likewise, hydrolysates appear to in-
crease insulin production more than intact proteins(75).

It is not yet known how milk proteins exert their ben-
eficial effects on glucose homeostasis; however, BCAA,
in particular, leucine, isoleucine, valine, lysine and threo-
nine are shown to act as insulin secretagogues (inducing
insulin secretion from pancreatic β-cells), with leucine re-
portedly having the greatest insulinotopic effect acute-
ly(76). This may be via the regulation of both ATP
production (by metabolic oxidation and allosteric activa-
tion of glutamate dehydrogenase) and KATP activity(77).
Similarly, BCAA and particularly leucine, have been
reported to activate the mammalian rapamycin pathway
resulting in a higher incretin hormone (insulin, glucagon-
like peptide 1 (GLP-1) and gastric inhibitory peptide
(GIP)) synthesis(77,78). GIP is also known as glucose-
dependent insulinotropic peptide, synthesised by K cells
found in the mucosa of the duodenum and jejunum in re-
sponse to food ingestion, which may subsequently further
induce insulin production(79). While the effect of GIP
appears to be more pronounced at normoglycaemic
levels, GLP-1 is more active during hyperglycaemia(79).
Jakubowicz and Froy showed that whey protein drink
increased GIP response (+80 %) in healthy adults, yet a
mixture of BCAA mimicking the supply of AA in
whey protein, failed to exert the same effect(80).
Therefore they suggested that certain bioactive peptides
and/or AA deriving from whey protein during digestion
may be responsible for this action(80). GLP-1 is a potent
antihyperglycaemic hormone secreted by intestinal L
cells(79). Interestingly, it has been shown to possess cardi-
oprotective effects, which may be further complemented
by natriuretic and antioxidative stress on the kidneys
leading to beneficial impacts on BP and vasculature(81).
This warrants further consideration in future research
when the effects of milk proteins on the cardiovascular
system are assessed. Additionally, GLP-1 was more pro-
nounced in healthy subjects after whey consumption

Table 2. Impacts of milk proteins on vascular function

References Subjects
Study design
and duration Treatment (g) Comparison

Treatment
effect

Long-term
Petyaev et al.(34) Prehypertensive

(n 40)
Pilot, 4 weeks Whey protein isolate (70 mg)

embedded into lycopene
micelles (7 mg)

Whey protein isolate, lycopene and
placebo

↑FMD

Arnberg et al.(35) Overweight
adolescents (n 193)

12 weeks Casein (35 g/l), whey protein
(35 g/l) and skimmed milk
(1 litre)

Water, pretest control group ↔

Short-term
Mariott et al.(57) Overweight men

(n 10)
360 min Casein Whey protein isolate,

α-lactalbumin-enriched whey
protein

↔

FMD, flow-mediated dilation, ↑, increase; ↔, no effect.
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compared with casein or soya; however, after 2 h of in-
gestion the concertation of the hormone decreased,
while it continued to increase after casein(80,82,83). This
may be explained by the different plasma kinetics of
milk proteins. Two enzyme inhibitory peptides deriving
from milk proteins have been associated with the benefi-
cial effects on the glucose homeostasis: dipeptidyl
peptidase-IV enzyme inhibitors and α-glucosidase en-
zyme inhibitors. Although dipeptidyl peptidase-IV
plays several roles in different physiological processes,
it has a distinct effect on glucose homeostasis by degrad-
ing incretin hormones GLP-1 and GIP(84). Whereas there
is a definite lack of human studies examining the effects
of dipeptidyl peptidase-IV inhibitory peptides deriving
from milk proteins; some in silico (computer-aided),
in vitro and limited animal studies suggest a potential
role in controlling glucose metabolism. Lacroix and
Li-Chan proposed that casein appears to be a better
source of dipeptidyl peptidase-IV inhibitory peptides
than whey protein(85). However, in vitro and in vivo stud-
ies suggest that whey protein may be equal or a better
source of these inhibitory peptides (for review see(86)).
The α-glucosidase enzyme is found in the brush border
of the enterocytes in the small intestine and is responsible
for the synthesis and breakdown of carbohydrate by
cleaving glycosidic bonds in complex carbohydrates to
produce monosaccharides. A potential therapy in type
2 diabetic patients could be to reduce the absorption of
glucose by carbohydrate hydrolysing enzymes such as
α-glucosidase, which may also enhance and promote
GLP-1 secretion(87). A very limited number of in vitro
studies demonstrated that α-glucosidase inhibitory pep-
tides may be derived from whey protein(88,89). This clear-
ly warrants further research.

