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Abstract

In the Soccer-Fun project, students program the brains of football players in a functional

language. Soccer-Fun has been developed for an introductory course in functional program-

ming at the Radboud University Nijmegen, The Netherlands. We have used Soccer-Fun in

teaching during the past four years. We have also experience in using Soccer-Fun for pupils

in secondary education. Soccer-Fun is stimulating because it is about a well-known problem

domain. It engages students to problem solving with functional programming because it

allows them to compete at several disciplines: the best performing football team becomes the

champion of a tournament; the best written code is awarded with a prize; students are judged

on the algorithms used. This enables every student to participate and perform at her favorite

skill. Soccer-Fun is implemented in Clean and uses its GUI toolkit Object I/O for rendering.

It can be implemented in any functional programming language that supports some kind of

windowing toolkit.

1 Introduction

This paper is an adapted version of Achten (2008), and reflects the current status of

the Soccer-Fun project. Not all details of the framework can be presented here. For

the missing parts, we refer to the above-mentioned paper and the documentation

in the distribution.

The bachelor computer science curriculum at the Radboud University Nijme-

gen, The Netherlands, provides a compulsory introductory course “Functional

Programming”, which is also taken by artificial intelligence students. This course

was previously called “Abstraction and Composition in Programming”, which has

been taught for the past four years, and was taken by computer science students

exclusively. Both groups of students have had training in imperative programming

(C) and object orientation (Java), and neither group has been exposed before to

functional programming.

Learning a new programming paradigm always covers two main ingredients:

students need to learn a new programming language, which is Clean (Brus et al. 1987;

Plasmeijer & van Eekelen 2001) in our case, and new ways of problem solving. In the

course we cover “classic” topics such as recursive algebraic types; (higher order) func-

tions; overloading; recursion and induction; and correctness proofs. Clean-specific
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topics are uniqueness types for programming with effects, applying strictness an-

notations, term graph rewriting, and dynamics. The supporting exercises tend to

favor abstract topics such as list-processing tasks to exercise recursion, (syntax) tree

operations to exercise algebraic data types and more recursion, interpreters of such

data structures to exercise abstraction and even more recursion, and equational

reasoning to stimulate thinking about software and, yes, recursion. Every year it

turns out that there is a group of students who have a hard time understanding

functional programming due to its abstract nature. Of course, there is also a group of

students who appreciate this style of programming. Because the course is mandatory,

and we think functional programming should be fun for everybody, we set out to find

and create a stimulating range of exercises that engages all students. A statement by

Johan Cruijff, a well-known Dutch football player, turned out to be very inspiring:

If I play the ball and want to pass it to someone, then I need to consider my guardian,

the wind, the grass, and the velocity with which players are moving. We compute the

force with which to kick and its direction within a tenth of a second. It takes the

computer two minutes to do the same! (De Tijd, May 2, 1987)

The most intriguing aspect about this statement is that Cruijff actually says that

every football player computes a pure function: given the necessary parameters

(guardian, wind, grass, velocity of all players), compute a pair of two values (force

and direction). Hence, the brain of a football player can be modeled as a pure

function:

guardian × wind × grass × players → (force, direction).

Note that we are going to use a different function (Section 2) because football

players also move around according to some strategy and need to listen to the

referee.

Having found this great source of inspiration, the challenge for us was to create

an environment that can be used for teaching functional programming, and design

exercises for students. Right from the start, we decided that the environment had to

be graphical (see Figure 1 for an impression), because seeing is believing. It should

have a competitive element to stimulate students to create better solutions than their

fellow students. Last but not the least, it had to promote functional programming.

This has resulted in Soccer-Fun. We emphasize that Soccer-Fun and its exercises

are not meant to replace all of the well-known “classic” exercises, but serve as a

supplement to the repertoire of functional programming exercises. Although the

domain of Soccer-Fun is football, most of the elements that need to be created by

the students are elementary (distribution of players on the field, being in position,

strategies), and occur in other team sports such as hockey, basketball, handball,

and rugby. Hence, Soccer-Fun is also attractive to students who have no interest in

football.

