DISCRETE COACTIONS ON C^{*}-ALGEBRAS

CHI-KEUNG NG

(Received 5 November 1992; revised 1 May 1993)

Communicated by I. Raeburn

Abstract

We will consider coactions of discrete groups on C^{*}-algebras and imitate some of the results about compact group actions on C^{*}-algebras. In particular, the crossed product of a reduced coaction ϵ of a discrete amenable group G on A is liminal (respectively, postliminal) if and only if the fixed point algebra of ϵ is. Moreover, we will also consider ergodic coactions on C^{*}-algebras.

1991 Mathematics subject classification (Amer. Math. Soc.): 46L55.

1. Introduction and notation

The concept of coactions is defined so that it is the dual notion of actions of groups on C^{*}-algebras. The most interesting and important results about coactions are the duality theorems (see $[6,7,11]$). Recently, Raeburn gave a systematic treatment of this subject [12]; the terminology we use here mainly follows this and [8]. In this paper, we will examine some properties of discrete reduced coactions on C^{*}-algebras. In the second section, we will give some elementary results of discrete coactions. When the group is abelian, discrete coactions correspond to compact actions. It is believed that many results in compact actions can be translated to the case of discrete coactions with more direct and elementary proofs (since the representation theory of $C_{0}(G)$ for G discrete is much simpler than that of $C^{*}(G)$ for G compact). Sections 3 and 4 are mainly used to demonstrate this. In the third section, we will translate results of Gootman and Lazar [3] which state that the crossed product of a C^{*}-dynamical system is liminal (respectively, postliminal) if and only if the fixed point algebra is. As a corollary, we show that if the fixed point algebra is postliminal, then the original algebra is nuclear. In Section 4, we try to translate some results in the paper [5]

The author was supported by the Croucher Foundation.
(C) 1996 Australian Mathematical Society 0263-6115/95 \$A2.00 + 0.00
which include: If a compact group acts ergodically on a C^{*}-algebra A, then A has a tracial state which is, in fact, the unique G-invariant state of A. However, the referee has pointed out that there is some overlap between Section 4 and Theorem 3.7 of an unpublished paper of Quigg [10].

For the definition of coactions and reduced coactions and their crossed products, we refer the reader to $[12, \S 2]$. If A is a C^{*}-algebra and δ is a (respectively, reduced) coaction of a locally compact group G on A, then we call the triple (A, G, δ) a (respectively, reduced) codynamical system.

In this paper, unless otherwise specified, G is a discrete group with unit e, A is a C^{*}-algebra, all the coactions and crossed products are reduced, and all the tensor products considered are spatial ones. By [1,7.15] reduced coactions of discrete groups are automatically non-degenerate.

2. Discrete coactions

Let ϵ be a reduced coaction of G on A. Since $C_{r}^{*}(G)$ is unital, $\epsilon(A) \subseteq \tilde{M}(A \otimes$ $\left.C_{r}^{*}(G)\right)=A \otimes C_{r}^{*}(G)$. Denote by λ_{t} the canonical image of $t \in G$ in $C_{r}^{*}(G)$. Then $\left\{\lambda_{t}: t \in G\right\}$ form a generating set of $C_{r}^{*}(G)$. Let $\psi_{t} \in C_{r}^{*}(G)^{*}$ be defined by $\psi_{t}\left(\lambda_{s}\right)=1$ (if $s=t$) and $\psi_{t}\left(\lambda_{s}\right)=0$ (if $s \neq t$). Note that ψ_{e} is the natural tracial state of $C_{r}^{*}(G)$ and $\psi_{t}=\lambda_{t}^{-1} \cdot \psi_{e}$ (that is, $\psi_{t}(x)=\psi_{e}\left(\lambda_{t}^{-1} x\right)$) and hence is continuous. Let S_{t} be the slice map corresponding to $\psi_{t}(t \in G)$. Note that in this case, we have $S_{t}(a \otimes z)=z(t) \cdot a$ and $\delta_{G}(z)=\sum_{s \in G} z(s) \cdot \lambda_{s} \otimes \lambda_{s}$ for all $z \in \mathscr{K}(G)$, the space of continuous functions on G with compact, hence finite, support; $a \in A$; and where δ_{G} is the co-multiplication on $C^{*}(G)$. (For its definition we refer the reader to $[12, \S 1]$.) Denote by M_{f} the canonical representation of $f \in C_{0}(G)$ in $l^{2}(G)$ by multiplication. In the following we will write M_{t} instead of $M_{\delta_{t}}$, where $\delta_{t} \in C_{0}(G)$ is the map defined by $\delta_{t}(s)=1$ if $s=t$ and $\delta_{t}(s)=0$ if $s \neq t$.

