
HYPERBOLIC CONVOLUTION OPERATORS 

TAKAO KAKITA 

1. Introduction. Hyperbolic differential operators with constant coeffi
cients introduced and studied systematically by Gârding (4), were characterized 
by the existence of the fundamental solution with some cone condition, accord
ing to Hôrmander (6). Recently Ehrenpreis, extending the notion of hyper-
bolicity due to Gârding, has defined hyperbolic operators for distributions with 
compact support in the convolution sense. Under the hypothesis that the 
operator is invertible as a distribution, he has established a theorem analogous 
to the theorem of Hôrmander mentioned above (3). Motivated by these results, 
we shall define "hyperbolic convolution operators" which are similar to (but 
slightly different from) semi-hyperbolic operators in (3). In Section 2 we shall 
show that hyperbolicity for convolution operators can be reduced to that for 
"truncations'' of those operators. In Section 3 we shall discuss particularly 
hyperbolicity for finite difference-differential operators and characterize them 
in terms of their Fourier transforms. We shall give in Section 4 an algebraic 
condition for convolution operators (distributions with compact support) to 
be hyperbolic. In Section 5 we shall introduce some convolution operators 
with a leading linear differential operator P(D) and prove that the convolution 
operator is hyperbolic if and only if its support is contained in a cone and 
P(D) is hyperbolic in the sense of Gârding. Finally in Section 6 we shall show 
how smoothness of the fundamental solution for the operator in Section 5 
depends on that of the fundamental solution for P(D). 

I should like to express my deep gratitude to Professor G. F. D. Duff for 
many helpful suggestions and much kind encouragement during the prepara
tion of this paper. To Professor F. V. Atkinson, Professor L. Schwartz and 
Professor L. Ehrenpreis I am also indebted for valuable suggestions and com
ments on this work, and Mr. F. Suzuki I should like to thank for his valuable 
advice. 

2. Hyperbolic operators. 

2.1. Definitions. We shall fix a real vector N G Rn throughout the paper. 
A differential operator (of order m) P(D) is defined by 

P(D) = £ aaD" 
|a|<w 
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where all aa are constants , and part icularly aa for \a\ = m are no t all zero and 

jf = (r> J-Ytr1 —Y2 (r1 —)"" 
\ dxj \ bxj ' ' ' V dxj 

with ak > 0 integers. Let us denote by p the principal pa r t of the polynomial 
P ( r ) , t h a t is 

A polynomial P is said to be hyperbolic with respect to N if p(N) ^ 0 and 
there is a real number /0 such t h a t 

P ( f + M O ^ 0 when £ <E -#w and ^ < t0. 

By a T-cone we mean a closed cone having no points T^O in common with 
the half-space x-iV < 0, where the do t denotes the inner p roduc t operat ion 
in Rn. Then a theorem of Hôrmander m a y be s ta ted as follows. 

T H E O R E M 2.1.1. A polynomial P is hyperbolic with respect to N if and only 
if there exists a fundamental solution Ey for the differential operator P(D), 
whose support is contained in a T-cone. 

Now this theorem makes it na tu ra l to define l'hyperbolic convolution 
opera tors" as in the following, where é" denotes the space of dis t r ibut ions 
with compact suppor t (8, vol. 1, p . 88) . 

D E F I N I T I O N 2.1.1. Let S Ç $'. Then S is said to be hyperbolic with respect 
to N if there is a fundamental solution E for S 

S*E = Ô 

such that the support of E contains 0 and is contained in a certain T-cone. 

Since all dis tr ibutions with suppor t limited to the left with respect to a 
T-cone are associative and commuta t ive for convolution (8), we have a unique
ness theorem on fundamental solutions. 

T H E O R E M 2.1.2. Let S Ç S" be hyperbolic with respect to N. Then there exists 
one and only one fundamental solution for S, with support in a T-cone. 

Proof. Assume t h a t E\ and E2 are two fundamental solutions, suppor ts of 
which are contained in a T-cone. Then the equalities 

E i = ô*Ex 

= (S * E2) * Ei 

= (E2 * S) * E i 

= E2 * (S * Ei ) 

= E 2 * 8 = E 2 , 

imply our assertion. 
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THEOREM 2.1.3. If S G $' is hyperbolic with respect to N, then the support 
of S is contained in a T-cone. 

Proof. From Definition 2.1.1 we find a fundamental solution E for 5 with 
support in a T-cone. Let K be the smallest convex T-cone containing supp E. 
(When T is a distribution, we denote by supp T the support of 2".) We denote 
by Ka the translation of K, with vertex at a, and by HT the convex closure 
of the set U 2 Kx where x runs through supp T. Then a theorem of Lions on 
supports (7) gives 

(2.1.1) H s = convex closure of (Hs + HE). 

Now we have HE D K since supp E 3 0. Conversely, for any x G supp E, 
Kx C Kf so that K 3 i7#. Hence we have i l # = i£ = Hs. Combining this 
fact and (2.1.1) we obtain that Hs C. K and so supp 5 C Kf which proves 
the theorem. 

THEOREM 2.1.4. If S Ç S' is hyperbolic with respect to N, then so is S with 
respect to Nf for all Nf in a neighbourhood of N. 

Proof. By our assumption, there is a fundamental solution E for S with 
support in K defined above. Let U(N) be the set 

{N' e IP\x>N' > 0 for all x G K\ x ^ 0}. 

Then K is also a T-cone with respect to N' G U(N) and hence, by definition, 
5 is hyperbolic with respect to Nf G U(N). 

2.2. Singularity at the origin. We say that a distribution S has a singu

lar point P or that S is singular at P if 5 is not equal to any C°°-function in 

any neighbourhood of P. Then we have 

THEOREM 2.2.1. If S Ç S1 is hyperbolic with respect to N, then S must be 
singular at the origin. 

