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UNIQUENESS OF GENERALIZED SOLUTIONS OF
ABSTRACT DIFFERENTIAL EQUATIONS

BY
M. A. MALIK

1. Let Q be an open subset of R and H be a complex Hilbert space; (,) repre-
sents scalar product in H. Let also 4 be a closed linear operator with domain
D, dense in H and A* with domain D} be its adjoint. Under graph scalar product
D, and D are also Hilbert spaces. By Zo(H) we denote the space of all infinitely
differentiable functions (H-valued) with compact support defined on Q. Do(H) is
equipped with Schwartz topology. Similarly, we define Dq(D ), Dq(D)) and
24(C); C represents the complex plane. By 9,(H)=%(Zo(C); H) we mean
the space of all continuous linear mappings (H-valued) defined on Z,(C). In a
similar way, we define 9(D ). For ¥ € Zo(C) and u € Z4(H), w,¥)eH. It
is easy to show that if (u,¥') e D, for all ¥ € Zo(C), then uePy(D,). The
H-valued distribution space 9,(H) is also the dual of Dg(H). In this case, for
@ € Do(H) and u € D (H), u,¥) e C.

We define Au, for u € (D ) by the relation

(1.1) (Au, V) = A, V)

for all¥ € 9x(C); Au € D(H).

For convenience, we write L=(1/i)(d/dt)—A and L*=(1[i)(d/dt)—A*. By
R(2; 4), we denote the resolvent operator of 4, A € C. In view of imposing con-
dition on A, we need:

DErFINITION. Let & be a family of parallel lines {Im A=1,, 7,—>c as n—co,
7,—>— 00 as n—— oo} in the complex plane C. Let r be a positive real number and
j, m be positive integers. We shall say that the resolvent R(2; 4) is of (j, r, m)-
growth on & if R(4; A) exists for A outside j intervals of length r on every line of
& and for these 4

(1.2) |R(4; A)| < const. |A]™

Throughout this paper, the ‘const.” need not be the same constant.

2. We consider the abstract differential equation

2.1 ———Adu=f
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The author has recently proved the existence of weak solution of the equation
(2.1) imposing condition on the resolvent R(4; 4*) in [2]. In fact, he proved:

THEOREM A. If R(A; A*) is of (j, r, m)-growth on &, then for every f € Dy(H)
the equation Lu=f has at least one weak solution uc2y(H), i.e.,

22) (u, L*¢) = (f, @)
Sor all p € D(DF).
In this paper, we show that the solution # in Theorem A is not unique and

actually u € 2'(D 4) yielding a solution of (2.1). We also study the uniqueness of the
solution # (of Lu=0) vanishing in a neighbourhood of x € R.

3. We prove:

THEOREM 1. If R(%; A*) is of (j, r, m)-growth on & , the space of weak solutions
of Lu=0 consists of more than one element.

In the proof of Theorem 1, we need the following:

DEFINITION. We define V, as the set of all u € Z(H) such that

G.1) (u,*¢) =0
for all p € Do(DY).

LEMMA 1. Let the hypothesis of Theorem 1 be satisfied and Q,, Q, be two open
subsets of R with Q; cQ,. Then Vg, is dense in Vo_under the topology of 9, (H),

ie., for g €Dq (H)if (, 9)=0 for all 3 € Vg, then {u, ¢)=0 for all p € Vg .
S. Zaidman [4] has proved a similar result for L7 .(H), the space of locally
square integrable H-valued functions and Lemma 1 can be proved along the same

line.
From Lemma 1, we immediately have:

LEMMA 2. Under the hypothesis of Theorem 1, if Vy={0} then for any Q <R,
Vn={0}.

