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HELICOIDAL MINIMAL SURFACES IN HYPERBOLIC SPACE

JAIME B. RIPOLL

§ 1. Introduction

Denote by H3 the 3-dimensional hyperbolic space with sectional

curvatures equal to — 1, and let g be a geodesic in H3. Let {ψt} be the

translation along g (see § 2) and let {φt} be the one-parameter subgroup of

isometries of H3 whose orbits are circles centered on g. Given any ae R,

one can show that λ = {λt} = {ψt o φat} is a one-parameter subgroup of

isometries of H3 (see § 2) which is called a helicoidal group of isometries

with angular pitch a. Any surface in H3 which is A-invariant is called

a helicoidal surface.

In this work we prove some results concerning minimal helicoidal

surfaces in H*. The first one reads:

THEOREM A. Let aeR, \a\ < 1. Then, there exists a one-parameter

family Σ of complete simply-connected minimal helicoidal surfaces in H3 with

angular pitch a which foliates H3. Furthermore, any complete helicoidal

minimal surface in H3 with angular pitch \a\ < 1 is congruent to an ele-

ment of Σ.

We have the following corollary (see also [An]):

COROLLARY B. Any complete helicoidal minimal surface in H3 with

angular pitch \a\ < 1 is globally stable.

The family Σ of Theorem 1 allow us to give a characterization of

minimal helicoidal surfaces in H3, as stated below.

Let S\oo) be the Mδbius plane, that is, the 2-sphere equipped with

the usual conformal structure. Given two points pu p2 in S2(oo) and

ae[0, π/2], a differentiable curve ϊ: R -> S2(oo) which makes an angle a

with any circle of S2(oo) containing px and p2 is called a loxodromic

curve with end points p^ and p2 and with path a. By a pair (Lί9 L2) of
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loxodromic curves we mean two distinct loxodromic curves Lu L2 with
same path and with same end points.

Now recall that S2(oo) can be identified with the asymptotic bound-
ary dooH3 of the hyperbolic space H\ the conformal structure of S2(oo)
being induced by the extended action of ISO(H3) to d^H3 = S2(oo). We
prove:

THEOREM C. Given any pair of loxodromic curves (Lu L2) in S2(oo)

with path a e [0, τr/4), there exists one and only one complete properly im-

mersed minimal surface M2 in H3 such that d^M2 = Lλ U L2 (M2 is con-

gruent to an element of the family Σ mentioned in Theorem 1).

The question of determining an immersion in hyperbolic space with
constant mean curvature by its asymptotic boundary was first taken up
by do Carmo and Lawson ([doCL]). In ([doCGT]), this idea was improved
and it has been remarked there the strong influence of the asymptotic
boundary of a complete constant mean curvature surface in ίί 3 on its
global behaviour. In ([LR]), the authors use this idea to characterize
catenoids in hyperbolic space and in ([GRR]) is also used to characterize
hyperbolic and parabolic surfaces with constant mean curvature in H3.
We observe that these surfaces, together with the helicoidal ones, ex-
haust the different types of one-parameter subgroup invariant minimal
surfaces in H3 (see classification in [R]). We finally remark that in pro-
ving Theorem 2, no regularity at infinity has to be assumed, contrary to
what happens with similar Theorems (see Theorems 3.1 and 3.2 of [LR],
Theorems 2 and 3 of [doCGT] and Theorems 3.3 and 5.2 of [GRR]).

I want to thank Professor Manfredo P. do Carmo who suggested to
me the questions about helicoidal minimal surfaces in H3.

The results of tbis paper are part of my doctoral Thesis at IMPA

(PR]).

§ 2. Preliminaries

We will use the Lorentzian model for the hyperbolic space H3

9 that is,

H3 = {(xu x2, x3, x4)| - x\ + x\ + xl + x\ = - 1},

the Riemannian metric of H3 being induced by the quadratic form

q(x) = - χl + χl + χl + χl χ= (χl9 x%9 χ3f χ4)

of R\
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Observe that

cosh t sinh t 0 0

sinh t cosh t 0 0

0 0 cos at — sin at

0 0 sin at cos at

is a one-parameter subgroup of isometries of H3 since it preserves q,

and it is the sum of the translation

cosh t sinh t 0 0

sinh t cosh £ 0 0

0 0 1 0

0 0 0 1

along the geodesic g: — x\ + x\ = — 1 plus the rotation

1 0 0 0

0 1 0 0

0 0 cos at — sin at

10 0 sin at cos at)

around g. By analogy to the Euclidean space, λ =* {̂ } will be called a

helicoidal subgroup of isometries with angular pitch a.

