UNIQUENESS OF GENERALIZED SOLUTIONS OF ABSTRACT DIFFERENTIAL EQUATIONS

BY M. A. MALIK

1. Let Ω be an open subset of R and H be a complex Hilbert space; (,) represents scalar product in H. Let also A be a closed linear operator with domain D_A dense in H and A^* with domain D_A^* be its adjoint. Under graph scalar product D_A and D_A^* are also Hilbert spaces. By $\mathscr{D}_{\Omega}(H)$ we denote the space of all infinitely differentiable functions (H-valued) with compact support defined on Ω . $\mathscr{D}_{\Omega}(H)$ is equipped with Schwartz topology. Similarly, we define $\mathscr{D}_{\Omega}(D_A)$, $\mathscr{D}_{\Omega}(D_A^*)$ and $\mathscr{D}_{\Omega}(\mathbb{C})$; \mathbb{C} represents the complex plane. By $\mathscr{D}'_{\Omega}(H) = \mathscr{L}(\mathscr{D}_{\Omega}(\mathbb{C}); H)$ we mean the space of all continuous linear mappings (H-valued) defined on $\mathscr{D}_{\Omega}(\mathbb{C})$. In a similar way, we define $\mathscr{D}'_{\Omega}(D_A)$. For $\mathbb{Y} \in \mathscr{D}_{\Omega}(\mathbb{C})$ and $u \in \mathscr{D}'_{\Omega}(H)$, $(u, \mathbb{Y}) \in H$. It is easy to show that if $(u, \mathbb{Y}) \in D_A$ for all $\mathbb{Y} \in \mathscr{D}_{\Omega}(\mathbb{C})$, then $u \in \mathscr{D}'_{\Omega}(D_A)$. The H-valued distribution space $\mathscr{D}'_{\Omega}(H)$ is also the dual of $\mathscr{D}_{\Omega}(H)$. In this case, for $\varphi \in \mathscr{D}_{\Omega}(H)$ and $u \in \mathscr{D}'_{\Omega}(H)$, $(u, \mathbb{Y}) \in \mathbb{C}$.

We define Au, for $u \in \mathcal{D}'_{R}(D_{A})$ by the relation

$$\langle Au, \Psi \rangle = A \langle u, \Psi \rangle$$

for all $\Psi \in \mathcal{D}_R(\mathbb{C})$; $Au \in \mathcal{D}'_R(H)$.

For convenience, we write L=(1/i)(d/dt)-A and $L^*=(1/i)(d/dt)-A^*$. By $R(\lambda; A)$, we denote the resolvent operator of $A, \lambda \in \mathbb{C}$. In view of imposing condition on A, we need:

DEFINITION. Let \mathscr{F} be a family of parallel lines $\{\operatorname{Im} \lambda = \tau_n, \tau_n \to \infty \text{ as } n \to \infty, \tau_n \to -\infty \text{ as } n \to -\infty \}$ in the complex plane \mathbb{C} . Let r be a positive real number and j, m be positive integers. We shall say that the resolvent $R(\lambda; A)$ is of (j, r, m)-growth on \mathscr{F} if $R(\lambda; A)$ exists for λ outside j intervals of length r on every line of \mathscr{F} and for these λ

$$(1.2) |R(\lambda; A)| \le \text{const. } |\lambda|^m$$

Throughout this paper, the 'const.' need not be the same constant.

2. We consider the abstract differential equation

$$\frac{1}{i}\frac{du}{dt} - Au = f$$

Received by the editors October 16, 1972.

379

The author has recently proved the existence of weak solution of the equation (2.1) imposing condition on the resolvent $R(\lambda; A^*)$ in [2]. In fact, he proved:

THEOREM A. If $R(\lambda; A^*)$ is of (j, r, m)-growth on \mathcal{F} , then for every $f \in \mathcal{D}'_A(H)$ the equation Lu = f has at least one weak solution $u \in \mathcal{D}'_R(H)$, i.e.,

$$\langle u, L^* \varphi \rangle = \langle f, \varphi \rangle$$

for all $\varphi \in \mathcal{D}(D'_R)$.

In this paper, we show that the solution u in Theorem A is not unique and actually $u \in \mathcal{D}'(D_A)$ yielding a solution of (2.1). We also study the uniqueness of the solution u (of Lu=0) vanishing in a neighbourhood of $x \in R$.