Short-term studies on glycaemic control

Milk proteins have been extensively investigated for their
insulinotropic and glucose-lowering effects in healthy
subjects(73,75,82,83,90–99) and to a limited extent in indivi-
duals with suboptimal glucose control(100–106). The dose
varied significantly between studies from as little as
10 g(92,105,106)–51 g(91). Milk proteins were administered
on their own or with a meal or even served as pre-meals.
Current evidence on the effects of whey protein on glu-
cose control appears to be more promising than casein;
furthermore it has been proposed that whey protein
may be as effective at inducing insulin secretion as medi-
cation (sulfonylureas) prescribed for management of
hyperglycaemia in type 2 diabetic patients(80,107)

(Table 3). Thus, providing a rationale for individuals
with impaired glucose control or for patients with type
2 diabetes mellitus to consume whey protein prior to or
with meals to control postprandial glucose metabolism.
Future studies should examine the minimum dose at
which whey protein exerts beneficial effects. Similarly
due to the different time-frame by which milk proteins
have an effect, longer postprandial trials (e.g. 24 h)
may provide important information on how casein

could improve hyperglycaemia in individuals charac-
terised by insulin resistance but with functional β-cells.

Long-term studies on glycaemic control

To the best of our knowledge, only three studies have
investigated the chronic supplementation of milk pro-
teins, rather than milk or dairy products, on glycaemic
control. Pal et al. examined the effects of whey and casein
(2 × 27 g/d for 12 weeks) in overweight and obese sub-
jects(96). Most subjects had borderline impaired glucose
tolerance at baseline, but at the end of the intervention
a reduced fasting insulin concentration was observed in
the whey protein group compared with the control
group (glucose), although no change in fasting glucose
was reported. In another study, a whey fermentation
product (malleable protein matrix) decreased fasting
plasma glucose concentration after 3 months supplemen-
tation compared with the control group, which was more
pronounced in individuals with impaired fasting glucose
at baseline(108). An acute-in-chronic study also reported a
decrease in postprandial glucose response in whey group,
which remained unchanged after the 4-week supplemen-
tation period(102) (Table 3).

Lipid metabolism

Short-term studies on lipids

Postprandial triacylglycerolaemia has been associated
with markers of early atherosclerosis such as endothelial
dysfunction and carotid media thickness(109,110) and is
strongly influenced by the composition of a meal, includ-
ing the quality and quantity of fat(111,112) and carbohy-
drate(113,114). In theory due to the insulinogenic effects
of milk proteins, their consumption would be predicted
to attenuate postprandial lipaemia, as insulin has an in-
hibitory effect on hormone-sensitive lipase and hepatic
release of free fatty acid and stimulatory effect on lipo-
protein lipase which hydrolyses TAG for metabolism
or storage. However, evidence from postprandial RCT
is limited. Postprandial investigations reported decrease
in TAG after both whey and casein ingestion in combin-
ation with a fat-rich meal in obese(98) and individuals with
type 2 diabetes mellitus (103,115), but showed no effect on
TAG after acute consumption of whey protein(99,104). Free
fatty acid also decreased after whey and casein ingestion
in obese(99) and type 2 diabetes mellitus patients(104). It is
of note that parameters of lipid metabolism such as LDL
and HDL and total cholesterol remain stable
acutely(116,117).

Recently an acute study reported that casein with a
high-fat, high-energy meal, compared with whey protein
and α-lactalbumin-enriched whey protein, significantly
reduced postprandial TAG and had a marked effect of
chylomicron kinetics(57). This could be due to the differ-
ent physicochemical makeup of casein and whey protein,
as casein forms a gel in the stomach influencing the rate
of absorption and gastric emptying (Table 4).
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Long-term studies on lipids