Let P 2 be any totally geodesic 2-submanifold of H* orthogonal to g.

Let 3 = P 2 Π g and define p: P2 -• R by p(p) = d(o,p), d: Riemannian

distance. Set r = sinh p.

From now on, we choose a geodesic Λ in P 2 parametrized by arc

length and such that h(0) = 3. Given pe P 2 — {3} denote by 0(p) the

oriented angle between p and h where p is the geodesic segment from 3

to p. (r(p), 6(p)) will be called the polar coordinates of p. Computations

show that the metric ds2 in P 2 is given in polar coordinates by

(2.1) ds2 =
dr2

+

It is easy to verify that any orbit of λ intersects P 2 once and just

once. Therefore, any ^-invariant surface is generated by a curve in P 2 .

We have the following proposition:

PROPOSITION 2.1. Let ϊ be a curve in P 2 such that dϊjdt Φ 0 for any

t Assume that ϊ generates a minimal 1-invariant surface with angular
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pitch a. Then, the polar coordinates θ = θ(t) and r == r(t) of T satisfy the

differential equation.

)θ* ^ ' + 2 r2(2.2) (r2 + 1)[(1 + c?)r2 + l](θr - rθ - r{r2

)θ r

- (1 + a2)r(r2 + ΐ)2θ( ** + rψ) + 2a2rθ{r2 + r\r2 + 1)202) = 0 .
\r2 + 1 /

// ||τΊ| = 1, then the oriented geodesic curvature k of T is given by:

(2 3) k- ( 1 + * ) ( r + 1 ) "" 2 a ( i + r ( r + 1)Ψ r2θ
' J [(1 + a2)r2 + l](r2 + I)3/2

Proof Given p e P2, define X(p) = (dlds)[λs(p)]s=0 and observe that

3S = {X(r(t))9 dϊ/dt} is a basis at ϊ(t) of the tangent plane of the surface

S generated by ϊ. Formula (2.2) is therefore obtained by computing the

trace of the second fundamental form of S along T in the basis &. For-

mula (2.3) is obtained using (2.2) and the formula of the geodesic curva-

ture of a curve in hyperbolic plane. •

§ 3. Description of the helicoidal minimal surfaces

In this section we study equations (2.1), (2.2) and (2.3) to obtain a

description of the helicoidal minimal surfaces.

We begin by observing that the geodesies through o in P 2 generate

minimal surfaces (note that they satisfy θ = constant). As in Euclidean

space these surfaces will be called helίcoids.

Remark 3.1. Equations (2.1) and (2.2) show that given pe P2 and

veTp(P2), | | ϋ | | = 1, there exists one and only one curve T in P2 para-

metrized by arc length and generating a helicoidal minimal surface with

angular pitch a such that Γ(0) = p and ϊ(0) = v.

Any such curve will be called a solution curve.

LEMMA 3.2. Let T be a solution curve in P2 such that r(t0) = 0. Let

h be a geodesic in P2 orthogonal to ϊ at T(t0). Then ϊ is invariant under

the reflexion in P2 with respect to h.

Proof. Without loss of generality, we may assume t0 = 0. Further-

more, since (2.2) independs on #, we may also assume that 0(0) = 0, r =

r(t) and θ = θ(t) being the polar coordinates of T. Let σ be the reflexion
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on h. Then f = σ o r is given by f (*) = r(£) and 0(ί) = - θ(t) + TΓ. Set

γ(t) = Y(— t). Therefore, it is easy to verify that the polar coordinates

of ϊ and ϊ satisfy (2.1) and (2.2). Furthermore, one has f(0) = ?(0) and

?(0) = f(0), that is, ΐ = 7, which proves the Lemma. •

DEFINITION 3.3. Let v be a vector field of P 2 along the geodesic h

which is unitary and normal to h.