3. We prove:

THEOREM 1. If $R(\lambda; A^*)$ is of (j, r, m)-growth on \mathcal{F} , the space of weak solutions of Lu=0 consists of more than one element.

In the proof of Theorem 1, we need the following:

DEFINITION. We define V_{Ω} as the set of all $u \in \mathcal{D}'_{\Omega}(H)$ such that

$$\langle u, L^* \varphi \rangle = 0$$

for all $\varphi \in \mathcal{D}_{\Omega}(D_A^*)$.

Lemma 1. Let the hypothesis of Theorem 1 be satisfied and Ω_1 , Ω_2 be two open subsets of R with $\Omega_1 \subset \Omega_2$. Then V_R is dense in V_{Ω_2} under the topology of $\mathscr{D}'_{\Omega_1}(H)$, i.e., for $\varphi \in \mathscr{D}_{\Omega_1}(H)$ if $\langle \chi, \varphi \rangle = 0$ for all $\chi \in V_R$ then $\langle \mu, \varphi \rangle = 0$ for all $\mu \in V_{\Omega_2}$.

S. Zaidman [4] has proved a similar result for $L^2_{loc}(H)$, the space of locally square integrable H-valued functions and Lemma 1 can be proved along the same line.

From Lemma 1, we immediately have:

LEMMA 2. Under the hypothesis of Theorem 1, if $V_R = \{0\}$ then for any $\Omega \subset R$, $V_{\Omega} = \{0\}$.

Proof of Theorem 1. Suppose on contrary, that $V_R = \{0\}$. In such a case, we shall show that the weak solution of $Lu = \delta \otimes x$ does not exist i.e., there exists no $u \in \mathcal{D}'_R(H)$ satisfying

$$\langle u, L^* \varphi \rangle = \langle \delta \otimes x, \varphi \rangle$$

for all $\varphi \in \mathcal{D}(D_A^*)$. As it contradicts Theorem A the proof will be complete.

Now suppose there exists $u \in \mathcal{D}'_R(H)$ satisfying (3.2). For $\varphi \in \mathcal{D}(D_A^*)$ with supp $\varphi \subset (0, \infty)$ we obviously have $\varphi(0) = 0$ and so

$$\langle u, L^* \varphi \rangle = 0$$

since $V_R = \{0\}$, from Lemma 2, u = 0 on $(0, \infty)$; let $\Omega = (0, \infty)$. Similarly, u = 0 on $(-\infty, 0)$. So the supp u is concentrated at the origin and u may therefore be expressed as a finite linear combination of Dirac distribution and its derivative, hence:

$$(3.4) u = \sum_{k=0}^{n} a_k \otimes \delta^{(k)}$$

 $a_k \in H$. Substituting (3.4) in (3.2) and using (1.1) after transposing the derivative, we have

(3.5)
$$\sum_{k=0}^{n} (a_k, (-i)^{k+1} \varphi^{(k+1)}(0) - A^* \varphi^{(k)}(0)) = (x, \varphi(0))$$

for all $\varphi \in \mathcal{D}_R(D_A^*)$ and $\chi \in H$. A choice of φ in (3.5) such that $\varphi^{(k)}(0) = 0$ for $k = 0, 1, 2, \ldots, n$ whereas $\varphi^{(n+1)}(0) \neq 0$ implies the leading coefficient $a_n = 0$. Thus $u \equiv 0$. It contradicts (3.2). This completes the proof.

THEOREM 2. Let $R(\lambda; A^*)$ be of (j, r, m)-growth on \mathcal{F} . Then for any $f \in \mathcal{D}'_R(H)$, the abstract differential equation Lu = f has more than one solution $u \in \mathcal{D}'_R(D_A)$.