Proof. Suppose that 5 is equal to a C°°-function in a neighbourhood of 0. 
Take a G Co°° such that a(x) = 1 in a smaller neighbourhood and that 

KS = aS + S€1 

where aS G Co°° a n d supp S€ C {x-N > e} for some e > 0. Now let U be 
a neighbourhood of 0 contained in the half-space x-N < e. Hence for any 
<A G C0

œ(U), 

(S, 0) = (aS, *>. 

Since 5 is hyperbolic with respect to N, we can find a fundamental solution 
E for 5 so that 

supp(5c * JE) C supp S£ + supp £ C {X-N > e}. 

https://doi.org/10.4153/CJM-1965-057-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-057-5


562 TAKAO KAKITA 

Hence we have for any cj> £ Co°°(U) 

(S * E, <t>) = (aS * £ , </>). 

Now let yp 6 C0
œ be 1 in a neighbourhood of 0, with support in U. Then 

we get for any <t> G C0°° 

(8,<t>) =<*(aS *£) ,*> 

so that 

5 =t(aS*E) e c0
œ, 

which is a contradiction. Thus 5 should be singular at 0. 

2.3. Truncation. If S is hyperbolic with respect to iV, it can be easily 
seen that supp S 3 0. Let a 6 Co°° be 1 in a neighbourhood of 0. We call a 
distribution «5 a truncation of S. Then in view of the following theorem we 
may reduce hyperbolicity of convolution operators to a property of a small 
neighbourhood of 0. 

THEOREM 2.3.1. If S is hyperbolic with respect to N, then so is any truncation 
of S. Conversely, if a truncation of S is hyperbolic with respect to N, so is S. 

Proof. By our definition, we have a decomposition of S: 

S = Si + 52, 

where Si is a truncation of S and supp S2 C {x-N > 0}. First assume that 5 
is hyperbolic with respect to N. Hence 5 has to have a fundamental solution 
E with support in a T-cone. Let us consider a geometrical series of convo
lutions {Ev} defined by 

£H- I = £ * É (E*S2)*\ 

where Ei = E and T*k denotes the &-tuple convolution of T. Since there is a 
positive number e such that 

supp5 2 C {x-N > e}, 

we may see, using a theorem on supports, that 

supp S ( £ * S 2 ) * * C {x-N>ve\, 

from which there follows that 

(2.3.1) HmE, 

exists in Q' (8, vol. 2, p. 71). Now define a distribution El by (2.3.1). Convo
lv ing Ev+i by Si and using associativity and commutativity for Si, S2, and 
Ey we obtain that 
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Si * Ep+i = (S — S2) * Er+i 

= (5 - St) * E * É CE * S%)*k 

v 

= (5 - E * Si) * X) (E * ^2)** 

= 5 - (£*S2)* ("+1) . 

Since the last member in the above equalities tends to ô when v —» 001 we have 

lim(S*E„+i) = S i * £ * = 5. 

Thus we have constructed the fundamental solution E1 for Si. To see that 
Si is hyperbolic with respect to N it suffices to show that supp E1 is contained 
in a certain T-cone. However, it can be verified readily that 

supp{£ * (E *S2)**} C(k + l ) (suppE) + ^(supp52) C T1 + T2, 

where T1 and T2 are both T-cones containing supp E and supp S respectively. 
Therefore we may conclude that 

(2.3.2) supp E1 C Ti + T2. 

The second member of (2.3.2) being certainly a T-cone, we have proved the 
first part of our theorem. 

The same argument as above can be applied to prove the remaining part. 
Actually a fundamental solution E for S may be obtained by defining 

00 

(2.3.3) E = E1 * £ ( - l ) ' ( E 1 * S2)*
k 

provided that Si is hyperbolic with respect to N, where E1 is a fundamental 
solution for Si, with support in a T-cone. That E given by (2.3.3) satisfies 
5 * E = ô is clear. Thus the proof has been completed. 

2.4. Examples. By Theorem 2.1.1 a hyperbolic differential operator PÇD) 
is hyperbolic as a convolution operator P(D)b. For completeness we shall 
construct the fundamental solution with support in the 'Vave cone" by a 
method due to Hôrmander (6). Let P(D) be a hyperbolic linear differential 
operator with respect to N, and let TP(N) be the set of all N' such that 

p(N' + tN) = 0 

has only negative zeros. We call TP(N) the "normal cone" of P(D). Then 
it can be shown that there exist numbers t and C such that 

(2.4.1) |P(f + UN + isN')\ > C for all N' G rP(iV) 

when Re t < t\ and Re s < 0. Let us define a linear form E on C0°° by 
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(2-4.2) <£,*> = ( 2 * r / f ! ^ 

where f = £ + UN. (The Fourier transform of $ G £f is denned by 
<£"(£) = (e~ix'*t <t>(x)}. The Fourier inverse transform of yp G £f is given by 
#(*) = <*-'*•*, iK£)>.) For the definition of ^ see (8, vol. 2, p. 89). Since 
for <j> G Co00, 

T0(f) = J(Z>0)(x)e^x, 

we have for some a and C 

Z l|tf>IL 
(i + ifir 

where ? = £ + UN. Thus the second member of (2.4.2) is convergent in view 
of (2.4.1) and the above inequality, and then E defines a distribution. More 
precisely, the linear form on Co°° 

