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UNIQUENESS OF GENERALIZED SOLUTIONS OF 
ABSTRACT DIFFERENTIAL EQUATIONS 

BY 

M. A. MALIK 

1. Let JQ be an open subset of R and H be a complex Hilbert space; (,) repre­
sents scalar product in H. Let also A be a closed linear operator with domain 
DA dense in H and A* with domain DA be its adjoint. Under graph scalar product 
DA and DA are also Hilbert spaces. By @n(H) we denote the space of all infinitely 
differentiate functions (if-valued) with compact support defined on £i. @n{H) is 
equipped with Schwartz topology. Similarly, we define @a(DA), @n(DA) and 
^ n ( C ) ; C represents the complex plane. By &Q(H)=J?(@ci(C); H) we mean 
the space of all continuous linear mappings (#-valued) defined on ^ n ( C ) . In a 
similar way, we define @'Q(DA). For Y e@a(C) and ue@'n(H), <w,Y> e H. It 
is easy to show that if (u,Y) e DA for all T e ^ f t ( C ) , then u e@'a(DA). The 
if-valued distribution space &a(H) is also the dual of @a(H). In this case, for 
cpeSi^H) and ue^a(H)9 <w,T) e C . 

We define Au, for u e &R(DJ) by the relation 

(1.1) (Au9W) = A(u,W) 

for all Y e@B(C); Au e@'R(H). 
For convenience, we write L=(lli)(dldt)—A and L*=(lli)(dldt)—A*. By 

jR(A; A), we denote the resolvent operator of A, X e C . In view of imposing con­
dition on A, we need: 

DEFINITION. Let !F be a family of parallel lines {Im A=rn , rn->oo as «->oo, 
rn->— oo as /!->— oo} in the complex plane C Let r be a positive real number and 

j , m be positive integers. We shall say that the resolvent R(A; A) is of (/, r, w)-
growth on !F if i?(A; 4̂) exists for A outside y intervals of length r on every line of 
& and for these A 

(1.2) IR(A; ^L)| ^ const. IA|m 

Throughout this paper, the 'const.' need not be the same constant. 

2. We consider the abstract differential equation 

M A 1 du . j . 

(2.1) 7— -Au=f 
i at 
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The author has recently proved the existence of weak solution of the equation 
(2.1) imposing condition on the resolvent R(l; A*) in [2]. In fact, he proved: 

THEOREM A. IfR(X\ A*) is of(j, r, m)-growth on SF9 then for every f e <2i'A(H) 
the equation Lu=f has at least one weak solution ue&R(H), i.e., 

(2.2) (u, L*y> = </, 9) 

forall(pe@(D'R). 

In this paper, we show that the solution u in Theorem A is not unique and 
actually u e &(DA) yielding a solution of (2.1). We also study the uniqueness of the 
solution u (of Lu=0) vanishing in a neighbourhood of x e R. 

3. We prove: 

THEOREM 1. If R(À; A*) is of(j, r, m)-growth on ^ 9 the space of weak solutions 
ofLu=0 consists of more than one element. 

In the proof of Theorem 1, we need the following: 

DEFINITION. We define Va as the set of all u e &a(H) such that 

(3.1) (u9L*<p) = 0 

forallc>e0o(ZXj). 

LEMMA 1. Let the hypothesis of Theorem 1 be satisfied and Ql9 i i2 be two open 
subsets ofR with Qx c£22- Then VR is dense in VQ2 under the topology of&Qi(H), 
i.e., for <p e@ni(H) if {%, <p)=0for all %eVR then ([x, (p)=0for all p e V^. 

S. Zaidman [4] has proved a similar result for I?l0Q(H), the space of locally 
square integrable H-valued functions and Lemma 1 can be proved along the same 
line. 