Given ue R, denote by ϊu the solution curve determined by the in-

itial conditions

r.(0) = h(u)

TM = υ(u).

Let Γ = {Tu}ueR and Σ — {Sw}Mei2 where ASM is the helicoidal minimal

surface generated by ϊu.

Remark 3.4. It follows from the above definition and from Lemma

3.2, that any curve ϊu is invariant with respect to the reflexion on h.

Also, using Remark 3.1, one can prove that T_u coincides with to the re-

flexion of ϊu on the geodesic through 5 of P 2 orthogonal to h.

LEMMA 3.5. Any solution curve of P 2, up to a rotation around 5,

belongs to Γ.

Proof. Let Γ be a solution curve in P 2 given in polar coordinates

by θ = θ(t) and r = r(t). We have just to prove that there exists to such

that r(t0) = 0. By contradiction assume the opposite. Without loss of

generality, we may assume that l i m ^ r(t) = r0 > 0, and we must have

lim^oo r = 0 = l i m ^ r. If r0 > 0, then, from (2.1) l i m ^ θ = (l/r0). Deri-

vating (2.1) and taking the limit for ί ^ o o we see that lim^^θ = 0. But

then, taking the limit for t -> oo of (2.2) we obtain

(r0

2 + 1)[(1 + *2)r0

2 + 1 ] ( - ^ ± _ 1 ) - (1 + *2)(r2 + I)2 + 2a\rl + I)2 = 0

and, after simplifications,

2r2 + 1 = 0

contradiction!

If r0 = 0, then from (2.1), l i m ^ θ = co and l i m ^ rθ = 1. Taking

the limit for t -> oo of (2.2), we obtain
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lim
«-«, r

and then

lim (rrθ + rθ2 + 2rθ) = 0.
t—CO

Derivating (2.1), taking the limit for t->oo, we obtain lim^^ (rrθ' +

r2θ) = 0, thus

0 = lim (rθ2 + r2θ) = lim (r0 + r2)θ = lim 0

contradiction!

THEOREM 3.6. An/y helίcoidal minimal surface with angular pitch a

is congruent to an element of Σ.

Proof. Set λ = {λt}teB, and let S be an helicoidal minimal surface

with angular pitch a. Up to congruence, we may assume that S is Λ-

invariant. Hence, it is generated by a curve β in P 2 . From Lemma 3.5,

there exists a rotation θ of P2 around o such that θ(β) e Γ. Let 0 be the

extension of θ to £P. Then, it is simple to verify that θ commutes with λ.

Therefore, one has

= θ(λ(β))=λφ(β))eΣ. •

Let hL be the geodesic of P2 containing o orthogonal to h.

PROPOSITION 3.7. Assume \a\ < 1. Then, any curve of Γ different

from To is a concave graph over hL.

Proof. Let TueΓ, u Φ 0, and let θ = θ(t) and r = r(t) be the polar

coordinates of γu. To prove the proposition we show that θ = θ(t) is a

strictly increasing or strictly decreasing function of t and that the geo-

desic curvature of Tu is always positive.

The first statement is obvious since θ(t0) = 0 in some point t09 then

Tu would be the geodesic θ = θ(t0) and u = 0, contradiction.

Since r(0) = 0, from (2.3), we have

k(0) =
(1 + a2)r2(0) + 1

and, since \a\ < 1 and r(0) > 0, we see that β(0) > 0.

By contradiction, assume that k(t0) = 0 in some point t0. Therefore

from (2.3) we obtain, at t = t0,
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(1 + a2)(r2 + I)2 - 2a\r2 + r\r2 + Ϊ)Ψ) = 0

hence a Φ 0 and

2α2 (r 2 + I) 2

From (2.1), we finally obtain

rr

2α s

contradiction!

DEFINITION 3.8. Given ϊu e Γ, let θ = θjf) be the angular coordinate

of ϊu. We define the angle at infinity of Γω by θ^iu) = lim^^ #M(£).

It follows from Proposition 3.7 that Θ^u) e (0, ττ/2] for any u e [0, oo).

LEMMA 3.9. Let uu u2e R, 0 < ut < u2, and let θ = θx(t) and θ = θz(t)

be the angular coordinates of ΐUl and ΓM2, respectively. Assume \a\ < 1 and

θΛut) < ΘJμd Then ϊUl Π ΪU2 - 0 .