<«*•*£,*>= ^ r / J S U 
-PG0 

defines a temperate distribution F = etx-NE. In other words, £ is a product 
of an exponential function growing in the iV-direction and a temperate dis
tribution. That £ is a fundamental solution for P(D) is readily verified. We 
remark here that E is independent of the choice of t if t < h. Now if 
supp <j) C. {x-N < —e} we obtain 

|<E,0>| < Ce« (</>G C0
œ) 

with a suitable constant C independent of t, from which follows (£, $) = 0 
making t —> — °°. Since we may take e > 0 arbitrarily small provided that 
supp 4> C {x-N < 0}, we conclude that supp E C {x-N > 0}. I t follows from 
the above remark and (2.4.1) that the contour in the integration (2.4.2) can 
be shifted to a contour f = £ + UN + isN', where 5 < 0 and N' G TP(iV). 
An argument similar to the above gives 

|<E,«)| < Cea^*, 

where <j> G Co°° with support in {x-N' < — e} and C and a are constants inde
pendent of s. Hence we have (E, #) = 0 after making s —•» — co. Consequently 
we obtain that supp £ C W p̂ CAO, where 

WP(N) = {x |x-iV > 0 for all N' G TP(N)} 

which we call the wave cone of P(D). 
Next we shall give a simple example of a hyperbolic convolution operator 

as a function in R2, for simplicity. 
Let x(x,y) be the characteristic function of the square domain in R2: 
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[0,1] X [0,1]. We shall prove that x(xty) is hyperbolic with respect to 
N = (a, b), where a, b > 0. Since 

x(x,y) = c(x)c(y) 

where c(-) is the characteristic function of the interval [0, 1], the Fourier 
transform is given by 

XAtt, U) = C*ft)cA(i?) 

= (1 - e ~ ' * ) ( l - < T " ) 
en 

Now let us expand formally x"(£> 17)-1. Since 

(1 _ e-'t)-1 = £ -̂»« e 
1=0 

we obtain 

Z,m=0 

Taking the Fourier inverse transform of the second member, we have 

00 ^ 2 

S 7~T" 5(x — /, y — m). 
zSÉo dxdy 

This expression suggests a fundamental solution E for x as follows: 

k ^ 2 

£ = lim 2 T~V ô ( x "" J* y "~ w ) * 

That the second member is convergent in Q}1 is clear. In order to check that 
£ has the required property, we shall compute x * -E*> putting 

* ~2 

Eï=,S.â^;8(x- /'y-w)-
From the relation 

x(x,y) = {H(x) - H(x - l)}{H(y) - H(y - 1)}, 

where H(-) is the Heaviside function, it follows that 

a2 

= {«(*) - d(x - l)î X {«(y) - ô(y - 1)} * {8(x - l , y - m)} 

= {«(*, y) - «(* - 1, y) - «(*, y - 1) + *(* - 1, y - 1)} 
* {ô(x — l, y — m)} 

= ô(x — l, y — m) — ô(x — l — 1, y — m) — B(x — l, y — m — 1) 
+ S(x — l — 1, y — m — 1). 
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Now it can be easily seen that 

(2.4.5) x * Ek = ô(x, y) — ô(x — k, y) — ô(x, y — k) + ô(x — k, y — k). 

— i — 1 — i - -

J I 

l-f-p-
i i 4 

I t I I 

. - ]_J__L_L__ 
i I I I 

_ 4 - 4 - 4 - 4 - -
I I I I 

• - l - t - f - h — 
- - i - T T - r — 

' I I I 

supp Ei supp x * -E3 

Then the second member of (2.4.5) tends to ô(x,y) as k —» <». Thus we have 
proved that E = lim Ek is a fundamental solution for x- Also we have proved 
that supp E consists of all lattice points (/, m), where /, m > 0 are integers, 
and that the singularity located at each lattice point is uniformly of order 4 
(2). 

3. Hyperbolicity of finite difference-differential operators. 

3.1. Finite difference-differential operators. Let us consider a finite 
difference-differential operator 

(3.1.1) 5 = E Pk(D)5ak. 

If 5 is hyperbolic with respect to N, then from Theorem 2.1.3 it follows that 

(3.1.2) ak = 0 for some jfe, ak> N > 0 for all V ^ *. 

Further, since Pk(D)8 is a truncation of 5, Theorem 2.3.1 implies that Pk{D) 
is hyperbolic with respect to N as a differential operator. Conversely, if 5, 
given by (3.1.1), satisfies (3.1.2) and if the differential operator Pk(D) is 
hyperbolic with respect to N, then using again Theorem 2.3.1 we conclude 
that 5 is hyperbolic with respect to N. Hence we have 

THEOREM 3.1.2. A finite difference-differential operator S, given by (3.1.1), 
is hyperbolic with respect to N if and only if there exists a k (0 < k < 1) such 
that ak = 0 and ayN > 0 for all kr 9^ k, and that Pk{D) is hyperbolic with 
respect to N. 

Now we shall give a precise description of the fundamental solution E for 
5 with support in a T-cone. We may assume k = 0 without loss of generality. 

In view of Theorem 2.3, E is given by 

(3.1.2) E = E0* £ (-!)"(-
ra=0 \ 

£ o * X Pk(D)Ô0 

\ * 3 

V 
00 / I \*m 

= E0* 2 ( -1)*( £ Pk(D)rakE0) , 
m=0 \ k=l / 
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where E0 is the fundamental solution for Po(D) just constructed in 2.4. How
ever, since 

( E ^ P K ^ o ) = E t~Pi(Dyi...Pl(Drrqlai+...+nal(E*0
m), 

we have 
CO I 

E= E (- irE^^-
where 

Et = P1(D)ti . . . Pl(DylrQlal+...+lllal(ET). 