To date, five chronic RCT, which examined the lipid-
lowering effects of milk proteins, have been identified.
Three month supplementation of whey (2 × 25 g/d) and
casein (2 × 25 g/d) during an ad libitum weight regain
diet after substantial diet-induced weight loss in healthy
obese subjects resulted in no change in plasma lipids(118).
However, whey protein isolate (2 × 27 g/d) significantly
reduced fasting TAG, total cholesterol and LDL-
cholesterol after 3 months in overweight, obese indivi-
duals(96). Another 3-month supplementation study with
malleable protein matrix (15 g/d protein in two daily ser-
vings of 150 g yoghurt) reduced fasting TAG, which was
more pronounced in subjects with elevated baseline
TAG(108). In a 6-week study casein (35 g/d) also reduced
total cholesterol in hypercholesterolaemic subjects(119).
Petyaev et al. reported a decrease in LDL-cholesterol,
TAG and total cholesterol in their pilot study(34) (Table 4).

The limited evidence suggests thatmilk proteins have a ben-
eficial impact on fasted lipids; however further studies are
required. Although its possible mechanism of action is not
clear, insulin may play a role. In vitro studies suggest that
milk proteins and BCAA inhibit expression of genes
involved in intestinal fatty acid and cholesterol absorption
and synthesis(120). Whey has been shown to induce urinary
excretion of tricarboxylic acid cycle compounds such as cit-
ric acid and succinic acid in rats, which are substrates
for lipogenesis, suggesting an increased catabolic state
(e.g. lipolysis) and reduced lipid accretion compared with
casein(121). This could be a possible mechanism of lipid re-
duction. Similarly, in another metabolic study conducted
in human subjects, cheese (casein) appeared to induce low-
ering of urinary citrate(122), which suggests that cheese con-
sumption affects the tricarboxylic acid cycle. Additionally,
microbiota-related metabolite, hippuric acid was signifi-
cantly higher in the cheese group, than in themilk, implying

Table 3. Impacts of milk proteins on glycaemic control

Reference Subjects
Study design
and duration Treatment (g) Comparison Treatment effect

Short-term
Nilsson et al.(73) Healthy (n 12) 120 min WP (18·2 g) White-wheat bread, milk, cod,

cheese, gluten-low,
gluten-high

↑Insulin response,
↑GIP, ↔GLP-1

Calbet et al.(75) Healthy (n 6) 120 min HC (36 g) Intact casein ↑GIP
Hall et al.(82) Healthy (n 9) 180 min WP (48 g) Casein ↑GLP-1
Veldhorst et al.(83) Healthy (n 25) 180 min WP (10 and 25 %) Casein, soya ↑GLP-1
Petersen et al.(90) Healthy (n 10) 120 min WP (20 g) Glucose ↓Glucose response
Pal and Ellis(91) Healthy men (n 22) 240 min WP (50·8 g) Turkey, egg, tuna ↓Glucose response,

↑Insulin response
Akhavan et al.(92) Healthy (n 10) 230 min WP as pre-meal

(10–20 g)
Glucose, water ↓Glucose response,

↑GLP-1, ↑GIP
Akhavan et al.(93) Healthy (n 16/21) 170 min WP as pre-meal

(10–40 g)
Water ↓Glucose response

Acheson et al.(94) Healthy (n 23) 330 min WPI (50 % of diet) Casein, soya, glucose ↑Insulin response
Morifuji et al.(95) Healthy (n 10) 120 min WPH (86,9 %) WP, soya, soya hydrolysate ↑Insulin response
Nilsson et al.(97) Healthy (n 12) 120 min WP (18 g) Glucose, amino acids ↔GLP-1
Holmer-Jensen et al.(98) Obese (n 11) 480 min WPI + fat-rich meal

(45 g)
Casein and gluten ↓GIP

Holmer-Jensen et al.(99) Obese (n 12) 480 min WPI + fat-rich meal
(45 g)

WP specific fractions ↔GLP-1

Frid et al.(100) T2D (n 14) 240 min WP (27·6 g) Ham (96 g) + lactose (5·3 g) ↓Glucose response,
↑Insulin response

Ma et al.(101) T2D (n 8) 300 min WP as pre-meal
(55 g)

WP in main meal ↑Insulin and incretin
response

Ma et al.(102) T2D (n 7) 240 min WPI (25 g) ‘diet’ drink ↓Glucose response
Mortensen et al.(103) T2D (n 12) 480 min WPI + fat-rich meal

(45 g)
Casein, gluten, cod ↔GLP-1, ↓GIP

Mortensen et al.(104) T2D (n 12) 480 min WPI + fat-rich meal
(45 g)