The following definition is an analogue of the case of finite coactions (see the introduction to [8]) and the t-components correspond to the spectral subspaces in the case of compact actions.

DEFINITION 2.1. Let $A_{t}=\left\{a \in A: \epsilon(a)=a \otimes \lambda_{t}\right\},(t \in G)$. We will call this the t-component of ϵ. The e-component of ϵ is called the fuxed point algebra of ϵ and will also be denoted by A^{ϵ}.

REMARK 2.2. Note that the fixed point algebra can be defined without G being discrete (since $\lambda_{e}=1$) but in the case when G is discrete and $A \neq(0)$, we have $A^{\epsilon} \neq(0)$. Suppose $A^{\epsilon}=(0)$. Let $\left\{u_{\tau}\right\}$ be an approximate unit of A. By the non-degeneracy of ϵ (as a *-homomorphism), $\left\{\epsilon\left(u_{\tau}\right)\right\}$ converges strictly to the unit of $M\left(A \otimes C_{r}^{*}(G)\right)$. Since S_{e} is strictly continuous (see $\left.[8,1.5]\right), S_{e}\left(\epsilon\left(u_{\tau}\right)\right)$ converges
strictly to the unit of $M(A)$. However 2.3 (ii) implies that $S_{e}\left(\epsilon\left(u_{\tau}\right)\right) \in A^{\epsilon}=(0)$, which gives a contradiction.

Lemma 2.3. Let ϵ be a reduced coaction of G on A and S_{t} as above.
(i) $A_{t}^{*}=A_{t^{-1}}$ and $A_{t} \cdot A_{s} \subseteq A_{t s}$;
(ii) $S_{t}(\epsilon(A))=A_{t}$ for all $t \in G$.

PROOF. (i) is clear.
(ii) For any $a \in A, \epsilon\left(S_{t}(\epsilon(a))=S_{t}[(\epsilon \otimes i)(\epsilon(a))]=S_{t}\left[\left(i \otimes \delta_{G}\right)(\epsilon(a))\right]=\right.$ $S_{t}(\epsilon(a)) \otimes \lambda_{t}$. (Here S_{t} in the first and fourth terms means the slice map of ψ_{t} on $A \otimes C_{r}^{*}(G)$, while S_{t} in the other terms means the slice map of ψ_{t} on $A \otimes C_{r}^{*}(G) \otimes$ $\left.C_{r}^{*}(G).\right)$

PROPOSITION 2.4. The set $\left\{\left(a_{r} \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right): r, t \in G, a_{r} \in A_{r}\right\}$ is a generating set for the reduced crossed product $A \times_{\epsilon} G$. Moreover, for any $r, s, t, u \in G, a_{r} \in A_{r} \backslash(0)$ and $b_{s} \in A_{s} \backslash(0)$, we have $\left(a_{r} \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right)=\left(b_{s} \otimes \lambda_{s}\right)\left(1 \otimes M_{u}\right)$ if and only if $r=s, t=u$ and $a_{r}=b_{s}$.

Proof. For simplicity, we will assume A acts faithfully on a Hilbert space H and $A \times_{\epsilon} G$ is a subalgebra of $B\left(H \otimes L^{2}(G)\right)$ (see [8, 2.6(3)]). By an easy calculation, we have $\lambda_{s} M_{t}=M_{s t} \lambda_{s}$ and $M_{t} \lambda_{r} M_{s}=\delta_{r s, t} \cdot \lambda_{r} M_{s}$, where δ is the Kronecker delta. Now let $x \in A \otimes C_{r}^{*}(G)$ be an elementary tensor $b \otimes z$, where $z \in \mathscr{K}(G)$. Then

$$
\begin{aligned}
\left(1 \otimes M_{t}\right) x\left(1 \otimes M_{s}\right) & =b \otimes z\left(t s^{-1}\right) \lambda_{t s^{-1}} M_{s} \\
& =\left[S_{t s^{-1}}(b \otimes z)\right] \otimes \lambda_{t s^{-1}} M_{s} \\
& =\left(S_{t s^{-1}}(x) \otimes \lambda_{t s^{-1}}\right)\left(1 \otimes M_{s}\right)
\end{aligned}
$$

In fact, the above equality holds for any $x \in A \otimes C_{r}^{*}(G)$ by linearity and continuity. Moreover, by $[8,2.5]$, the set $\left\{\left(1 \otimes M_{t}\right) \epsilon(a)\left(1 \otimes M_{s}\right): r, s \in G, a \in A\right\}$ spans a dense subspace of $A \times_{\epsilon} G$. Thus, using the above calculation and Lemma 2.3(ii), part one is proved.