Then it is obvious that 
i 

suppE ? C X) <hP>* + WPo(N), 

where Wp0(iV) is the wave cone of P0(D). Therefore we have 

THEOREM 3.1.3. To the hyperbolic finite difference-differential operator S 
defined by (3.1.1) corresponds a fundamental solution E with support in the 
sum of all the cones, each of which is congruent to WPo (N) and with its vertex 
at some lattice point ]^=i qk ak consisting of vectors ai, . . . , ax and integers 
qk > 0, * = 1, . . . , /. 

Example. If 5 = P(D)5 + 8a is hyperbolic with respect to N, then a-N > 0 
and supp E is contained in the T-cone 

oo 

W {ma+ WP(N)}. 
m=0 

a£ WP(N) a£ WP(N) 

3.2. Some algebraic conditions. Let 5, defined by (3.1.1), be hyper
bolic with respect to N. Then there is a k (0 < k < /), say 0, such that 
a0 = 0, Po(D) is hyperbolic with respect to N, and ak-N > 0 for k = 1, 2, 
. . . , / . Now the Fourier-Laplace transform of S is given by 

(3.2.1) 5A(f) = PoG") + É P*(r)e-fa*-r. 

Let T be the set {N'\ak-N
f > 0 for k = 1, 2, . . . , /} . Bearing in mind that 

\Po(t + itN + isN')\ > d 
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for some constant d when t < /i, 5 < 0, and N' € rPo(iV), we have for 
another constant C% 

|5A({ + UN + isN')\ > Ci{l - C2(l + I? + i/iV + isN'\)meW} 

when iV' G rPo(iV) H I\ where 

m = max degP*, e = min ak-N, and ô = min ak'N'. 

Let us choose a constant Co such that 

Co > c2 sup (1 + M)V*. 

Since 

(1 + |£ + UN + isN'\)m < (1 + |f + UN\)m(l + \s\)m, 

we obtain 

|SA(f + i/iV + wiV')| > Ci{l - C0(l + |f + itN\)me"}. 

Now we can find a constant X > 0 such that —KKh and that 

(3.2.2) / < -K[l + log(l + |*| + |f|)] 

implies 
^-«' > 2C0(1 + |f + i*#|)m-

Hence below a contour 7: 

(3.2.3) t = - i £ ( l + l o g [ l + |*| + lfl)L 

we have 

(3.2.4) |5A(f + i/iV + isN')\ > C ^ 

for some constant CN> depending only on Nf and 5 if N' Ç rPo(iV) P\ T. 
Next we assume that there exists a convex neighbourhood Z7(iV) of N such 

that if iV' 6 [ / (#) , then for some K and C ^ as above, (3.2.2) implies (3.2.4). 
In order to construct a fundamental solution for 5 we define a linear func
tional on Co°°: 

(3.2.5) <£, <*>>= (2T rJ^J^d f , 

where 0 Ç Co°°. We note that |f|/|f| and |df|/d£ are bounded on 7. Since 
for any v > 0, 

|<£(f + UN + isN')\ < Mv{\ + If + #iV + wiV'l)-', 

the integration on the above converges. Thus we may see that E defines a 
distribution. Now let <j> Ç C0°°, with support in {x-N < 0}. Then 

supp 0 C {x\ x-N < — e} 
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for some e > 0 and we have 

|<K£ + UN + isN)\ < Mv(\ + |f + UN + isN\)~ve^^ 

for some constant Mv. Hence we obtain for any 5 < 0 that 

\(E, *>| < (2T)~n Mn+1 CN~' ees J ( i + |f + *W + isNl)-*-1 e€t | # | 

< Mec*, 

where ikf is a constant independent of s. Making s —> — <», we get (E, <f>) = 0. 
Thus we conclude that supp E C {x-N > 0}. 

Similarly, if t is fixed and </> G Co00 with 

supp 0 C {x\x-N' < -0} (Ô > 0), 

then there exist constants a and M both independent of s such that 

|<£,«)| < Meate8s. 

Thus it follows that supp E C {x-iV7 > 0}. Consequently we have proved that 

supp E C H {x \x-N' > 0}. 

The second member being a T-cone, (3.2.5) defines a distribution with support 
in a T-cone. It is obvious that E is a fundamental solution for 5. Thus the 
following theorem has been proved. 

THEOREM 3.2.1. Let S be a finite difference-differential operator. Then a 
necessary and sufficient condition that S be hyperbolic with respect to N is that 
a convex neighbourhood of N, U(N), exist such that for some constants K and CN* 
depending only on N' and S, (3.2.2) implies (3.2.4) when Nf G U(N). 

4. An algebraic condition for hyperbolic convolution operators. In 
this section we shall suppose that S 6 S' is hyperbolic with respect to N, 
and discuss the variety in which S"(£ + UN) is zero-free. A result of the 
previous section may suggest to us that £"(£ + UN) ^ 0 below some contour 
like (3.2.3). Actually we shall prove the following theorem. 

THEOREM 4.1. Let S G S' be hyperbolic with respect to N. Then for any 
positive number a there exist positive constants m and C such that 

(4.2.1) \S"(S + itN)\ >e°* 

when 

(4.2.2) erl > C(l + |{ + UN\)m (t < 0). 

Proof. We shall carry out the proof following the ideas of Hôrmander (6). 
Suppose that our theorem is false. Then we may find a triple of sequences 
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[nij}, {Cj}, and [^ + itjN} (tj < 0) such that the following conditions are 
satisfied for some a > 0: 

(1) C „ Mj-+a> a s j - > oo ; 

(2) \S^(^ + itjN)\ <e°<i; 

(3) er*i > C,(l + |£, + itjNl)"'. 

The hypothesis on S implies that there exists a fundamental solution E for 
S with support in a T-cone, say T0. Let co be an open set with compact closure 
C T0 and let 

sup x-N = 8. 