Soccer-Fun is implemented in Clean using its GUI library Object I/O (Achten

& Plasmeijer 1998; Achten & Wierich 2000). Where necessary, we explain the

syntax of Clean. Haskell (Hudak 1992) programmers may wish to consult a short

list of differences (Achten 2007). The graphics are deliberately simple. Soccer-Fun
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Fig. 1. The Soccer-Fun framework in action.

can be implemented in any functional programming language that supports GUI

programming.

The Soccer-Fun project is open to participation for anybody who likes to

contribute, either by means of improving the implementation, port it to another

functional language, develop exercises, documentation, or example teams. The

current implementation and documentation can be found at

http://www.cs.ru.nl/P.Achten/SoccerFun/SoccerFun.html.

The remainder of this paper is organized as follows. In Section 2 we introduce

the Soccer-Fun API, which is an instructive example to show students how to give

structure to a problem domain with a programming language. We have experimented

with a variety of exercises, and briefly discuss them in Section 3. We highlight

the exercises that are concerned with the main task of creating brain functions

in Section 4. In Section 5 we report on our experience. Related work is described in

Section 6. We come to conclusions in Section 7.

2 The Soccer-Fun API

In this section we introduce the Soccer-Fun API, which utilizes “classic” type

features of the host language: algebraic data types, record types, function types, and

existentially quantified types. Note that uniqueness types, a distinguishing feature
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of Clean, play no role here. The framework factors out programming side effects.

To emphasize the functional nature of Cruijff’s statement, the brain can and should

be a pure function. Analogously, to name just two other functional languages, a

Haskell API should not require the IO monad, and an ML (Ullman 1998) approach

should not require ref values. This design choice does not rule out an implementation

of Soccer-Fun in a language that supports side effects. However, the API should be

free of side-effects as it is not needed.

2.1 The brain

We start our discussion by first introducing the function that plays the pivotal role

in this paper: our version of the football player’s brain. We stick to the idea of

Cruijff, hence the brain must have a function type:

:: FootballerAI memory :== (BrainInput, memory) -> (BrainOutput, memory)

:: t :== u introduces the synonym type t with definition u. Here, t is the type

constructor FootballerAI that is parameterized with the type variable memory.

The situation described by Cruijff only applies when a footballer wants to play

the ball. When playing a match, the brain needs more information. This information

is passed to the brain as a record of type BrainInput and contains the actions of

the referee, the whereabouts of the football, the status of the other players, and

his own status. Based on this information and his memory value of type memory,

the brain computes the output of type BrainOutput, which is a single action of type

FootballerAction that the player wishes to perform (explained in Section 2.5), and an

updated memory value.

:: BrainInput = { referee :: [RefereeAction]

, football :: FootballState

, others :: [Footballer]

, me :: Footballer

}
:: BrainOutput :== FootballerAction

A record of type t with fields fi of type ti is introduced by :: t = {f1 :: t1 , . . . , fn
:: tn} (n > 0). We have observed that it is more convenient to use a record instead

of separate function arguments because this allows us to refer to these arguments

by their field names.

2.2 Metrics

Before we discuss the brain input in detail, we first settle on the metrics that we are

going to use. In Soccer-Fun, all distances are given in metres, for which we use the

built-in floating points of type Real. The dimensions of a football field are provided

as a structured value:

:: FootballField = { fwidth :: FieldWidth, flength :: FieldLength }
:: FieldWidth :== Metre

:: FieldLength :== Metre

:: Metre :== Real
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The football field defines coordinates in a way that is standard for computer

graphics: x -coordinates increase in value from left to right; y-coordinates from

top to bottom.1 We distinguish between positions on and above the football field

(Position(3D)).