Proof of Theorem 2. From Theorem 1, there exists more than one $u \in \mathcal{D}'_R(H)$ such that

$$(3.6) \langle u, L^* \varphi \rangle = \langle f, \varphi \rangle.$$

We shall show that $u \in \mathscr{D}'_R(D_A)$. Putting $\varphi = \Psi \otimes x$, $\Psi \in \mathscr{D}_R(\mathbb{C})$ and $\chi \in D_A^*$ in (3.6) we have

(3.7)
$$\left\langle u, \frac{1}{i} \frac{d}{dt} \Psi \otimes x - A^* \Psi \otimes x \right\rangle = \langle f, \Psi \otimes x \rangle$$

from where

(3.8)
$$\left(\left\langle \frac{1}{i}\frac{du}{dt} - f, \Psi \right\rangle, x \right) = (\langle u, \Psi \rangle, A^*x)$$

for all $\chi \in D_A^*$. This implies that $\langle u, \Psi \rangle \in D_A^{**} = D_A$ as A is a closed linear operator with domain D_A dense in H; (see [3], pages 196–197). Consequently, $u \in \mathcal{D}'(D_A)$ and satisfies the equation

$$\frac{1}{i}\frac{du}{dt} - Au = f.$$

THEOREM 3. Let $u \in \mathcal{D}'_R(D_A)$ be a solution of

$$\frac{1}{i}\frac{du}{dt} - Au = 0$$

and the resolvent $R(\lambda; A)$ is of (j, r, m)-growth on \mathcal{F} . If for some $\chi \in R$ and $\varepsilon > 0$, u vanishes on $(x-\varepsilon, x+\varepsilon)$, then $u \equiv 0$.

LEMMA 3. [2] Let $R(\lambda; A)$ be of (j, r, m)-growth on \mathscr{F} and $\xi \in C^{\infty}(D_A)$ be a solution of $L\varphi = 0$ on $a \le t \le b$ with $\xi(c) = 0$, a < c < b. Then $\xi \equiv 0$ on [a, b].

Proof of Theorem 3. Consider a sequence $\{\alpha_n; \alpha_n \in \mathcal{D}_R(\mathbb{C}), \text{ supp } \alpha_n \subset [-1/n, 1/n]\}$ such that $\alpha_n \to \delta$, the Dirac distribution. Let $u \in \mathcal{D}'_R(D_A)$ be a solution of (3.9). Consider the convolution $u * \alpha_n$. It is clear that $u * \alpha_n \in C^{\infty}(D_A)$, $L(u * \alpha) = 0$ and for sufficiently large n,

$$\operatorname{supp}(u * \alpha_n) \cap \left(x - \varepsilon + \frac{1}{n}, x + \varepsilon - \frac{1}{n}\right) = \phi$$

so $(u * \alpha_n)(x) = 0$. In view of Lemma 3, $u * \alpha_n = 0$ on any interval $a \le t \le b$ containing x and so $(u * \alpha_n)(t) = 0$ for all $t \in R$. Consequently $u \equiv 0$.

4. Finally, we present the following version of an example of S. Agmon and L. Nirenberg [1] where the conclusion like of Lemma 2 is not true.

EXAMPLE. In the space of all continuous complex functions defined on R, consider a closed linear operator A=i(d/dx) with domain D_A consisting of all C^1 functions vanishing at $-\infty$. Consider the homogeneous equation

$$\frac{1}{i}\frac{\partial}{\partial t}u - i\frac{\partial}{\partial x}u = 0 \tag{4.1}$$

on $t_1 \le t \le t_2$, $u(t, \cdot) \in D_A$. The operator $-iL = (1/i)(\partial/\partial t) - i(\partial/\partial x)$ is a directional derivative in the (t, x)-plane. Any solution u of (4.1) is constant on the line with direction (1.1) lying in the strip $[t_1, t_2] \times R$ and need not be zero. However, if $t_1 = -\infty$ and u(t, x) is a solution of (4.1), then $u \equiv 0$; in fact, u is constant on the line x = t + c and vanishes at $x = -\infty$.

REFERENCES

- 1. S. Agmon and L. Nirenberg, *Properties of solutions of ordinary differential equations in Banach space*, Comm. Pure Appl. Math. 16 (1963), pp. 121-239.
- 2. M. A. Malik, Weak Generalized Solutions of Abstract Differential Equations, J. Math. Analy. Appl., To appear.
 - 3. K. Yosida, Functional Analysis, Springer-Verlag, New York, 1968.
- 4. S. Zaidman, Un Teorema di esistenza globale per alcune equazioni differenziali astratte, Richerche di Matematica, 13 (1964), pp. 57-69.

CONCORDIA UNIVERSITY
SIR GEORGE WILLIAMS CAMPUS
MONTREAL, QUÉBEC
CANADA