ON KADISON'S CONDITION FOR EXTREME POINTS OF THE UNIT BALL IN A *B**-ALGEBRA

by BERTRAM YOOD¹ (Received 4th July 1968)

1. Introduction

Let B be a complex Banach algebra with an identity 1 and an involution $x \rightarrow x^*$. Kadison (1) has shown that, if B is a B^* -algebra, 'the set of extreme points of its unit ball coincides with the set \mathfrak{E} of elements x of B for which

$$(1 - x^*x)B(1 - xx^*) = (0).$$
(1)

This elegant result is very useful for B^* -algebra theory; see (1) and (3). In this paper we examine the set \mathfrak{E} for algebras B which are not necessarily B^* -algebras. It is shown that the spectral radius of each $x \in \mathfrak{E}$ is at least one. In Section 4 we consider the set \mathfrak{E} for the special case where B is the algebra of all bounded linear operators on the infinite-dimensional Hilbert space H. Here \mathfrak{E} is the set of semi-unitary elements $T(TT^* = 1 \text{ or } T^*T = 1)$. For such T we show that there exists a complex number b, |b| = 1, such that b-T is not a semi-Fredholm operator on H. (For this notion see Section 4 or (2)). This then says that b lies in the essential spectrum of T when we use the rather restrictive definition of essential spectrum due to Kato (2, p. 243).

2. Algebraic considerations

We begin with some pure ring theory. Let A be a ring with identity 1 and an involution $x \rightarrow x^*$. Let $\mathfrak{E}(A)$ denote the set $x \in A$ for which

$$(1 - x^*x)A(1 - xx^*) = (0).$$

For $x \in \mathfrak{E}(A)$ we have $1 = xx^* \circ x^*x = x^*x \circ xx^*$ where we use the familiar notation (4) that $u \circ v = u + v - uv$.

Proposition 1. Let $x \in \mathfrak{E}(A)$. Then $x^n \in \mathfrak{E}(A)$ for n = 1, 2, ...

Proof. Let $x \in \mathfrak{E}(A)$. The following computations use ideas of Miles (3, p. 631).

First we show that

$$(1 - (x^*)^n x^n) A(1 - xx^*) = (0)$$
⁽²⁾

for n = 1, 2, ... By hypothesis, this is valid for n = 1 and we suppose it is true for the integer n. Note that

$$1 - (x^*)^{n+1} x^{n+1} = 1 - (x^*)^n x^n + (x^*)^n (1 - x^* x) x^n.$$
(3)

¹ This research was supported by the National Science Foundation Grant NSF-GP-7516. The author is grateful to the referee for his helpful comments.

B. YOOD

Set
$$w = (1 - (x^*)^{n+1}x^{n+1})y(1 - xx^*)$$
. Using (3), we write $w = a + b$ where
 $a = (1 - (x^*)^n x^n)y(1 - xx^*) = 0$,
 $b = (x^*)^n(1 - x^*x)x^ny(1 - xx^*) = 0$

since $x \in \mathfrak{E}(A)$. Likewise the relation

$$1 - x^{n+1}(x^*)^{n+1} = 1 - x^n(x^*)^n + x^n(1 - xx^*)(x^*)^n$$
(4)

leads to the conclusion that

$$(1 - x^*x)A(1 - x^n(x^*)^n) = (0)$$
(5)

for n = 1, 2,

Now we show that $x^n \in \mathfrak{E}(A)$ by induction. Suppose this holds for exponents k = 1, ..., n. Set

$$w = (1 - (x^*)^{n+1} x^{n+1}) y (1 - x^{n+1} (x^*)^{n+1}).$$

Using (3) and (4), we rewrite w as the sum of four terms each of which must be zero by (2) and (5) and the induction hypothesis. This establishes the desired result. In particular, $x \in \mathfrak{E}(A)$ is never a nilpotent element of A.

For further results we assume that the involution is proper $(x^*x = 0)$ implies x = 0). One then readily verifies that the four statements (a) x^*x is an idempotent, (b) xx^* is an idempotent, (c) $x = xx^*x$, (d) $x^* = x^*xx^*$ are equivalent. We then call x a partial isometry. Arguments of Miles (3, p. 630) show that any $x \in \mathfrak{E}(A)$ is a partial isometry. These results can fail if the involution is not proper. For an example let A be the ring of all numbers of the form a+bi, $i^2 = -1$, under the usual operations, where a and b lie in the ring of integers modulo 16. For x = a+bi, set $x^* = a-bi$. Then x = 2+ilies in $\mathfrak{E}(A)$ but xx^* is not an idempotent.