Let $a \in A_{r} \backslash(0)$ and $b \in A_{s} \backslash(0)$ be such that $\left(a \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right)=\left(b \otimes \lambda_{s}\right)\left(1 \otimes M_{u}\right)$. Then by multiplying ($1 \otimes M_{e}$) on the left of both sides and using the calculations above, we have $S_{t^{-1}}\left(a \otimes \lambda_{r}\right) \otimes M_{e} \lambda_{t^{-1}}=S_{u^{-1}}\left(b \otimes \lambda_{s}\right) \otimes M_{e} \lambda_{u^{-1}}$ and thus $t=u$. Similarly, by multiplying $\left(1 \otimes M_{r t}\right)$ on both sides, we have $\left(a \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right)=$ $\left(S_{r}\left(b \otimes \lambda_{s}\right) \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right)$. Hence $r=s$ and $a=b$ as required.

REMARK 2.5. (1) It is easily seen from the calculation in 2.4 that for any $r, s, t, u \in$ G, we have $\left(A_{r} \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right) \cdot\left(A_{s} \otimes \lambda_{s}\right)\left(1 \otimes M_{u}\right) \subseteq\left(A_{r s} \otimes \lambda_{r s}\right)\left(1 \otimes M_{u}\right)$ and also $\left(A_{r} \otimes \lambda_{r}\right)\left(1 \otimes M_{t}\right)\left(A_{s} \otimes \lambda_{s}\right)\left(1 \otimes M_{u}\right)=(0)$ if $t \neq s u$.
(2) Let α be the dual action on $B=A \times_{\epsilon} G$ (see for example [8, proof of 4.8]). If we define p_{t} to be the projection $1 \otimes M_{t} \in M(B)$, then p_{t} satisfies the following:
(i) $\alpha_{t}\left(p_{e}\right)=p_{t^{-1}}$;
(ii) $p_{t} \cdot p_{s}=\delta_{t, s} p_{s}$ (where δ means the Kronecker delta);
(iii) Let $\mathscr{F}(G)$ be the collection of all finite subsets of G and let $p_{E}=\sum_{t \in E} p_{t}$. Then p_{E} converge to 1 strictly in $M(B)$.
In fact, by a result of Quigg (see [9, 4.3]), it is easily seen that given a dynamical system (B, α), the existence of the projection p_{e} satisfying (i)-(iii) is equivalent to (B, α) being a dual system.

Proposition 2.6. Let A_{t} be the t-component of ϵ. Then $A=\overline{\bigoplus_{t \in G} A_{t}}$. Moreover, if $A=\overline{\bigoplus_{t \in G} B_{t}}$ then $B_{r} \cdot B_{s} \subseteq B_{r s}, B_{r}^{*}=B_{r^{-1}}$ and $\left\|\sum_{t \in G} b_{t}\right\|=\left\|\sum_{t \in G} b_{t} \otimes \lambda_{t}\right\|$ (for a finite number of non-zero $b_{t} \in B_{t}$) if and only if there exists a reduced coaction δ of G on A such that $A_{t}=B_{t}$ for all $t \in G$.

Proof. Note that $S_{e}\left(\epsilon(a)\left(1 \otimes \mu \lambda_{t}\right)\right)=a_{t^{-1}} \mu$ for any $a \in A$ and $\mu \in \mathbb{C}$. By [1, 7.15], $\epsilon(A)\left(1 \otimes C_{r}^{*}(G)\right)$ is dense in $A \otimes C_{r}^{*}(G)$. Now for any $a \in A, a \otimes 1$ $=\lim _{n} \sum_{n, t} \epsilon\left(a_{n}\right)\left(1 \otimes \mu_{n}^{t} \lambda_{t}\right)$ (where only finitely many μ_{n}^{t} are non-zero). Hence $a=S_{e}(a \otimes 1)=\lim _{n} \sum_{n, t}\left(a_{n}\right)_{t} \mu_{n}^{t} \in \overline{\bigoplus_{t \in G} A_{t}}$. Thus, the first part is proved. Suppose now that $A=\overline{\bigoplus_{t \in G} B_{t}}$ such that B_{t} satisfies the prescribed properties. Define δ on $\bigoplus_{t \in G} B_{t}$ by $\delta\left(b_{t}\right)=b_{t} \otimes \lambda_{t}$ for $b_{t} \in B_{t}$. Then δ is an isometric *-homomorphism from $\bigoplus_{t \in G} B_{t}$ to $A \otimes C_{r}^{*}(G)$. Hence δ extends to a reduced coaction on A.