Proof. By contradiction, assume TUl Π ΓW2 Φ 0 . Therefore, rotating

ΓM2 around o while keeping fixed γUl9 there will exist a moment in which

ϊUl and ΐU2 are tangent. But then, rUl = Γ»a, wx = w2, contradiction! Π

Theorem A stated in the introduction is a consequence of the fol-

lowing result (together with Definition 3.3).

THEOREM 3.10. Assume \a\ < 1. Then the family Γ foliates P 2 .

Proof. If follows from Proposition 3.7, Remark 3.4 and Lemma 3.9

that we have just to prove that θ^u^) > Θ^UΪ) if 0 < uγ < u2.

Consider the system of differential equations

f ^ tr(r2

t%4r2 + 1 + 3(1 + a'y) + (r2 + l)2(2r2

0
f(4r2 + 1 + 3(1 + a2)r*) + (r2 + l)2(2r2 + 1) '

Assume that r = r(t) and θ = ^ίί) satisfy (*). Then they verify (2.2).

For observe t h a t f\θ = £r so that {djdt)(rjθ) = r + tr, tha t is, <9r — (9> =

θ\r + tr) and replace these data in (2.2).

Given u e R\ let r = rw(ί) and ί = θu(t) be the solutions of (*)

satisfying
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r.(0)

θ (0)
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=

—

RIPOLL

U

0.

Let au be the curve in P2 given by θ •=• θu(t) and r = ru(t). It follows

from the unicity of the solution curves with respect to the initial condi-

tions that au is just a reparametrization of ΐu. Now, given 0 < ux <

u2 e iϊ, we have rUl(i) Φ ru£t) for any L Since rMl(0) = uγ < u2 = rtt2(0), we

see that rWl(ί) < rM3(ί) for any ί. It follows from the expression of θ in

(*) that θUl(t) > θU2(t) for any L Therefore,

= ί°° θUl(t)dt > Γ
Jo Jo

θU2(t)dt =

which proves the theorem.

PICTURE. In what follows we use the half-space model for hyperbolic

space, namely

H*={(x9y9z)\z>0}.

Let λ — {λt} be the helicoidal group of isometries which leaves in-

variant the geodesic axis z. We show below a typical surface Su.

§ 4. Characterization of the helicoidal minimal surfaces

In this section we show that an helicoidal minimal surface is de-

termined by its asymptotic boundary (see [doCL]). For, first we prove a

result which relates the action of an helicoidal group on the asymptotic

boundary of H3 and loxodromic curves.

During this section we will use the half-space model for the hyperbolic

space.
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DEFINITION 4.1. Let px,p2 be any two points of S2(oo) and ae [0, ττ/2].

A differentiable curve If: R-> S\oo) which makes an angle a with any

circle of S2(oo) containing px and p2 is called a loxodromίc curve with

ending points px and p2 and path a.

OBSERVATION 4.2. Let λ = {λt} be a helicoidal group of isometries of

ΈP which translation pitch a (that is, λt = φat

oφt> where {φt} is a transla-

tion along a geodesic g and {<pt} the spherical group fixing g).

Up to conjugation, we may assume that λ leaves invariant the geo-

desic axis Z (in half-space model). Thus, it is not difficult to see that

« cost - s i n Λ Γ X l \
• , J L ' 4

PROPOSITION 4.3. Let ϊ be a differentiable curve in S2(oo). Then, ϊ

is a loxodromίc curve if and only if ϊ is the orbit of some point in S2(oo)

under the action of an helicoidal group of isometries of H\

Proof We can identity S2(oo) = {(X, Y, 0)|X, Ye R} U {Z = oo}.

Let ϊ: R-> S2(oo) be a loxodromic curve with ending points pup2

and path a. Up to a conformal map we may assume that px = (0, 0, 0)

and p2 = (0, 0, oo). Therefore, the circles connecting px and p2 are straight

lines through the origin of R2 = {(X, Y, 0)|X, Ye R}.