Proposition 2. Suppose that the involution in A is proper. If $x^n \in \mathfrak{E}(A)$ for some integer n and x is a partial isometry, then $x \in \mathfrak{E}(A)$.

Proof. Suppose that $x^n \in \mathfrak{E}(A)$ and x is a partial isometry. For each $y \in A$ we can, using (1) with x^n instead of x, obtain an expression for y as

$$y = (x^*)^n x^n y + y x^n (x^*)^n - (x^*)^n x^n y x^n (x^*)^n.$$
(6)

We use (6) in $(1-x^*x)y(1-xx^*)$ and the facts $x = xx^*x$, $x^* = x^*xx^*$ to see that $(1-x^*x)y(1-xx^*) = 0$.

We use the following language customary in the theory of von Neumann algebras. A *projection* is a self-adjoint idempotent. A projection p is called *abelian* if pAp is an abelian ring and is called *minimal* if pA is a minimal right ideal.

Proposition 3. Suppose that the involution in A is proper. Let $x \in A$ be a partial isometry. Then x^*x is an abelian (minimal) projection if and only if xx^* is an abelian (minimal) projection.

Proof. Let $p = x^*x$, $q = xx^*$. Suppose that pAp is commutative and let $y, z \in A$. Then

$$px^*yxpx^*zxp = px^*zxpx^*yxp. \tag{7}$$

246

But $px^* = x^*xx^* = x^*$ and $xpx^* = q$. Multiplying (7) on the left by x and on the right by x^* shows that qyqzq = qzqyq or q is an abelian projection.

Suppose that p is a minimal projection. By algebraic theory, either xpA = (0) or xpA is a minimal right ideal. But $xpx^* = q \neq 0$. Then

 $(0) \neq qA \subset xpA.$

Proposition 4. Suppose that the involution in A is proper. Let $x \in \mathfrak{E}(A)$. Suppose that x^*x is an abelian (minimal) projection. Then A is a commutative ring (division ring).

Proof. Let $p = x^*x$, $q = xx^*$. Suppose that p is an abelian projection. Then

$$pqpxp = pxpqp. \tag{8}$$

But xp = x = qx. Moreover, since $x \in \mathfrak{E}(A)$, we have, as noted earlier, $p \circ q = q \circ p = 1$. In particular, pq = qp. Then

pqpxp = qpxp = qpx = pqx = px.

On the other hand, pxpqp = pxpq = pxq. Then (8) yields px(1-q) = 0. We combine this with (1-p)x(1-q) = 0 to obtain x(1-q) = 0. This gives $p(1-q) = x^*x(1-q) = 0$. Since p+q-pq = 1 we get q = 1. But, by Proposition 3, q is an abelian projection. Hence A is abelian.

Suppose now that p is a minimal projection. First we show that pq = 0 is impossible. For suppose otherwise. Then p+q = 1 and x(p+q) = x. Consequently, $xq = 0 = x^2(x^*)^2$. Since the involution is proper, $x^2 = 0$. This contradicts Proposition 1. This implies that pq is a non-zero projection. Since pqA = pA, we may invoke a lemma of Rickart (4, p. 261) to see that p = pq. Via Proposition 3 we also get q = qp. Then p = q = 1. Since 1 is a minimal projection, A is a division ring.

3. The set \mathfrak{E} for a Banach algebra B

For $x \in B$, a Banach algebra, we use the notation of (4), $v(x) = \lim ||x^n||^{1/n}$ where v(x) is also the spectral radius of x. We assume that B has an identity 1 and an involution $x \to x^*$ but do not suppose that the involution is proper.

Theorem 1. For each $x \in \mathfrak{E}$ we have $v(x) \ge 1$. If B is a B*-algebra, then v(x) = 1 for $x \in \mathfrak{E}$.