EXAMPLE 2.7. Let (A, G, α) be a C^{*}-dynamical system and B be its reduced crossed product with dual coaction ϵ (where α is considered as in Proposition 2.6). Then $B=C^{*}\left\{\alpha(a)\left(1 \otimes \lambda_{r}\right): a \in A, r \in G\right\}$. Let B_{t} be the t-component of ϵ. For any $x \in B_{t}$, there exist $x_{n} \in B$ of the form $\sum_{s \in F_{n}} \alpha\left(a_{s, n}\right)\left(1 \otimes \lambda_{s}\right)$ (where $\left\{s \in G: a_{s, n} \neq 0\right\}$ is finite for all such n) such that x_{n} converges to x in norm. Hence, $\alpha\left(a_{t, n}\right)\left(1 \otimes \lambda_{t}\right)=S_{t} \circ \epsilon\left(x_{n}\right)$ converges to $S_{t} \circ \epsilon(x)=x$. Since α is a monomorphism, $a_{t, n}$ converges to some element $a \in A$. Thus $x=\alpha(a)\left(1 \otimes \lambda_{t}\right)$ and $B_{t}=\left\{\alpha(a)\left(1 \otimes \lambda_{t}\right): a \in A\right\}$. Moreover, $B=\overline{\bigoplus_{t \in G} B_{t}}$ and $A \otimes \mathscr{K}\left(l^{2}(G)\right) \cong$ $\left(A \times_{\alpha, r} G\right) \times_{\epsilon, r} G \cong C^{*}\left\{\left[\alpha(a)\left(1 \otimes \lambda_{t}\right)\right] \otimes \lambda_{t} M_{t}: r, t \in G, a \in A\right\}$.

It is obvious that if G is a locally compact group and G_{d} is its discrete group, then any action of G on A is an action of G_{d} on A. We now show the dual property in the case of coactions.

PROPOSITION 2.8. Let G be a locally compact group and G_{d} be its discrete group. Then any (respectively, reduced) coaction δ of G_{d} on A induces a (respectively, reduced) coaction δ^{\prime} of G on A.

PROOF. Here, we show the case of reduced coaction only. Let μ be the canonical map from $C_{r}^{*}\left(G_{d}\right)$ to $M\left(C_{r}^{*}(G)\right)$ and let $u_{t}=\mu\left(\lambda_{t}\right)$ (that is, u_{t} is the canonical image of $t \in G$ in $\left.C_{r}^{*}(G)\right)$. Define $\delta^{\prime}=(i \otimes \mu) \circ \delta$ from A to $M\left(A \otimes C_{r}^{*}(G)\right)$. The non-degeneracy of δ^{\prime} (as a ${ }^{*}$-homomorphism) follows from that of $i \otimes \mu$ and δ. Firstly we show that $\delta^{\prime}(A) \subseteq \tilde{M}\left(A \otimes C_{r}^{*}(G)\right)$. Let $a \in A$. Since $\delta(a) \in A \otimes C_{r}^{*}\left(G_{d}\right)$, there is $x_{n}=\sum_{k} a_{k, n} \otimes z_{k, n}\left(a_{k, n} \in A, z_{k, n} \in C_{r}^{*}\left(G_{d}\right)\right)$ such that x_{n} converges to $\delta(a)$. Hence, for any $z \in C_{r}^{*}(G)$, we have $a_{k, n} \otimes \mu\left(z_{k, n}\right) z \in A \otimes C_{r}^{*}(G)$ (as $\mu\left(z_{k, n}\right) \in M\left(C_{r}^{*}(G)\right)$) and so $\delta^{\prime}(a)(1 \otimes z)=\lim \sum a_{k, n} \otimes \mu\left(z_{k, n}\right) z \in A \otimes C_{r}^{*}(G)$ (since $i \otimes \mu$ is a homomorphism, the convergence above is in the norm limit). Finally, we check the coaction identity. For any $z \in \mathscr{K}\left(G_{d}\right), z=\sum_{t \in F} v_{t} \lambda_{t}$ for some $F \in \mathscr{F}(G)$ and $v_{t} \in \mathbb{C}$. Thus, $(\mu \otimes \mu) \delta_{G_{d}}(z)=(\mu \otimes \mu)\left(\sum_{t \in F} v_{t} \lambda_{t} \otimes \lambda_{t}\right)=\sum_{t \in F} v_{t} u_{t} \otimes u_{t}$. On the other hand, $\delta_{G}(\mu(z))=\delta_{G}\left(\sum_{t \in F} v_{t} u_{t}\right)=\sum_{t \in F} v_{t} u_{t} \otimes u_{t}=(\mu \otimes \mu) \delta_{G_{d}}(z)$. Now, for any $a \in A$, $\left(\delta^{\prime} \otimes i\right) \delta^{\prime}(a)=(i \otimes \mu \otimes \mu)(\delta \otimes i) \delta(a)=\left(i \otimes(\mu \otimes \mu) \circ \delta_{G_{d}}\right) \delta(a)=\left(i \otimes \delta_{G} \circ \mu\right) \delta(a)=$ $\left(i \otimes \delta_{G}\right) \delta^{\prime}(a)$ as required.