:: Position = { px :: XPos, py :: YPos }
:: Position3D = { pxy:: Position, pz :: ZPos }
:: XPos :== Metre

:: YPos :== Metre

:: ZPos :== Metre

Players need to know their goal’s side on the field. This is defined by their home:

:: Home = West | East

instance other Home

:: t = alt1 | . . . | altn introduces an algebraic data type t with n > 0 data constructors,

each having an arbitrary number of (recursive) arguments. West is the left-hand side

of the football field, East is the right-hand side. The overloaded function other flips

the value to the “other” value in a two-value domain.

Angles are given in radians. Due to the flipped orientation of y-coordinates, angles

are also flipped: the angle 0π points straight east, 1
2
π south, 1π west, and 3

2
π north.

:: Angle :== Radian

:: Radian :== Real

Players and ball move at a certain speed. We find it useful to distinguish between

speed along the surface of the football field (Speed) and above the football field

(Speed3D). The speed along the surface is given by a direction in radians and a

velocity in meters per second. The speed above the surface is defined by a velocity

along the z -axis.

:: Speed = { direction :: Angle, velocity :: Velocity }
:: Speed3D = { speed2D :: Speed, vz :: Velocity }
:: Velocity :== Real

Players stick to the ground and always have a Speed. Only the football has a Speed3D

value.

Soccer-Fun provides the usual overloaded operators for adding, subtracting,

comparing, converting, and printing purposes. Another particularly useful function

is

angleWithObject :: Position Position -> Angle

which, when applied to positions p1 and p2, returns the angle between two lines that

intersect at p1, and where the first line has angle 0π, and the second line also goes

through p2. The result angle can be used for rotating toward p2, or for playing the

football to p2.

1 Some students do not get used to this convention. We plan to convert to standard mathematical
convention in a next version.
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2.3 The whereabouts of the football

The football field of a footballer’s brain input tells him where the football is. The

football is either freely available on or above the football field or it is possessed by a

football player. In that situation a player manipulates the ball in such a way that it

seems as if the ball is glued to his legs and feet. Players can attempt to gain the ball.

At most one player can succeed, and from that moment on he is in possession of the

ball. When gained by a footballer, the ball inherits his current speed and position.

Because the football can also be in the air, its position is given by a Position3D value,

and its speed by a Speed3D value:

:: FootballState = Free Football | GainedBy FootballerID

:: Football = { ballPos :: Position3D, ballSpeed :: Speed3D }

Given the current brain input, the student can retrieve the current Football with

getBall :: BrainInput -> Football

2.4 The football players

The brain input fields others and me inform the footballer about all players, including

himself. Football players are defined with a rather extensive set of attributes. We

discuss only the most interesting ones and refer to Achten (2008) for further details.

:: Footballer = E . memory:

{ playerID :: FootballerID, name :: String

, length :: Length, nose :: Angle

, pos :: Position, speed :: Speed

, stamina :: Stamina, health :: Health

, skills :: MajorSkills, effect :: Maybe FootballerEffect

, brain :: Brain (FootballerAI memory) memory }
:: FootballerID = { clubName :: ClubName, playerNr :: PlayersNumber }
:: Brain ai memory = { ai :: ai, m :: memory }

The keyword E . in the Footballer type is an existential quantifier to hide the actual

memory value of a player. In real life, people cannot read each other’s minds, and

Soccer-Fun football players are no exception to this rule. Data hiding by means of

existential encapsulation resembles making class data private in Java, and poses

no problems to our students.

A footballer is uniquely identified with a FootballerID, which defines the club for

which he is playing (:: ClubName :== String), and his player’s number (:: PlayersNumber

:== Int).