From Lemma 1, we immediately have : 

LEMMA 2. Under the hypothesis of Theorem 1, if VR={0} then for any QaR, 

Proof of Theorem 1. Suppose on contrary, that VR={0}. In such a case, we 
shall show that the weak solution of Lw=5®x does not exist i.e., there exists no 
ue&R(H) satisfying 

(3.2) (u, L*<p) = (d®x9 (p) 

for all <p eS)(Dj). As it contradicts Theorem A the proof will be complete. 
Now suppose there exists ue&R(H) satisfying (3.2). For q>e@(Dj) with 

supp cp c:(0, oo) we obviously have <p(0)=0 and so 

(3.3) (u, Iftp) = 0 
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since ^ = { 0 } , from Lemma 2, w=0 on (0, oo); let £2=(0, oo). Similarly, t/=0 
on (— oo, 0). So the supp u is concentrated at the origin and u may therefore be 
expressed as a finite linear combination of Dirac distribution and its derivative, 
hence: 

(3.4) u = 2 ak®ô{k) 

0 

ak E H. Substituting (3.4) in (3.2) and using (1.1) after transposing the derivative, 
we have 

(3.5) i (ak, (-i)i+V<&+1)(0)-^>(* ,(0)) = (x, <p(0)) 
0 

for all cp e9R(D^) and % e H. A choice of cp in (3.5) such that <pW(0)=0 for 
fc=0, 1, 2, . . . ,n whereas 99(n+1)(0)^0 implies the leading coefficient an=0. 
Thus w=0. It contradicts (3.2). This completes the proof. 

THEOREM 2. Let R(2.; A*) be of(j9 r, m)-growth on IF. Then for anyfe&R(H), 
the abstract differential equation Lu=fhas more than one solution ue&R(DA). 

Proof of Theorem 2. From Theorem 1, there exists more than one ue@'R(H) 
such that 

(3.6) (u9L*cp) = 0 » . 

We shall show that ue&R(DA). Putting p T 0 x , T G © f i ( C ) and xeDl in 
(3.6) we have 

(3.7) < M, - - Y®x-A*Y®x) = (/,T®x> 
\ i dt / 

from where 

(3.8) ( A ^ - / , Ŷ >, x) = «u, T), A*x) 

for all # e DA. This implies that (w,T) e D%*=DA as y4 is a closed linear operator 
with domain DA dense in H; (see [3], pages 196-197). Consequently, ue@'(DA) 
and satisfies the equation 

1 du . r 

Au = / . 
i dt 

THEOREM 3. Let ue&R(DA) be a solution of 

(3.9) i ^ - ^ = 0 
i dt 

and the resolvent R{X; A) is of (J, r, m)-growth on ̂ . If for some % G R and e>0, 
u vanishes on (X—E, X+E), then M=0. 
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LEMMA 3. [2] Let R(X; A) be of (j, r, m)-growth on & and f e C°(Dj) be a 

solution ofLcp=0 on a<it<b with f (c)=0, a<c<b. Then | = 0 on [a, b]. 

Proof of Theorem 3, Consider a sequence {xn; ane&R(C), supp awc[—1/«, 
I In]} such that an^<5, the Dirac distribution. Let ue&R(DA) be a solution of 
(3.9). Consider the convolution u * an. It is clear that u * an e C*(DJ)9 L(w * a )=0 
and for sufficiently large n, 

U * 0Cn) n IX — £H— , X + £ I = (f) 
\ n n) 

supp(i 

so (w * aw)(x)=0. In view of Lemma 3, u * a n = 0 on any interval a<t<b containing 
x and so (u * an)(t)=0 for all f e i ? . Consequently w=0. 

4. Finally, we present the following version of an example of S. Agmon and 
L. Nirenberg [1] where the conclusion like of Lemma 2 is not true. 

EXAMPLE. In the space of all continuous complex functions defined on R, con­
sider a closed linear operator A = i(djdx) with domain DA consisting of all C1 

functions vanishing at — oo. Consider the homogeneous equation 

u — i — u = 0 (4.1) 

on tx<t<t^ u(t, •) G D^. The operator —iL=(lli)(dldt)—i(dldx) is a directional 
derivative in the (/, x)-plane. Any solution u of (4.1) is constant on the line with 
direction (1.1) lying in the strip [tl9 t2]xR and need not be zero. However, if 
tx= — oo and u(t, x) is a solution of (4.1), then w=0; in fact, u is constant on the 
line x=t+c and vanishes at x= — oo. 
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