Now let us introduce a Banach space Co(w), the set of continuous functions 
vanishing outside w. Also we introduce the set of Cco-functions vanishing when 
x-N > 7} + 5, say C^+s where 

77 = max x-iV. 
are supp S 

Then the mapping 

(4.2.3) / G Co («)-></,*> 

is continuous with the norm ||/||oo for each fixed <j> G C^+s- On the other hand, 
for each fixed/ G Co(co) there exists a distribution w such that 

5 * u = / , 
supp w c r0. 

In fact, u = E *f has the required properties. Hence we have the following 
equalities, for 0 G C^+s: 

(4.2.4) </, 0) = (S * «, 0) = (u, S- * 0). 

Since 
supp(5v * </>) C supp5 v + supp 0 C {x-iV < 77 + ôî, 

^ should be integrated over the compact set 

(4.2.5) r 0 n {x-N < 77 + 0} 

in the last member of (4.2.4). Now let 0 be a neighbourhood of the set (4.2.5), 
contained in the half-space {x-N > — e} and with compact closure, and let 
12i be another neighbourhood of the set (4.2.5) such that Ôi C Œ. Let us take 
a G Co00 such that a (x) — l o n O i and 0 outside 12. Then we define a metrizable 
topological linear space C^s.a by 

with the topology introduced by semi-norms: 
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Since 
if, 4) = (u,a(Sr*4>)) 

for each fixed / G C0(cô), there exist an integer k > 0 and a constant M such 
that 

(4.2.6) |(f, * ) | < J l f t P i (*) f * = a (5 v * 0). 

Hence the linear mapping yp —> (/, </>) is continuous on C^+o,a. Combining 
(4.2.3) and (4.2.6) we observe that the bilinear mapping 

(4.2.7) ( f , * ) - ( f , *> 

from the product space C0(co) X C™+s,a to C1 is separately continuous. How
ever, since a separate continuous bilinear form on the product of a Fréchet 
space and a metrizable space is continuous (1), the mapping (4.2.7) is con
tinuous. Therefore there exist an integer k > 0 and a constant K such that 

(4.2.8) \<S,4>)\<KT. P , (* ) l l / IL 

We shall construct a couple of sequences <j)j G C^+8,fj G Co(ûi),j = 1, 2, . . . , 
such that 

E P,(ih) l l / i lU->o, ^ = « (5 V * *,) 

and 

as j — ^ » , which contradicts the inequality (4.2.8). We fix a y G co. Then for 
sufficiently small e > 0, 

y-N + e < Ô. 

Now let us define <t>j(x) by 

(4.2.9) «,(*) = \(x-N - v)exp[i(y - x) • ({, + i^iV)], 

where A(0) G C00^1) has the value 1 when 6 < y-N + e and 0 when 0 > <5. 
It is easy to see that <t>j G CSJ+a. Also define fj(x) by 

(4.2.10) / ,(*) = exp(h\tj\)F[(y - *)exp(e|/,|/3n)], 

where F G Coœ satisfies the condition 

JF(x)dx = 1. 

That fj G Co(cô) for sufficiently large j is clear. Now we shall estimate 
|SV*0,(*)|. 

By the definition of <£;- we have 

(4.2.11) 5V * «,(*) = (SZ1 <t>j(z + x)) = exp[i(y - x) • (f, + i/,iV)] 

X <SZ> X((x + g).JV - ^ )exp [ - i s - (£, + i^iV)]>. 
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First, consider the case x-N > y-N + e. Since S is represented as a linear 
combination of Dh, where D is some differential monomial and h(x) £ U° 
with support in a neighbourhood of supp S and in {x-N > —Je}, it follows 
from (4.2.11) that for a differential operator D there exist constants C\ and 
4̂ such that 

\D^(pc)\ < Ciexp[/,(* - y)-N](l + fa + itjN\)A exp(-*€*,) 

Next, let us discuss the case x-iV < y-N + e. When z Ç supp 5, we have 

(4.2.12) \{x-N + z-N - rj) = 1. 

For, if z Ç supp 5, s-iV < ry, and hence 

From the definition of X, (4.2.12) follows. Hence combining (4.2.11) and 
(4.2.12) we obtain 

(4.2.13) 5V * cf>j(x) = exp[i(y - x) - (£, + #,iV)]SA(£, + itjN). 

From the conditions (2) and (3) and for x £ supp a from the relation 

x-N — y-N > min z-N — maxs-iV 
2 6 supp a ze w 

> - € - 3, 

it follows that for a differential operator D there exist constants Co and I? 
such that 

\Da(S^ * <^)(x)| < C0exp[^(x - y)-N](l + fa + ^ - i V | ) s exp(<rf,) 

< Co exp ( a — (e + ô) ) tj . 
L \ ntj / J 

In view of (4.2.10) we obtain that for all j and sufficiently small e, <5 

(4.2.14) E p ^ ) - H / i l U < M e x p 
2 w M 

where C and M are suitable constants. The second member of (4.2.14) tends 
to 0 as j - ^ oo and so does the first member of (4.2.14). 

On the other hand the definition of </>j and fj implies that 

(4.2.15) (fj9 <j>3) = exp(h\tj\)SF((y ~ *)exp(e|*,|/3n)) 
X exp[i(y - *)(£, + itjN)]\(x-N - rj)dx 

= JF(x)\(-x-Nexp(etj/3n) + y-N - 77) 

X exp[{ — ix- (£, + itjN)exp(etj/3n)}]dx. 
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However, we have 

Re[-ix- (£, + itjN^xpietj/Sn)] < \tj\-\x-N\ exp(etj/3n) 

< L expfl^l/m,) exp(etj/3n) = L exp^( j~ - — J ^ J 

for a suitable constant L, since Cj —> °o 0* —* °° ) a n d since for large 7 

«i''i > C,(l + |£i + itjN\)m* > \tj\m>\ 

Thus in the last member of (4.2.15) the exponential factor in the integrand 

exp[ — ix- (fy + i^iV)(exp(€^/3»))] -> 1 

when j —> <» because of condition (1), and then also 

\[-x-Nexp(etj/Sn) +y-N - ri]-+\(y-N — 77) = 1. 