A football player can select three major skills:

:: MajorSkills :== (Skill,Skill,Skill)

:: Skill = Running | Dribbling | Rotating | Gaining | Kicking

| Heading | Feinting | Jumping | Catching | Tackling

| Schwalbing | PlayingTheater

The yield of actions governed by a major skill is better than average. In this way, the

student can create a variety of football players easily. Soccer-Fun uses and provides
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skill-dependent functions to determine if actions are successful. In this paper we use

one such function to determine if the ball is within the kicking reach of the football

player:

maxKickReach :: Footballer -> Metre

The final, and the most important attribute, of a football player is his brain, which

is a pair of his “intelligence”, the (FootballerAI memory) function, and a matching memory

value.

2.5 Actions and effects

The brain function computes an appropriate FootballerAction value, and perhaps

updates his memory. It should be noted that an action expresses only the intention

to perform that action. Even though his brain may want him to run at 20 m/s,

his body will not be capable of doing this. Soccer-Fun takes every action into

account and computes a realistic FootballerEffect, which is an algebraic data type

that provides a data constructor for each FootballerAction in past tense with basically

the same arguments. One extra effect is included: (OnTheGround n), which tells the

footballer that he is lying on the ground for the next n time frames. Soccer-Fun

provides the following actions:

:: FootballerAction = Move Speed Angle | Feint FeintDirection

| GainBall | CatchBall

| KickBall Speed3D | HeadBall Speed3D

| Schwalbe | PlayTheater

| Tackle FootballerID Velocity

:: FeintDirection = FeintLeft | FeintRight

The first two actions cause a player to move: (Move s a) lets him move at speed s,

after rotating his nose (and therefor his body) over angle a. Moving is most effective

in the same direction as his nose, and least effective in direction nose+π. (Feint d)

causes a player to make a feint manoeuvre either to the left or the right. This is

useful for a striker when trying to sidestep a defender.

Any player can attempt to gain possession of the ball with GainBall. Only within

his penalty area, the goalkeeper can legally use CatchBall. The ball remains with the

player until he either plays it or it is gained by another player. Note that a player

is slowed down when in possession of the ball.

The ball can be played via kicking (KickBall s) or heading (HeadBall s). In both

cases, s is the intended new speed of the ball, which becomes freely available in the

match.

The final three actions are concerned with unclean play. Performing a Schwalbe2

causes the football player to fall to the ground, which is usually followed by

PlayTheater, hoping to convince the referee that an opponent has attacked the player.

2 Schwalbe is a german word. It means the swallow bird. During flight, swallows sometimes let themselves
suddenly drop, and continue flying. This term is adopted in football because it resembles the above-
mentioned behavior of unfair players.

https://doi.org/10.1017/S0956796810000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000055


8 P. Achten

Performing a (Tackle id v ) is an attempt to bring the player with FootballerID id to

an abrupt halt. Depending on the velocity v with which this action is intended to

be performed, this may cause damage to that player’s health value. Of course, all of

these actions can cause the referee to reprimand the unfair player, who runs the risk

of receiving a yellow or red card.

2.6 The referee actions

The referee inspects all effects of the football players and takes appropriate actions.

This is a list of referee actions. For instance, when a player violates the rules, this

is signalled as a referee action, but also the reprimand (a warning, yellow or red

card) and penalty (free kick, penalty kick, corner kick) are returned. The referee can

also repel players from the ball in case they do not obey the rules of the game. For

instance, when one team has been granted a goal kick, but the other team is still

playing the ball.

2.7 Team building

To add a team to Soccer-Fun, a function of type :: Home FootballField -> Team, where

Team :== [Footballer] needs to be created by the student. The arguments tell the team

at which side of the football field they start playing and its dimensions. These are

necessary for the line up of the players. In a team, footballers play for the same

club. Only the keeper has number 1, and no two fielders of the same club should

have the same number.

2.8 The Soccer-Fun framework

When two teams are selected, the student uses Soccer-Fun to start a match. What

basically happens is that at a regular time interval, the brain function of the referee

and all players are evaluated with the proper arguments. This yields a list of referee

actions and one intended action for each player. The framework computes an effect

for each player. Pseudo-random numbers are used to resolve conflicts, such as when

several players attempt to gain the ball at the same time. When the effects have been

computed, they are applied to all players and football, which results in a new state

of the match. This new state is rendered, and evaluation continues.