WP-specific fractions ↔GLP-1

Jonker et al.(105) T2D (n 13) 250 min CH (12 g) CH (0 g) ↑Insulin response
Geerts et al.(106) T2D (n 36) 240 min CH (12 g) Intact casein ↓Glucose response

Long-term
Pal et al.(96) Overweight and

obese (n 70)
12 weeks WPI (2 × 27 g/d) Glucose ↑Fasting insulin +

HOMA-IR
Ma et al.(102) T2D (n 7) 4 weeks WPI (25 g) ‘diet’ drink ↓Glucose response
Gouni-Berthold et al.(108) MS (n 180) 12 weeks Whey MPM (15·3 g) Placebo ↓Glucose response

↑, Increase; ↓, decrease; ↔, no effect; CH, casein hydrolysate; D, day; GIP, glucose-dependent insulinotropic polypeptide; GLP-1, glucagon-like peptide 1; HC;
hydrolysed casein; HOMA-IR, homeostasis model assessment of insulin resistance; MS; metabolic syndrome; T2D, type-2 diebetes; Whey MPM, whey malleable
protein matrix; WP, whey protein; WPH, whey protein hydrolysate; WPI, whey protein isolate.
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a stimulation of gut bacteria activity. The enhanced bacter-
ial activity also resulted in higher SCFA(122), which have
been proposed as key regulatorymetabolites in lipidmetab-
olism(123). This effectmay be due to the cheesematrix rather
than the caseinper se.An in vivo studyproposedanother po-
tentialmechanismof action throughdecreased lipid infiltra-
tion into the liver in rats with non-alcoholic fatty liver(124).
Anotherpossible putativemechanism is increased fat oxida-
tion. Lorenzen et al.(125) demonstrated an increased lipid
oxidation after acute casein consumption compared with
whey.They speculated that itmaybedue to lower insulin se-
cretion after casein consumption relative towhey since insu-
lindown-regulates lipidoxidation.However, insulinwasnot
measured in the study and this mechanism could not be
confirmed. The same research group examined the effects
of dairy Ca on lipid metabolism in conjunction with a
low- and high-fat diet for 10 d(126). They found that dairy
Ca attenuated the increase in total and LDL-cholesterol,
withoutaffecting the rise inHDL-cholesterol.Thisobserved
phenomenon may be due to the formation of insoluble
Ca-fatty acid soaps and/or the production of hydrophobe
aggregation with bile and with other fatty acids(126–128).

Inflammation and oxidative stress

Inflammation and oxidative stress are chronic conditions
which contribute to many diseases such as obesity(129),

type 2 diabetes mellitus (130) and CVD(131). Different diet-
ary components have an impact on low-grade inflamma-
tion(132); however, there is a lack of RCT evaluating the
acute and chronic consumption ofmilk proteins on inflam-
mation or oxidative stress with inconsistent outcomes.

Long-term studies on inflammation and oxidative stress

A recent meta-analysis evaluated the effects of chronic con-
sumption of whey protein and hydrolysate on C-reactive
protein (CRP), a systemic inflammatory marker(133). Nine
RCT were included which showed a small, non-significant
reduction in CRP 0·42 mg/l (95 % CI −0·96, 0·13).
Sub-group analyses suggested that >20 g/dmay bemore ef-
fective, and the elevated baseline CRP level (≥3 mg/l) could
be more responsive to whey or whey peptides consump-
tion(133). Similarly, Arnberg et al.(35) reported no change in
CRP in adolescence after whey, casein or skimmed milk
consumption for 12 weeks.

IL-6, IL-8 and TNF-α are also recognised inflamma-
tory markers, which induce CRP. Pal and Ellis failed to
observe significant changes in these inflammatory markers
(2 × 27 g whey or casein or glucose for 12 weeks) in over-
weight individuals(33). However, Sugawara et al.(134)

reported decreased level of IL-6, IL-8 and TNF-α in
patients with chronic obstructive pulmonary disease after
whey intervention compared with the control group.
Likewise, IL-6 and TNF-α were decreased after lactoferrin
consumption for 6 months in postmenopausal women(135).