Making j—> 00 under the integral sign in (4.2.15), we conclude that 

lim (fjf fa) = 1 

since 
JF(x)dx = 1. 

Thus we have proved our theorem. 

5. Some hyperbolic operators. In this section we shall study when 
finite sum distributions of the form 

Si = E P * (£)/** 

are hyperbolic, where fxk are measures with compact support. We say that 
a differential operator P(D) is "strictly stronger" than another differential 
operator Q(D) (which we denote by Q « P) if Q(D) < P(D) and deg (2(f) 
< degP(f) . Now let us consider the case where 

(5.1) Si = P(D)8 + £ Pk(D)n € <f', 
k=l 

supp fjLk C supp 5. 

Hôrmander proved in (6) that if fxk = 5, Pk « P for k = 1 , 2 , . . . , / and 
if P is a homogeneous hyperbolic differential operator (with respect to iV), 
then Si is hyperbolic (with respect to N). In the following we shall prove 
a generalization of this theorem. 

THEOREM 5.1. Let S = Si + 52 where S2 is an arbitrary distribution G S" 
with support in {x-N > 0}. Then the conditions that P(D) be hyperbolic with 
respect to N and supp S C V-cone are together equivalent to the following con
ditions : 
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(1) S is hyperbolic with respect to N, 

(2) for some constants C and th \t\-\Pk{^ + itN)\ < C\P{% + itN)\ when 
t <hand£ G Rn (k = 1,2, . . . , / ) , 

(3) P(N) * 0. 

Proof. Let S satisfy the conditions (1), (2), and (3). Then from Theorem 
2.1.3, it follows that supp 5 C T-cone. In order to see that P(D) is hyperbolic 
with respect to N, it suffices to show that there is a real number to such that 

(5.2) P(£ + UN) 9* 0 when t < t0 and £ € Rn. 

Since 5 is hyperbolic with respect to N, in view of Theorem 4.1, for any 
a > 0 there exist positive constants m and C such that 

(5.3) \S*(£ + itN)\ >e°t 

when 

(5.4) er% > C(l + |£ + *W|)m 

where / < 0. Suppose that (5.2) is false. Then we can find two functions 
£p and tp in p (>0) such that 

P(fp + #pi\0 = 0, 
(5.5) |fp| = p, 

*p = ap"(l + 0(1)), 

where 0 < /x < 1 and a < 0 (6). Certainly we have, for some positive con
stants C and A, 

\ÇP + itpN\m < Cpm, 

exp |/p| > exp Apil. 

For sufficiently large p, (£p, £p) satisfy (5.4), so that 

(5.6) |SA(£P + i/p iV)| > exp erfp. 

We note that 

S*(Çp + itpN) =S\(Çp + itpN). 

This follows immediately from condition (2) and (5.5). Since 

supp5 2 C {x-N > 0}, 

there exists e > 0 such that supp S2 C {x-N > e} and S2 is of the form: 

l«|<v 

where /« 6 Lœ(œ) and co is a compact set C {x-iV > e}. Hence we have 

S\(£P + itpN) = E & + itpN)f\{iP + itpN). 
\a\<v 
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Since 

fa(!ip + itPN) = I /«(*)exp[-ix- (£p + it,N)]dx, 
Jx.N>e 

we obtain 

\fafa + it, N)\ < Cill/alUexpÉ/p. 

Also we have for all a Qa\ < v) 

| (fp + itp NY\ < C2f>\ 

Combining these inequalities we have for some constant C 

(5.7) \S\{%P + itp N)\ < Cpv exp e*p. 

Thus (5.6) and (5.7) give, for sufficiently large p, 

(5.8) exp atp < Cpv exp e£p. 

Here we note that o- can be chosen so that a < e. Hence from (5.8) it follows 
that 

exp[(e - v)Ap*] < Cp\ 

which leads to a contradiction when p —•> oo. Thus (5.2) must be true, and 
together with the condition (3) this implies that P{D) must be hyperbolic 
with respect to N. 

Conversely, let us assume that P(D) is hyperbolic with respect to N and 
s u p p S C T-cone. The argument in the proof of Theorem 2.3.1 applies to 
5 = Si + 52, where supp S2 C {x-N > 0}, even though Si is not a truncation 
of 5. Then it remains only to prove condition (2) and that Si is hyperbolic 
with respect to N. According to (6, Lemma 5.5.1), if 

P(D) > Q(D) = Qm{D) + Qm-i(D) + . . . , 

then P(D) > Qk{D) for every k, where P and Qk are homogeneous polynomials 
(deg Qic = k). Hence we have for some constant Co, 

ie*tt)i < CoP®. 
The Taylor expansions of P and Qk yield 

(5.9) | & ( É - iN)\ < Ci P® < C2 P(Z - iN) 

for suitable constants Ci and C2. 
On the other hand, we have (P being homogeneous, we may take /0 = 0) 

(5.10) \P(£ - iN)\ < const. |P({ - iiV)| 

provided that P is hyperbolic with respect to N (6). Thus (5.9) and (5.10) 
imply that 

(5.11) \Q*(t-iN)\ <C\P(Ç-iN)\ 
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with some constant C, for every k. In (5.11) we replace £ by —%/L Since both 
sides of (5.11) are homogeneous polynomials, we obtain that for every k 

(5.12) |*| • |&({ + itN)\ < C |P(f + itN)\ 

when deg Qic < deg P and t < — 1, which is condition (2). Now we recall 
that 

EP(x) = ( 2 T ) J p ( ? + , W ) # . ' < ' i . 

gives a fundamental solution for P(D), with support in a T-cone. In an 
analogous way we observe that 

*exp[ix-(£ + itN)] 
PU + itN)h 

defines a fundamental solution for (P(D)Y with support in a T-cone. On 
the other hand, the &-tuple convolution of EP 

(2T)-J ! 
vr^dt 

*& EP = J5P * . . . * £p 

is also a fundamental solution for (P(D))k, and 

supp EP*fc C k supp E P C T-cone. 