Proof. Let $x \in \mathfrak{E}$. Proposition 1 gives $x^n \in \mathfrak{E}$, n = 1, 2, 3, ... This implies that

$$(1-(x^n)^*x^n)(1-x^n(x^n)^*)=0.$$

Hence, for n = 1, 2, 3, ..., 1 belongs to the spectrum of $(x^n)^*x^n$ or $x^n(x^n)^*$, leading to the conclusion that

$$\begin{split} 1 &\leq v((x^n)^*x^n) = v(x^n(x^n)^*) \\ &\leq \|(x^n)^*x^n\| \leq \|(x^*)^n\| \| \| x^n\|, \quad (n = 1, 2, 3, ...). \\ \text{Therefore } 1 &\leq v(x^*)v(x) = v(x)^2. \end{split}$$

If B is a B*-algebra, Proposition 1 and the cited result of Kadison (1) make $||x^{n}|| = 1$, for $x \in \mathfrak{E}$, n = 1, 2, 3, ... Hence v(x) = 1.

We show, by example, that one can have a Banach algebra *B* where v(x) is as large as desired for a suitable $x \in \mathfrak{E}$. Let *n* be a positive integer, and let *Y* be the subset of the real line, $Y = [0, 1] \cup \{2, 3\}$ with the usual topology. Let C(Y) be the Banach algebra of all complex continuous functions on *Y* with the sup norm. We define an involution $x \to x^{\#}$ on *Y* by the rule that $x^{\#}(t) = \overline{x(t)}$ if $t \in [0, 1], x^{\#}(2) = \overline{x(3)}$ and $x^{\#}(3) = \overline{x(2)}$. One sees that the function $x(t) = 1, t \in [0, 1], x(2) = n, x(3) = n^{-1}$ lies in \mathfrak{E} and v(x) = n.

Corollary 1. Let K be a proper two-sided closed *-ideal of B. Then

dist (\mathfrak{E}, K) ≥ 1 .

Proof. Let π be the natural homomorphism of B onto B/K and let $x \in \mathfrak{E}$. Clearly $\pi(x) \in \mathfrak{E}(B/K)$ and, by Theorem 1, dist $(x, K) = || \pi(x) || \ge v(\pi(x)) \ge 1$.

Corollary 2. Let B_1 be a B^* -algebra with an identity and T be an algebraic *-homomorphism of B_1 onto a dense subset of B. Then v(T(x)) = 1 and $||T(x)|| \ge ||x||$ for each $x \in \mathfrak{E}(B_1)$.

Proof. In this situation, $T(x) \in \mathfrak{E}(B)$. Then, by Theorem 1,

$$v(x) \ge v(T(x)) \ge 1 = v(x) = ||x||.$$

Since we also have $||T(x)|| \ge v(T(x))$, the desired relations follow.

4. The set E for operator algebras

First we consider the algebra B(X) of all bounded linear operators on a complex Banach space X and the closed two-sided ideal K(X) of compact operators. Let R(T) denote the range of $T \in B(X)$. We define nul (T) as the dimension of $T^{-1}(0)$ and def (T) as the dimension of X/R(T) (these are called ∞ if they are not finite). As usual (2) T is called *semi-Fredholm* if R(T) is closed and either nul $(T) < \infty$ or def $(T) < \infty$. If R(T) is closed and both nul $(T) < \infty$, def $(T) < \infty$, T is said to be a *Fredholm operator*. For a Fredholm operator we take as its *index*, ind (T) = nul(T) - def(T).

Let σ denote the natural homomorphism of B(X) onto B(X)/K(X). Following (2), p. 242, we let $\Delta = \Delta(T)$ denote the semi-Fredholm region for $T \in B(X)$. This is the set of complex numbers *a* for which a-T is a semi-Fredholm operator. Also Δ_F denotes the subset consisting of all *a* for which a-T is a Fredholm operator. Then Δ_F can also be described as the *a* for which $\sigma(a-T)$ has a two-sided inverse in B(X)/K(X); see (5), p. 617. We are also concerned with the essential spectrum $\Sigma_e = \Sigma_e(T)$ in the sense of (2), p. 243, which is the complement of $\Delta(T)$. That $\Delta_F \cup \Sigma_e$ does not in general exhaust the complex plane adds interest to Theorem 2. We use the notation

$$r = r(T) = \lim \|(\sigma(T))^n\|^{1/n}$$
.

Theorem 2. Let $T \in B(X)$ where X is infinite-dimensional. Then each complex number a, |a| = r, lies in $\Delta_F \cup \Sigma_e$. At least one such a lies in Σ_e .