Observe that the Euclidean structure of R2 is compatible with the

conformal structure of S2(oo). Thus, if <, > denotes the usual inner-

product in R2, we must have

<j,dridty Ξ

If c = 1 or c = 0 then T is straight line from px to p2 or a circle

centered on (0, 0, 0), respectively. Therefore, T is the orbit of a transla-

tion (helicoidal group with angular pitch 0) or ϊ is the orbit of a spheri-

cal group (helicoidal group with translation pitch 0), respectively.

Assume that 0 < c < 1. Setting ϊ(t) = (X(t), Y(t), 0), we obtain

XX + YΫ
. = c.

It is not difficult to show that ϊ can be described by equations of

the type:
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X(t) = r(t) COS t

Y(t) = r(t) sin t.

Thus, the above differential equation can be easily integrated, pro-
viding

/Γcosί — sinΠ\/βδ

= eβt\\ Π L
\|smί cos*J/\0

where 6 is a constant and β = c/Vl — c2. This proves the proposition

in one direction.

Conversely, given an helicoidal subgroup of isometries ψ = {ψt}, there

exists an isometry g: H3 —> Hz such that ψt = gλtg~ι (see classification

in [R]). The computations above show that the orbits of λ = {λt} are

loxodromic curves. Thus, given p e S2(oo), we have

I«€ R} = {g"%(ί(p» I ί € Λ} = g'%g(p)).

Since g ' 1 acts conformally in S2(oo), ψ(p) is also a loxodromic curve.

DEFINITION 4.4. Two loxodromic curves Ll9 L2 c S2(oo) having the

same path and the same ending points will be called a pair of loxodromic

curves. Notation: (LίfL2).

It follows from Proposition 4.3 that a loxodromic curve L has path

a if and only if L is the orbit of an helicoidal group of angular pitch

jS = sin a/cos a. In particular 0 < β < 1 if and only if 0 < a < τr/4.

Proof of Theorem C. Up to a conformal map, we may assume that

(Lj, L2) has ending points (0, 0,0) and (0,0, oo). Then (Lί9 L2) are {λt}-

invariant. This follows from 4.2 and 4.3. Then, it follows from the

hypothesis that {λt} has angular pitch a such that \a\ < 1. Up to a rota-

tion around the Z-axis, we may assume that the points {pj = d^P2 Π Lλ

and {p2} = dooP2 Π L2 are symmetric with respect to the geodesic h (ac-

cording to §2).

Now, it follows from Proposition 3.7 and Definition 3.8 that the map

#oo' [0, oo) —> (0, τr/2] is continuous and 1 — 1. Then, there exists uQ e [0, oo)

such that dJUQ = {PuP2} Hence, d^S^ = Lt U L2 Clearly, SMo is unique

among the minimal complete helicoidal surfaces ^-invariant.

Let M e if3 be a complete properly immersed minimal surface such

that 9jlf = Z^UL*.

Let p + = Λ(+ oo) and p_ = Λ(— co). Since p+ <£ d^M, there exists a totally
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geodesic semi-sphere H2 in H3 centered on p+ such that H2 Π M = 0 and

3cc£T2 = 0 . Hence, since d^M = LXΌ L2 is {^-invariant, we have

Π 3coM = 0 for any ί e R. It follows from the Tangency Principle

(see [doCL]) that λt(H2) Π M = 0 for any *. Since U ί 6 * ^ ( # 2 Π P ) c

U ί e * λt(H2), it follows that [ U ί e * λt(H2 D P2)] Π I = 0 .

iϊ 2 and P 2 are totally geodesic submanifolds of H3, so that H2 Π P 2

is a geodesic in P 2, say β. Furthermore, since H2 in centered on p+ =

/ι(+oo), 3̂ is orthogonal to /&. Suppose that β(R)f)h(R) = {h(u)}. Since

the geodesic curvature of ΐu is always positive, we have β(R) Π ΪU(R) =

{Λ(M)}. It follows from the above that SUΠM= [UteR λt(ru(R))] ΠM= 0 .

Thus, from the Tangency Principle, we obtain M D Sw = 0 for any zz > wo

Applying the same arguments considering now the point p_ =

Λ,(— oo), we obtain Mil SM = 0 for any u < uύ. Since SUo = limtt_tι+Stι =

limw_M-Sπ, we obtain M = SMo. Π
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