Hence from Theorem 2.1.2 it follows immediately that 

77 **/r\ _ / o ^ - * fexp[ix»(g + ^W)] 

Now set Ç = 5i - P(£>)<5. Then for 0 G C0
œ we have 

<EP*a+1) * Q*\ 4>) = (Ep*a+1), <2v*fc * 0) 

~ (2?r) J P(J; + M)M *(* + ] l 

Since |P(£ + i£iV)| is bounded from below when £ < t\ for some constant tu 

(5.1) and (5.12) give the estimate 

\(Ep*+1) * Q*k, 4>)\ 

< const. \t\-kj: | V , ( { + *W)](1 + |U|)- (n+1)^, 

when / < min( — 1, t±). 
However, we have 

/*%(£ + UN) = J expf-z'x- (J + itN)]dnj(x) 
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and 

supp nj C supp Si for j = 1 , 2 , . . . , / . 

Therefore for some constant M > 0, 

(5.13) |M
A,tt + itN)\ < M, j = 1, 2, . . . , /. 

For, let Œ be an open set, containing supp Si and with compact closure K. 
Then there is a constant a > 0 such that for all / £ Co(iO 

IW/)I < « Il/Il-
Now take a Ç Co(i£) s o that 0 < a < 1 and a(x) — 1 on a neighbourhood 
of supp Si. Then we have 

KM,-,/>| H<M*«/> |<a | | / | | » 

fo r / Ç Cœ. Since for x>N > 0 

|a(x) exp[- i*- (f + i/iV)]| < 1, 

we obtain (5.13) for j = 1, 2, . . . , I. Thus we have proved that for a constant 
C> 0 

|<Ep*<*+« * <2**, 0 ) | < C \t\~\ k = 1, 2, 

Hence for each 0 G Co°° the series 

£(-i)Wa'+1)*<2**-4>> 

is convergent when / < min(/i , —1), or 

£i = É (-l)*£/a+1)*<2** 

converges in Q}1 when / < min(/i, —1). Because of (5.1) and our assumption, 
we obtain supp Ei C T-cone. Thus we have proved that Si is hyperbolic 
with respect to N. This completes the proof. 

6. Structure of fundamental solutions. 

6.1. Fundamental solutions for P(D)5 + Q. By Hs (s real) we mean 
the space of u G L2 such that 

(i + ms/2ir& e L2 

with the norm 

ii(i + ms/*u%, 

by which Hs is made a Hilbert space .Us = —m (w a positive integer) it is 
well known that u Ç H~m if and only if there exist fa £ L2 for \a\ < m such 
that 
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U = £ Dja. 
|a|<m 

Replacing L2 by L2ioc
 m the definition of H~m, we get the space H~mioc. 

Now we shall discuss the structure of fundamental solutions for the operator 

(6.1.1) S = P ( Z > ) 5 + I ) - P i ( £ W 
3=1 

where 
(1) P(.D) is homogeneous and hyperbolic with respect to N\ 
(2) DkPj(D) < P{D) forj = 1, 2, . . . , Z; jfe = 1, 2, . . . , n; and 
(3) supp M; C T-cone for j = 1 , 2 , . . . , / . 
From (2) it follows that 

(1 + |{ + ôiV|) |P,(£ + */iV)| < C |P(£ + i/iV)| 

for some constant C, when £ < h for some /i. For, we can obtain as in the 
proof of Theorem 5.1 that when t < t\ 

|f, + itNj\ |P*(£ + */iV)| < Ci |P({ + itN)\, j = 1, 2, . . . , n; 
k = 1,2, . . . , / 

for suitable constants Ci and /i. Hence if we set 

Q = Z W W 
then 

(6.1.2) < c(i + HI)-1 Qr(Z + itN)\ 

with some constant C when / < /i. Let us define, as usual, the unique funda
mental solution for 51 with support in a T-cone by 

E = EP*'£(-l)k(EP*Q)**, 

where EP is a fundamental solution for P(D) and is given by 

"expfcc-fé + i/iV)] (2x)"" p 
P(Z + itN) ^ 

for an arbitrarily fixed 2 < h. Thus we have for <f> 6 C0°° 

<£/ ( i : + 1 ) * Q*\ 4>) = <£P*(*+1), (2v*ft* 4>) 

- <9rT~ f 0"tt + **#)* r,t 4. ,VA7^f 
~ (2T) J pa + iW)^ *(£ +ltN)di-

Therefore the distribution EP*{1c+l) * Q*k is represented by the formula 

fn , o\ (9 _ \ - n \t\x.N f ( T ( £ + * ^ ) * „**.*,/> 

(6.1.3) (2TT) e J p a + ^ H i g # . 
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In view of (6.1.2) we have for t < t\ 

Q*(t: + itN)k
 r j2 

P(ï + itN)k+T eL 

when k > [in] + 1 since |P(£ + itN)\ > const. > 0, so that the Fourier 
inverse transform 

(2x ) J P({ + UNf+l e ** € L ' 

and the distribution E^^+D * Q*k € L2ioc when * > [J«] + 1. On the other 
hand if k < [fre] + 1, we observe that 

<?(£ + itNf _ , |t|»xli«]+i« 
P( f + i;iv)*+1 ~ U + |f' j "*'"* 

where ûk,„ £ L2, and hence that the Fourier inverse transform is 

(1 - A) [*"1 +W € H-1^-2 

or Ep* t t+1) * Q*k € ^ i r e ] - 2 when £ < \\n\ + 1 . 