Proof of Theorem 1. Suppose on contrary, that Vz={0}. In such a case, we
shall show that the weak solution of Lu=0®x does not exist i.e., there exists no
u € Px(H) satisfying
(3.2) (u, L¥o) = (6@x, @)

for all ¢ € 2(DY). As it contradicts Theorem A the proof will be complete.
Now suppose there exists u € P;(H) satisfying (3.2). For ¢ € 2(D}) with
supp ¢ <(0, o) we obviously have ¢(0)=0 and so

(3.3) (u, L*@y =0
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since Vp={0}, from Lemma 2, u=0 on (0, o0); let Q=(0, o). Similarly, #=0
on (—o0, 0). So the supp u is concentrated at the origin and u may therefore be
expressed as a finite linear combination of Dirac distribution and its derivative,
hence:

(3.4) u="Y a,@"
0

@, € H. Substituting (3.4) in (3.2) and using (1.1) after transposing the derivative,
we have

n

(3.5 2 (@, (=) (0)— 4*¢™(0)) = (x, ¢(0))

0
for all p € Dp(D¥) and y € H. A choice of ¢ in (3.5) such that ¢®*(0)=0 for
k=0,1,2,...,n whereas ¢"(0)£0 implies the leading coefficient a,=0.
Thus u=0. It contradicts (3.2). This completes the proof.

THEOREM 2. Let R(4; A*) be of (j, r, m)-growth on F. Then for any f € Dr(H),
the abstract differential equation Lu=f has more than one solution u € D3(D o).

Proof of Theorem 2. From Theorem 1, there exists more than one u € 2 R(H)
such that

(3.6) (u, L*¢) = (f, @).
We shall show that u € (D ). Putting 9=¥YQx, ¥ € D5(C) and x € D} in
(3.6) we have

(18 ge. g >_
(3.7 \u, v YTx—A*YRx ) = (f, Y'®x)
from where
Tdu_ o\ |\ _ .
3.3) (<, T x) = (@, ), 4*x)

for all ¥ € D¥. This implies that (u, ¥) € D¥*=D, as 4 is a closed linear operator
with domain D, dense in H; (see [3], pages 196-197). Consequently, v € 2'(D )
and satisfies the equation

1du
=——Au =
idt s
THEOREM 3. Let u € D(D,,) be a solution of
1du
3.9 ———Au =0
@) it

and the resolvent R(; A) is of (j, r, m)-growth on F. If for some y € R and >0,
u vanishes on (x—e¢, x+¢), then u=0.
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LemmA 3. [2] Let R(A; A) be of (j, r, m)-growth on & and & € C*(D,) be a
solution of Lo=0 on a<t<b with §(c)=0, a<c<b. Then £=0 on [a, b].

Proof of Theorem 3. Consider a sequence {u,; a, € Z5(C), supp «, <[—1/n,
1/n]} such that «,—d, the Dirac distribution. Let u € 23(D,) be a solution of
(3.9). Consider the convolution u * a,,. It is clear that u * o, € C* (D ), L(u * o)=0
and for sufficiently large n,

supp(u * «,) N (x——e+1 , x+s—l) —4
n n

s0 (u * «,,)(x)=0. In view of Lemma 3, u * «,=0 on any interval a<s<b containing
x and so (u* a,)(r)=0 for all e R. Consequently u=0.

4. Finally, we present the following version of an example of S. Agmon and
L. Nirenberg [1] where the conclusion like of Lemma 2 is not true.

ExaMpLE. In the space of all continuous complex functions defined on R, con-
sider a closed linear operator A=i(d/dx) with domain D, consisting of all C!
functions vanishing at — co. Consider the homogeneous equation

——u—i—u= “.1)

on 1,<t<ty, u(t, ) € D 4. The operator —iL=(1/i)(0/0t)—i(0[0x) is a directional
derivative in the (¢, x)-plane. Any solution u of (4.1) is constant on the line with
direction (1.1) lying in the strip [, £,] X R and need not be zero. However, if
t;=—o0 and u(?, x) is a solution of (4.1), then ¥=0; in fact, u is constant on the
line x=t4c and vanishes at x=— co.
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