3. Liminality of crossed products by discrete coactions

The ideas of the following results come from [3]. Lemmas 3.1 to 3.3 are well-known results and are true for general locally compact groups.

LEmmA 3.1. Let α be an action of G on A. Then the largest liminal ideal I of A is α-invariant.

Lemma 3.2. Let α be an action of G on A, I be an α-invariant ideal of A, q be the quotient map from A to A / I and β be the induced action of α on A / I. If J is a β-invariant ideal of A / I, then $q^{-1}(J)$ is an α-invariant ideal of A.

Lemma 3.3. Let α be an action of G on A. The largest postliminal ideal I of A is α-invariant.

LEMMA 3.4. Let G be a discrete group and ϵ be a reduced coaction of G on A. If J is a non-trivial ϵ-invariant ideal of A, then we have $A^{\epsilon} /\left(A^{\epsilon} \cap J\right) \cong(A / J)^{\delta} \neq(0)$ (here δ is the coaction induced by ϵ on A / J).

Proof. Let q be the quotient map from A to A / J. Then by 2.3(ii), $q\left(A^{\epsilon}\right)=$ $q\left[S_{e}(\epsilon(A))\right]=S_{e}[(q \otimes i)(\epsilon(A))]=S_{e}[\delta(q(A))]=S_{e}[\delta(A / J)]=(A / J)^{\delta}$.

The following is actually a direct consequence of strong Morita equivalence, but we give an elementary proof here.

LEMMA 3.5. Let B be a hereditary subalgebra of A such that there is no non-trivial ideal in A containing B. If B is liminal (respectively, postliminal), then so is A.

Proof. For any $(\pi, H) \in \hat{A}$, let (ϕ, K) be the restriction of (π, H) to B. Then (ϕ, K) is an irreducible representation of B. If $x \in B$ is such that $\phi(x) \in \mathscr{K}(K)$, then $\pi(x) \in \mathscr{K}(H)$. Suppose B is postliminal. Then, since A is the only ideal in A containing B, we have $\phi \neq 0$. Thus, there exists $x \in B$ such that $\phi(x) \in \mathscr{K}(K) \backslash(0)$. Hence $\pi(x) \in \mathscr{K}(H) \backslash(0)$ and A is postliminal. Moreover, if B is liminal, then $\phi(x) \in \mathscr{K}(K)$ for all $x \in B$. Hence B is contained in the largest liminal ideal I of A. Thus $I=A$, by hypothesis.

THEOREM 3.6. Let \in be a reduced coaction of a discrete amenable group G on A. Then A^{ϵ} is liminal (respectively, postliminal) if and only if $A \times_{\epsilon} G$ is liminal (respectively, postliminal).

Proof. Necessity: By Proposition 2.4, $M=\left\{\left(a \otimes \lambda_{e}\right)\left(1 \otimes M_{e}\right): a \in A_{e}\right\}=$ $\left\{a \otimes M_{e}: a \in A^{\epsilon}\right\}$ is a subalgebra of $A \times_{\epsilon} G$ which is isomorphic to A^{ϵ}. Hence the liminal or postliminal property of $A \times_{\epsilon} G$ implies that of A^{ϵ}.

Sufficieny: Let $p=1 \otimes M_{e} \in M\left(A \times_{\epsilon} G\right)$. Then p is a projection and by the proof of Proposition 2.4, we have $p\left(A \times_{\epsilon} G\right) p=M$ (where M is as in the first part of the proof). Hence M is a liminal (respectively, postliminal) hereditary subalgebra of $A \times_{\epsilon} G$. Therefore, M is contained in the largest liminal (respectively, postliminal) ideal I of $A \times_{\epsilon} G$ by 3.5. Now we claim that $I=A \times_{\epsilon} G$. Suppose not: Then since I is $\hat{\epsilon}$-invariant for the dual action $\hat{\epsilon}$ of ϵ, there is an ϵ-invariant ideal J of A such that $I=J \times{ }_{\epsilon} G$ (by $[2,3.7]$). By Lemma 3.4, there exists $x \in A^{\epsilon}$ such that $x \notin J$. But since $x \otimes M_{e} \in M \subseteq I=J \times_{\epsilon} G, x \in J$ (see Proposition 2.4) which gives a contradiction.