Defining £ 0 and Fk by 

£o = E (-i)*E/(*+1)*<2**, 
£=0 

P _ / -i \[èn]+ifcE| * ([!«]+*+!) ^ 0 * ( [ b l + * ) 

we obtain 

£ = E0 + F1 + F2 + . . . . 

Thus we have proved the following theorem. 

THEOREM 6.1.1. Let S £ <§'be defined as in (6.1.1.) Then the unique funda
mental solution E for S with support in a T-cone is of the form 

E = E0 + F1 + F2 + . . . , 

where E0 € Hl0(r^-* and Fk G L\oc for k = 1,2, . . . . 

COROLLARY 6.1.1. Let S be the hyperbolic finite difference-differential operator 
defined in Section 3 with P 0 homogeneous, and let Dk Fj < P0forj = 1 , 2 , . . . , / ; 
k = 1, 2, . . . , n. Then the fundamental solution E with support in a Y-cone is 
of the form 

E = £ 0 + F1 + F2 + . . . , 

where E0 £ Hioc~
[in]~2 and Fk £ L2

l0c with support in the half-space x - iV> 
dhn] + k)ai-N for k = 1, 2, . . . . (Here we assume that a\-N < ak-N for 
k = 2, 3, . . . , I.) 
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For, supp Q is contained in the half-space x-N > ai-N; and then we have 

supp Fk C i[\n\ + k + 1) supp EPo + ([±n] + k) supp Q 

C din] + k)HavN, 

where we set HayN = [x-N > ai-N}. 

Example. Let 5 = S(x, y, t) be given by 

U? - A ) s + *«••»•» 
in i?3. Since d2/dt2 — A is hyperbolic with respect to N = (0, 0, 1), 

J i(xZ+yv) 

(T + ïa) — ((• + i? ) 

for any fixed a > 0. Now Po(£, ??, r) = (£2 + V2) — r2. Since 

|Po(É,i7,T + ier)| > CPo (£,*?, r) 

for large |o-| and since 

Po(^V,r)2> {1+ (£2 + v2 + r2)*}2 , 

we have 

|(r + ia)2 - (e + V
2)\ > const.{l + (£2 + V2 + r2)*} 

for large |<r|. Hence we obtain, for k > 1, 

^* = EPo(x, y, t) * EPo(x - a, y - b,t - c)*fc G L2ioc 

and supp Ffc C {x-iV > kc], so that E0 = EPo G Hl0Q~2. 

6.2. Singular support of £ . Finally we shall study the singular support 
of the fundamental solution E, with support in a T-cone, for a distribution 
5 G $' such that 5 has a hyperbolic truncation Si. We denote the singular 
support of a distribution / by ss(f), that is, the smallest closed set outside 
of which / is equal to a C°°-function. 

LEMMA 6.2.1. Let f and g be in Q}1 and let one of them have compact support. 
Then 

ss( /*g) C ss(/) + ss(g). 

Proof. First we assume that both / and g are in S". Take a, f} G C0°° so 
that a(x) = 1 in a neighbourhood of ss(f) and /3(x) = 1 in a neighbourhood 
of ss(g). Since 

/ * g = <*f*pg + h, 

where h G Co°°, we have 

ss(f * g) C supp (a/ * 0g). 
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Let W be a neighbourhood of 0 £ Rn. Let us take another neighbourhood U 
oi 0 £ Rn so that 2U C W. U we take supp a> supp /? so small that 

supp aCU + ss(f), supp PCU + ss(g), 

then 
supp (a/ * (}g) C supp a C\ supp / + supp 0 P\ supp g 

C 2 [ / + s s ( f )+ss (g) 
CW + ss(f)+ss(g). 

Consequently we have 

ss(f*g) C ss(/) + ss(g). 

Now we shall pass to the general case where / 6 <^', g 6 ^ r . We take a par
tition of unity {aj{ C Co00, and apply the above argument to / and ctjg to 
obtain 

ss(f*g) = ssÇ£Jf*aJg) 

C ^Jjssiftajg) 

C yjj (ss(f) + ssfeg)). 

Since ss(aj g) C ss(g) r\ supp aj we conclude that 

ss( /*g) C ss(/) + ss(g), 

which proves our lemma. 

THEOREM 6.2.1. Let S £ S' have a hyperbolic operator Si with respect to N 
as a truncation, and let E be the fundamental solution for S with support in a 
T-cone. Then 

CO 

ss(£) C U ((Jfe + l)ss(Ei) + Jfess(S2)), 
fc=0 

where Ex is the fundamental solution for S\ with support in a T-cone. 

Proof. Put 

£ ,+ i = £ i * X ; ( - l )* (E i*S 2 )** 

where S2 = S — Si. Then we obtain lim„£„+i = E. From Lemma 6.2.1 it 
follows that 

SS(£H-I) = S S ( E I * I ; ( - 1 ) * ( £ I * 5 2 ) * * ) 

Css(i:£1*<*+1)*52**) 

C U ( ( * + l ) s s ( E i ) + *ss(S,)) . 
k-0 
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Thus we conclude that 

ss(£) C U ( ( H l)ss(£i) + fess(52)), 

which proves our theorem. 
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