KADISON'S CONDITION OF UNIT BALL IN B*-ALGEBRA 249

Proof. Let |a| = r and suppose that $a \notin \Delta_F$. First we show that a-T cannot have a closed range together with nul $(a-T) < \infty$. For suppose otherwise. As $a \notin \Delta_F$, def $(a-T) = \infty$. Let x_1, \ldots, x_n be a (finite) basis for the null space of a-T. There exist y_1, \ldots, y_n in X, linearly independent modulo R(a-T). Choose $x_j^* \in X^*$, $j = 1, \ldots, n$, such that $x_j^*(x_k) = \delta_{jk}$, $j, k = 1, \ldots, n$ and set

$$V(x) = \sum_{j=1}^n x_j^*(x) y_j.$$

Then $V(x_j) = y_j, j = 1, ..., n \text{ and } V \in K(x)$.

We claim that a-T-V is one-to-one. For suppose V(z) = (a-T)(z). Then (a-T)(z) is a linear combination of y_1, \ldots, y_n so that (a-T)(z) = 0 = V(z). Then z can be written as $z = b_1x_1 + \ldots + b_nx_n$ and $V(z) = b_1y_1 + \ldots + b_ny_n = 0$. Thus each $b_1 = 0$ and z = 0.

It is clear that $R(a-T-V) \subset R(a-T) \oplus R(V)$. To see the reverse set inequality, suppose that u = (a-T)(x) and v = V(y). Let

$$w = \sum_{i=1}^{n} x_i^*(y) x_i, \quad z = x - \sum_{i=1}^{n} x_i^*(x) x_i.$$

Then an easy computation shows that

(a-T-V)(z-w) = u+v.

Hence R(a-T-V) is closed, $R(a-T-V) \neq X$. By (5), p. 618, there exists $\varepsilon > 0$ such that, for $|\lambda - a| < \varepsilon$, $\lambda - T - V$ is a one-to-one bicontinuous linear mapping of X onto a proper closed subspace of X. This is the case for a special choice of a complex number b, |b| > |a|, $|b-a| < \varepsilon$. Since |b| > r, b-T is invertible in B(X)/K(X) and b-T-V is a Fredholm operator. In view of (5), Lemma 2.4, ind (b-T-V) = 0. But nul (b-T-V) = 0 so that def (b-T-V) = 0. But then R(b-T-V) = w, which is a contradiction.

We show next that a-T cannot be semi-Fredholm with nul $(a-T) = \infty$ and def $(a-T) < \infty$. For suppose otherwise. Then $a-T^*$ is a semi-Fredholm operator on the Banach space X^* , nul $(a-T^*) < \infty$, def $(a-T^*) = \infty$, whereas $\lambda - T^*$ is a Fredholm operator if $|\lambda| > |a|$. The above reasoning will again lead to a contradiction.

Finally not all complex numbers a, |a| = r can be in Δ_F . For suppose otherwise. First consider the case r = 0. Then the spectrum of $\sigma(T)$ in

B(X)/K(X)

would be void. For the case r>0, we use the fact that Δ_F is open. Note that $\lambda \in \Delta_F$ if $|\lambda| > r$. Then there exists s < r such that $\lambda \in \Delta_F$ if $|\lambda| > s$. But then $\sigma(\lambda - T)$ is invertible in B(X)/K(X) for all $|\lambda| > s$. This makes r < s, which is a contradiction.

Corollary 3. Let H be an infinite-dimensional Hilbert space and T be a semiunitary element of B(H). Then there exists a complex number b, |b| = 1, which lies in $\Sigma_e(T)$.

E.M.S.-Q

B. YOOD

Proof. Consider again the natural homomorphism σ of B(H) onto

B(H)/K(H).

Then $\sigma(T)$ is a semi-unitary element of the quotient algebra and r(T) = 1 in the notation of Theorem 2. By that result, the desired conclusion follows.

REFERENCES

(1) R. V. KADISON, Isometries of operator algebras, Ann. of Math. (2) 54 (1951), 325-338.

(2) T. KATO, Perturbation Theory for Linear Operators (Springer-Verlag, 1966).

(3) P. MILES, B*-algebra unit ball extreme points, Pacific J. Math. 14 (1964), 627-736.

(4) C. E. RICKART, General Theory of Banach Algebras (Van Nostrand, 1960).

(5) B. YOOD, Difference algebras of linear transformations on a Banach space, *Pacific J. Math.* 4 (1954), 615-636.

UNIVERSITY OF OREGON EUGENE, OREGON, U.S.A.

250