Table 4. Impacts of milk proteins on lipid metabolism

References Subjects
Study design
and duration Treatment (g) Comparison Treatment effect

Short-term
Brader et al.(115) T2D (n 11) 480 min Casein combined

with carbohydrates
and a fat-rich meal
(45 g)

Control meal, control
meal + carbohydrate,
control meal + casein

↓TAG concentration in
chylomicron-rich
fraction

Holmer-Jensen et al.(98) Obese (n 11) 480 min WPI + fat-rich meal
(45 g)

Cod and gluten ↓TAG response, ↓TAG
concentration in
chylomicron-rich
fraction, ↓FFA

Holmer-Jensen et al.(99) Obese (n 12) 480 min WPI + fat-rich meal
(45 g)

WP specific fractions ↔TAG response

Mortensen et al.(103) T2D (n 12) 480 min WPI + fat-rich meal
(45 g)

Casein, gluten, cod ↓TAG response, ↓FFA

Mortensen et al.(104) T2D (n 12) 480 min WPI + fat-rich meal
(45 g)

WP specific fractions ↔TAG response

Long-term
Pal et al.(96) Overweight and obese

(n 70)
12 weeks WPI (2 × 27 g/d) Glucose ↓Fasting TAG, ↓TC,

↓LDL-c
Weisse et al.(119) Hyper-cholesterolemic

(n 43)
6 weeks Casein (35 g/d) Baseline ↓TC

Claessens et al.(118) Obese (n 48) 12 weeks WP (2 × 25 g/d) Casein ↔fasting lipids
Petyaev et al.(34) Prehypertensive (n 40) Pilot, 4 weeks Whey protein isolate

(70 mg) embedded
into lycopene
micelles (7 mg)

Whey protein isolate,
lycopene and
placebo

↓TC, ↓TAG, ↓LDL-c,
↑HDL

Gouni-Berthold et al.(108) MS (n 180) 12 weeks Whey MPM (15·3 g) Placebo ↓TAG

↑, Increase; ↓, decrease; ↔, no effect; CH, casein hydrolysate; D, day; FFA, free fatty acids; HC; hydrolysed casein; HDL-c, HDL cholesterol; LDL-c, LDL
cholesterol; MS; metabolic syndrome; T2D, type-2 diebetes; TC, total cholesterol; Whey MPM, whey malleable protein matrix; WP, whey protein;
WPH, whey protein hydrolysate;WPI, whey protein isolate.
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Similarly Hirota et al.(46) reported decreased levels of
TNF-α in mildly hypertensive subjects fed with the casein-
derived LTP (Table 5).

Short-term studies on inflammation and oxidative stress

Pal and Ellis also reported no change in IL-6, IL-8 and
TNF-α in a postprandial study investigating whey and
casein(32). Likewise, a whey-derived peptide, NOP-47,
also failed to change the level of serum cytokines
(TNF-α, IK-6, IL-8, monocyte chemoattractant
protein-1, vascular endothelial growth factor, soluble
E-selectin, soluble vascular cell adhesion molecule-1)
and chemokines(56). However, consumption of a cake
containing whey protein after exhaustive cycling in
nine subjects reported reduced levels of CRP and IL-6
by 46 and 50 %, respectively(136). Holmer-Jensen et al.
assessed the postprandial effects of whey protein,
casein, gluten and cod on low-grade inflammatory mar-
kers (monocyte chemotactic protein-1, CC chemokine
ligand-5/RANTES (Regulated on activation, normal T
cell expressed and secreted)) in conjunction with a high
fat meal(137). They reported that all meals increased CC
chemokine ligand/RANTES; however, the smallest in-
crease was observed after the whey protein meal.
Monocyte chemotactic protein-1 was initially suppressed
after all meals, and the meal containing whey protein
induced the smallest overall postprandial suppression(137)

(Table 5).
The mechanism of action of milk proteins on oxidative

stress and inflammation are unclear but Ca may supresses
the pro-inflammatory and reactive oxygen species

production in vitro(138). Interestingly, the milk protein-
derived inhibitors of the angiotensin-I-converting enzyme
may also be involved in the anti-inflammatory process(139).

Conclusion and implication for future studies

Taken together, there is a growing number of RCT which
suggest that casein andwhey proteinmay have a role in car-
diometabolic health. Studies focused on reducing chronic
disease risk factors such as hypertension and dysregulated
lipid/glucose metabolism by non-pharmacological, dietary
strategies will have significant implications not only for so-
cial and economic welfare, but also for the healthcare
system.

