Daniel A. Schwartz and Greg Madejski Harvard/Smithsonian Center for Astrophysics

William H.-M. Ku Columbia Astrophysics Laboratory

As one part of our joint study of the X-ray properties of BL Lac objects, we compare the measured X-ray flux densities with those predicted using the synchrotron self-Compton (SSC) formalism (Jones et al. 1974). Naive application of the formalism predicts X-ray fluxes from 10^{-3} to 10^{5} those observed. We therefore ask what we can learn by simply assuming the SSC mechanism, and looking for ways to reconcile the observed and measured X-ray fluxes. This paper reports our investigation of beaming factors due to relativistic ejection of a radiation source which is isotropic in its own rest frame. We conclude that large Lorentz factors, $\Gamma \ge 10$, do not apply to BL Lac objects as a class.

Our present study (Table 1) is based on 16 sources for which a VLBI size has been measured by Weiler and Johnston (1980) and which have been observed (15 detected) in X-rays with the Einstein Imaging Proportional Counter. The X-ray data have been reduced in the manner described by Zamorani et al. (1981), except that we assume a steeper energy spectrum, of index 1.5. We use equation 4 of Jones et al. (1974) to predict the X-ray flux density $S_{\times}'(Jy)$ at 1 keV.

Object	$S_{\times}^{\prime}(Jy)$	S _× (Jy)	δ	Object	$S_{X}^{\prime}(Jy)$	S _× (Jy)	δ
0048-097 0219+438 0235+164 0735+178 0754+100 0818-128 0829+046	1.3E-3 8.8E-9 1.0E-1 4.6E-5 3.6E-5 3.9E-6 1.8E-7	2.2E-7 1.5E-7 ¹ 1.6E-7 2.4E-7 2.0E-7 <1.4E-7 1.9E-7	8.8 0.49 28.0 3.7 3.6 >2.3 0.98	1101+38 1219+28 1308+326 1400+162 1538+149 1652+398 2201+04	3.2E-7 3.2E-6 2.1E-1 1.9E-10 1.9E-5 2.1E-7 8.9E-8	1.4E-5 4.8E-7 2.7E-7 1.6E-7 ¹ 1.3E-7 1.2E-5 2.6E-7	0.39 1.6 30.0 0.18 3.5 0.36 0.76
0851+202	3.4E-4	2.3E-6	3.5	2254+074	8.1E-9	1.2E-7 ¹	0.51

TABLE 1 Distribution of Beaming Factors

¹From Maccagni and Tarenghi.

383

D. S. Heeschen and C. M. Wade (eds.), Extragalactic Radio Sources, 383-384. Copyright © 1982 by the IAU.

We consider a model where the radio source is ejected with a Lorentz factor Γ , at an angle θ away from a line toward us. If we define the beaming factor $\delta = 1/\Gamma$ (1- $\beta \cos \theta$), then a Lorentz transformation gives $S_X = S_X^* \delta^{-2} (\alpha + 2)$. In Table 1 we have assumed $\nu_m = 1$ GHz and $\alpha = 0$. Calculating with $\nu_m = 0.3$ or 5 and $\alpha = 0.2$ or 0.5 changes S_X' by a large factor; however, since S_X depends on δ to a power similar to the dependence on the radio size, synchrotron absorption frequency ν_m and radio flux density S_m , δ is determined within a factor of a few.

If the predicted S_{\times} were all within a factor of 10 or 100 from the measured S_{\times} , it could be evidence for a single component SSC model. Instead, we must find a way to reconcile at least the cases where the predicted X-ray flux density greatly exceeds that observed. The assumption of relativistic beaming is sufficient and furthermore is reasonable in the sense that a quasi-isotropic distribution of θ , and relatively small Γ are required.

We may predict the intrinsic distribution of δ for a set of objects if the Lorentz factors have a probability density function $\rho(\Gamma)$:

$$\rho(\delta) = \frac{1}{2\delta^2} \int_{\Gamma_{\min}}^{\infty} \frac{\rho(\Gamma) d\Gamma}{\sqrt{\Gamma^2 - 1}}$$
(1)

where the minimum $\Gamma_{\min} = (1+\delta^2)/2\delta$. From this equation we can immediately see qualitatively that for a δ -function distribution of Γ , values of $\Gamma_0 = 2$ to 5 would suffice to span most of the range of observed δ factors, from 0.1 to 10. A power law $\rho(\Gamma) \propto \Gamma^{-2}$ would span this same range. On the other hand, for $\Gamma \ge 10$, the overwhelming majority of sources would have $\delta <<1$, which is not what we observe.

Suppose we only recognize an object as a "BL Lac" if it is beamed toward us within some angle θ_m . In this case we can only integrate equation (1) up to some Γ max at which $\delta \ge 1/\Gamma$ max $(1-\cos\theta_m \sqrt{1-1/\Gamma_{max}})$, and the normalization factor 2 changes to $1-\cos\theta_m$. For the delta function distribution, $\theta_m = 1/\Gamma_0$, and it is easy to see that for $\Gamma_0 \ge 10$ we do not expect any $\delta \le 10$. We conclude that although some extreme values of Γ may occur for specific sources, the general distribution is dominated by $\Gamma \le 5$.

REFERENCES

Jones, T.W., O'Dell, S.L., and Stein, W.A. Astrophys. J. <u>192</u>, 261 (1974). Maccagni, D. and Tarenghi, M. Astrophys. J. <u>243</u>, 42 (1981). Weiler, K.W. and Johnston, K.J. M.N.R.A.S. <u>190</u>, 269 (1980). Zamorani, G. et al. Astrophys. J. <u>245</u>, 357 (1981).

384