REMARK. Note that $[2,3.7]$ is the only place where we need the amenability of G and so the proposition can be improved if [2,3.7] is true for any reduced coaction of discrete group.

COROLLARY 3.7. Let G be a finite group and ϵ a reduced coaction of G on A. Then the following are equivalent:
(i) A^{ϵ} is liminal (respectively, postliminal);
(ii) $A \times_{\epsilon} G$ is liminal (respectively, postliminal);
(iii) A is liminal (respectively, postliminal).

For G not finite, we have a weaker result as follows:

COROLLARY 3.8. Let G be a discrete amenable group and ϵ a reduced coaction of G on A. If A^{ϵ} is postliminal, then A is nuclear.

Proof. By 3.6, $A \times_{\epsilon} G$ is postliminal and hence nuclear. Now, by Katayama's duality theorem [7,8] and the fact that nuclearity is preserved under crossed products of amenable groups (see [4,14]), $A \otimes \mathscr{K}\left(L^{2}(G)\right)$ is nuclear and so is A.

By replacing $3.6,[7,8]$ and $[4,14]$ by $[3,3.2],[11,7]$ and $[12,4.6]$ in the proof of 3.8 , we get the following result:

PROPOSITION 3.9. Let G be a compact group and α an action of G on A. If A^{α} is postliminal, then A is nuclear.

REMARK 3.10. Note that by Corollary 3.8, if there exists an ergodic coaction (see 4.1) of a discrete amenable group on A, then A is nuclear. In fact, in the next section, we can show that A has a continuous faithful trace (see 4.6).

4. Ergodic coactions

DEFINITION 4.1. A reduced coaction ϵ of a discrete group G on a unital C^{*}-algebra A is said to be ergodic if $A^{\epsilon}\left(=A_{e}\right)$ consists of scalar multiples of the unit only.

LEMMA 4.2. Let (A, G, ϵ) be a discrete reduced codynamical system. If A is unital and ϵ is ergodic, then for any $t \in G$, all elements in A_{t} are scalar multiples of unitaries. Moreover, A_{t} is one dimensional if $A_{t} \neq 0$.

Proof. For any $x \in A_{t}, u=x^{*} x$ and $v=x x^{*}$ belong to $A_{e}=\mathbb{C}$ by 2.3. Hence x is a scalar multiple of an isometry and a co-isometry and thus x is a scalar multiple of a unitary. Now, suppose $A_{t} \neq 0$ and let x and y be two unitaries in A_{t}. Then $x^{*} y$ is a unitary in A_{e} and so $x^{*} y=e^{i \theta} \cdot 1$ for some $\theta \in \mathbb{R}$. Hence, x is a scalar multiple of y and thus A_{t} is one dimensional.

If ϵ is an ergodic coaction of G on $A(1 \in A)$, then the map ω defined by $\omega(x) 1=S_{e} \circ \epsilon(x)$ is a state on A. Moreover, ω is averagely ϵ-invariant in the following sense:

DEFINITION 4.3. Let (A, G, ϵ) be a discrete (reduced) codynamical system. Then $\phi \in A^{*}$ is said to be averagely ϵ-invariant if $\phi=\left(\phi \otimes \psi_{e}\right) \circ \epsilon$.

REMARK 4.4. (a) The above definition corresponds to $\phi(x)=\phi\left(\int \alpha_{s}(x) d s\right)$ in the case of actions. This is why the term 'averagely' is used. For simplicity, we will drop the term 'averagely' in the following.
(b) ω is ϵ-invariant since $\left(\omega \otimes \psi_{e}\right) \circ \epsilon=\left[\left(i \otimes \psi_{e}\right) \circ \epsilon \otimes \psi_{e}\right] \circ \epsilon=\left(i \otimes \psi_{e} \otimes \psi_{e}\right) \circ$ $\left(i \otimes \delta_{G}\right) \circ \epsilon=\left(i \otimes \psi_{e}\right) \circ \epsilon=\omega$.
(c) For ergodic coactions, the ϵ-invariant state is unique. In fact, if ω^{\prime} is an ϵ-invariant state, then $\omega^{\prime}(x)=\omega^{\prime}\left(\left(i \otimes \psi_{e}\right) \epsilon(x)\right)=\omega^{\prime}(\omega(x) 1)=\omega(x)$.
(d) If ϕ is ϵ-invariant, then ϕ vanishes on A_{t} (for $t \neq e$). In fact, if $x \in A_{t}$, then $\phi(x)=\left(\phi \otimes \psi_{e}\right)\left(x \otimes \lambda_{t}\right)=0$.