Due to the different physicochemical makeup of casein
and whey protein, they may exert differential effects in
human subjects. Notably, manufacturing may play a
significant role in the physiological effects of milk pro-
teins; however, future studies should investigate which
processing method results in more bioactive effects.
There is inconclusive evidence on the relative impacts
of milk proteins on diurnal BP and vascular function,
yet there appears to be strong evidence on the insulino-
tropic impacts of dairy proteins, owing to the specific
AA composition such as BCAA. They also appear to
play a beneficial role in lipid homeostasis. Nevertheless
the mechanism underlying the action of dairy proteins
on the cardiometabolic health warrants further research.

The incorporation of a meal enriched with protein in
the habitual diet may result in the improvement of cardi-
ometabolic health as well as the prevention of developing

Table 5. Impacts of milk proteins on inflammation and oxidative stress

Reference Subjects
Study design
and duration Treatment (g) Comparison Treatment effect

Long-term
Sugawara et al.(134) COPD (n 36) 12 weeks WP (20 g) 0 g WP ↓CRP,

↓IL-6,↓IL-8,
↓TNF-α

Bharadwaj et al.(135) Post-menopausal
women (n 38)

24 weeks Ribonuclease-enriched
lactoferrin (2 × 125 mg/d)

Placebo ↓IL-6, ↓TNF-α

Arnberg et al.(35) Overweight
adolescents (n 193)

12 weeks Casein (35 g/l), whey
protein (35 g/l)

Water, pretest
control group

↑CRP

Pal and Ellis(33) Overweight (n 70) 12 weeks WPI (54 g), Casein (54 g) Glucose ↔CRP, ↔IL-6,
↔TNF-α

Hirota et al.(46) Mild hyper-tensives
(n 25)

1 week VPP (3·42 mg), IPP (3·87 mg) Baseline ↔CRP, ↓TNF-α

Short-term
Pal and Ellis(32) Overweight

postmenopausal
women (n 20)

480 min WPI (45 g), Casein (45 g) Glucose ↔CRP, ↔IL-6,
↔TNF-α

Ballard et al.(56) Healthy (n 20) 120 min Whey-derived peptide
(NOP-47, 5 g)

Placebo ↔CRP, ↔IL-6,
↔IL-8, ↔TNF-α

Kerasioti et al.(136) Healthy men (n 9) 48 h WP (0·26 g protein/kg BW/h) Placebo ↓CRP, ↓IL-6,
↑IL-10

Holmer-Jensen et al.(137) Obese (n 11) 240 min WP + high-fat meal Casein, cod and
gluten + high-fat
meal

↓CCL5/RANTES,
↑MCP-1

↑, Increase; ↓, decrease; ↔, no effect; BW, body weight; CCL5, CC chemokine ligand-5; CH, casein hydrolysate; COPD, chronic obstructive pulmonary disease;
CRP, C-reactive protein; IPP, isoleucine–proline–proline; MCP-1, monocyte chemotactic protein-1; VPP, valine–proline–proine; Whey MPM, whey malleable
protein matrix; WP, whey protein; WPH, whey protein hydrolysate;WPI, whey protein isolate.
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cardiometabolic diseases. Additionally, in contrast with
pharmacological antihypertensive treatments, food-
derived proteins have not been shown to cause any side-
effects or hypotension, making them safe to consume by
individuals with a variety of other disease conditions.
After careful consideration of the available evidence
and knowledge gaps, we have conducted two double-
blind, controlled, cross-over studies (Whey2Go studies)
aiming to compare the chronic (n 38) and postprandial
(n 27) impacts of whey protein (2 × 28 g) and
Ca-caseinate (2 × 28 g) with control (2 × 27 g, maltodex-
trin) on vascular function, BP, markers of insulin resist-
ance, lipid metabolism and inflammatory status in men
and women with mild hypertension (≥120/80 mmHg).
These studies aim to provide valuable information on
the relative effects of milk proteins on BP and on detailed
aspects of vascular function compared with maltodex-
trin. These trials will further our knowledge of whether
milk proteins have significant influences as health-
promoting food components and whether the public as
well as the food industry could benefit. The results from
these studies are likely to be available in mid-2016.
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