PROPOSITION 4.5. The state ω defined above is faithful.

Proof. Since ϵ is injective, it suffices to show that $\left(i \otimes \psi_{e}\right)\left(y^{*} y\right)=0$ implies that $y=0$ for $y \in A \otimes C_{r}^{*}(G)$. Note that ψ_{e} is a faithful state on $C_{r}^{*}(G)$. Now for any state f of $A, \psi_{e}\left[(f \otimes i)\left(y^{*} y\right)\right]=f \otimes \psi_{e}\left(y^{*} y\right)=0$ which implies that $(f \otimes i)\left(y^{*} y\right)=0$. Hence $y=0$ as required.

Corresponding to the results of Hoegh-Krohn, Landstad and Stormer (see [5]), we have the following results.

PROPOSITION 4.6. If ϵ is an ergodic coaction as above, then the unique ϵ-invariant state is a tracial state.

Proof. Since ϵ is a homomorphism, we have to show that $S_{e}\left(y^{*} y\right)=S_{e}\left(y y^{*}\right)$ for any $y \in \epsilon(A)$. By 2.6 , it is required to show that this holds for $y \in \epsilon\left(\bigoplus_{t \in G} A_{t}\right)$. Now for all $y \in \epsilon\left(\bigoplus_{t \in G} A_{t}\right), \quad y=\sum_{t \in F} a_{t} \otimes \lambda_{t}$ for some $a_{t} \in A_{t}$ and $F \in \mathscr{F}(G)$. So $S_{e}\left(y^{*} y\right)=S_{e}\left(\sum_{r, s \in F} a_{r}^{*} a_{s} \otimes \lambda_{r^{-1} s}\right)=\sum_{r \in F} a_{r}^{*} a_{r}=\sum_{r \in F} a_{r} a_{r}^{*}=S_{e}\left(y y^{*}\right)$ by 4.2 and hence the proposition is proved.

DEFINITION 4.7. Let (A, G, ϵ) be a reduced codynamical system and ϕ an ϵ invariant state of A. Then ϵ is said to be
(a) cyclic with respect to ϕ if there exists an $x \in A$ such that for any $y \in A,(\phi \otimes$ $\left.\psi_{t}\right)[(y \otimes 1) \epsilon(x)]=0$ (for all $t \in G$) implies $y=0$.
(b) weakly cyclic with respect to ϕ if there is a family $\left\{z_{t} \in A_{t}: t \in G\right\}$ such that for any $y \in A, \phi\left(y z_{t}\right)=0$ (for all $t \in G$) implies $y=0$.

LEMMA 4.8. Let (A, G, ϵ) be a reduced codynamical system and ϕ an ϵ-invariant state of A. If ϵ is cyclic with respect to ϕ, then it is weakly cyclic with respect to ϕ. The converse holds if G is countable.

Proof. For any $x \in A, x=\lim _{n} \sum_{t \in G} x_{n, t}$ by 2.6 (where for a fixed n, only finitely many $x_{n, t} \in A_{t}$ are non-zero) and $x_{n, t}$ will converge to $x_{t}=S_{t}(\epsilon(x))$. Now we have $\left(\phi \otimes \psi_{t}\right)[(y \otimes 1) \epsilon(x)]=\lim _{n} \phi\left(y x_{n, t}\right)=\phi\left(y x_{t}\right)$. If ϵ is cyclic with respect to ϕ, then it is clear that it is also weakly cyclic with respect to ϕ. Now suppose that G is countable and let $G=\left\{t_{n}: n \in \mathbb{N}\right\}$. If ϵ is weakly cyclic with respect to ϕ, let $\left\{z_{t}\right\}_{t \in G}$ be the collection of elements as in 4.7(b). Let $x_{t}=z_{t} /\left\|z_{t}\right\|$ if $z_{t} \neq 0$ and $x_{t}=0$ if $z_{t}=0$. Define $x=\sum_{n \in \mathbb{N}} 2^{-n} x_{t_{n}}$. Then $\left(\phi \otimes \psi_{t}\right)[(y \otimes 1) \epsilon(x)]=0$ if and only if $\phi\left(y z_{t}\right)=0$, and thus the converse is proved.

PROPOSITION 4.9. Let (A, G, ϵ) be a discrete reduced codynamical system with A unital. Then ϵ is ergodic if and only if there exists an ϵ-invariant state ω such that ϵ is weakly cyclic with respect to ω.

Proof. Necessity: Define $\phi \in A^{\prime}$ by $\phi(y)=\omega\left(y z_{e}\right)$ (where $\left\{z_{t}\right\}$ are the elements in 4.7(b)). For any $y \in A^{\epsilon}, \omega\left(y z_{t}\right)=\left(\omega \otimes \psi_{e}\right)\left(\epsilon\left(y z_{t}\right)\right)=\delta_{t, e} \phi(y)$ (as ω is ϵ-invariant). Hence $\phi(y)=0$ if and only if $\omega\left(y z_{t}\right)=0$ for all $t \in G$, if and only if $y=0$. Now ϕ is an injection from A^{ϵ} to \mathbb{C} and the necessity is shown.

Sufficiency: Since ϵ is ergodic, $\omega(x) 1=S_{e}(\epsilon(x))$ is the unique ϵ-invariant state by 4.4(c). Now for any $t \in G$, take any $x_{t} \in A_{t}$ with $\left\|x_{t}\right\|=1$ if $A_{t} \neq(0)$ and $x_{t}=0$ otherwise. By 4.2, the set $\left\{x_{t}: t \in G\right\}$ generates $\bigoplus_{t \in G} A_{t}$. Consider the GNS-representation (π, H) for ω and let $\varphi: A \rightarrow H$ be the canonical map. Then $\left\{\varphi\left(x_{t}\right)\right\}$ generates H (since $\varphi\left(\bigoplus_{t \in G} A_{t}\right)$ is dense in H). Hence, for any $y \in A$, if $\left\langle\varphi\left(y^{*}\right), \varphi\left(x_{s}\right)\right\rangle=\omega\left(y x_{s}\right)=0$ for all $s \in G$, then $\varphi\left(y^{*}\right)=0$ in H and thus $y=0$. (Note that φ is injective since ω is faithful.)

REMARK. As a corollary of 4.8 and 4.9 we obtain the translated version of [5, 4.4 and 5, 4.5].

Acknowledgement

The author would like to thank his supervisor, C. J. K. Batty, for his help and guidance on preparing this paper. The author would also like to thank the referee for his helpful advice, especially for his suggestion that the amenability of G in 3.4 is unnecessary, as well as for some simpler proofs.

References

[1] S. Baaj and G. Skandalis, ' C *-algèbres de Hopf et théorie de Kasparov équivariante', K-theory 2 (1989), 683-721.
[2] E. C. Gootman and A. J. Lazar, 'Applications of non-commutative duality to crossed product C^{*}-algebras determined by actions or coactions', Proc. London Math. Soc. 59 (1989), 593-624.
[3] ——, 'Compact group actions on C^{*}-algebras: An application of non-commutative duality', J. Funct. Anal. 91 (1990), 237-245.
[4] P. Green, 'The local structure of twisted covariance algebras', Acta Math. 140 (1978), 191-250.
[5] R. Hoegh-Krohn, M. B. Landstad and E. Stormer, 'Compact ergodic groups of automorphisms', Ann. of Math. 114 (1981), 75-86.
[6] S. Imai and H. Takai, 'On a duality for C^{*}-crossed products by a locally compact group', J. Math. Soc. Japan 30 (1978), 495-504.
[7] Y. Katayama, 'Takesaki's duality for a nondegenerate coaction', Math. Scand. 55 (1985), 141-151.
[8] M. B. Landstad, J. Phillips, I. Raeburn and C. E. Sutherland, 'Representations of crossed products by coactions and principal bundles’, Trans. Amer. Math. Soc. 299 (1987), 747-784.
[9] J. C. Quigg, 'Landstad duality for C^{*}-coactions', to appear.
[10] ——, 'Discrete homogeneous C^{*}-coactions', preprint.
[11] I. Raeburn, 'A duality theorem for crossed products by nonabelian groups', Proc. Centre Math. Anal. Austral. Nat. Univ. 15 (1987), 214-227.
[12] -, 'On crossed products by coactions and their representation theory', Proc. London Math. Soc. (3) 64 (1992), 625-652.

Mathematical Institute
University of Oxford
24-29 St. Giles
Oxford OX1 3LB
England