The computation of effects in Soccer-Fun takes care that neither the players

nor the football can exit the football field. Brains are pure functions, as is the

computation of the pseudo-random numbers, which takes a time-stamp to generate

an initial random seed. Hence, a match is completely determined by the two teams at

start of the match and the time stamp. To increase realism, pseudo-random numbers

can also be used to add deviations in the computations of effects. In that case, the

player skills control the range of deviation. This can be switched on and off in the

Soccer-Fun GUI.
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3 Exercises

In Soccer-Fun students develop a team that is equipped with the best brain functions.

As the Soccer-Fun API uses many language features, they cannot do this right

away. Here are suggestions for exercises that can be given before developing brain

functions.

• Soccer-Fun provides a collection of basic geometric data types and functions

(Section 2.2). One can devise exercises to develop data types to represent

positions, speeds, velocities, angles, vectors, and so on. This trains the student in

designing types with algebraic types and record types. Clearly, such values need

to be compared, converted, and computed with. These are typical examples of

overloading.

• In the start of the course students write recursive functions over lists to learn

functional style recursion and lists. However, once they have learned this, we

encourage students to use list comprehensions and the standard list functions,

such as map, filter, fold instead. In Soccer-Fun this comes quite naturally

with queries on the footballers. Examples are as follows: who are your team

members, who is nearest, who is in offside position, who is in free position.

• Soccer-Fun handles all physics. One can devise exercises to compute the

trajectory of the football and enhance it with air friction, influence of wind,

rotation, and so on. The ball may bounce against players or goal poles,

which can be included as well. At the current stage, Soccer-Fun implements a

simplistic physical model.

• Soccer-Fun handles all rendering. This rendering uses basic elements that are

present within any graphical toolkit: lines, curves, rectangles, and text. One

can devise exercises to render Soccer-Fun elements. The rendering primitives

are imperative. It is more interesting to teach a functional style of rendering. In

particular, higher order functions can be illustrated well in this domain using

combinator functions, continuations, state monad, and so on.

4 Train the brain

Soccer-Fun is well suited to set up a range of exercises that lead in a natural way

to the final task of creating a successful team. In our experience, it is helpful to

have students first make an informal description of the brain function that needs

to be created, and only then to write code. Such a brain sketch is expressed in

structured natural language, as a collection of (nested) guarded equations of the

form i f cond ⇒ action. The brain sketch must have a name and mention all the

necessary arguments, which is at least the brain input. Because simple brains do not

require a memory, this argument is optional. The general format is

brain input

if cond ⇒ action
...

otherwise ⇒ action

brain (input, memory)

if cond ⇒ (action, memory)
...

otherwise ⇒ (action, memory)
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The Soccer-Fun code closely follows the structure of the brain sketch, but

evidently needs to fill in all the (computational) details.

4.1 Basic exercises

The exercises that we discuss here are small, and can be done in class with the

students.

4.1.1 A few trivial brains

To stimulate functional problem solving, we start with a few very basic brains, and

develop more complex brains from simpler ones as we move along. These simple

functions do not need a memory, and to emphasize this, we introduce another type

synonym:

:: FootballerAI‘ :== BrainInput -> BrainOutput

Brain functions of this type are identified with suffix ‘. For succinctness, we adopt

the convention that brain input fields that are used are pattern matched at the

function argument:

returnAI‘ :: FootballerAction -> FootballerAI‘

returnAI‘ action = const action

move‘ :: Speed Angle -> FootballerAI‘

move‘ speed angle = returnAI‘ (Move speed angle)

halt‘ :: FootballerAI‘

halt‘ = move‘ zero zero

rotate‘ :: Angle -> FootballerAI‘

rotate‘ angle = move‘ zero angle

ahead‘ :: Velocity -> FootballerAI‘

ahead‘ v = \input=:{me} -> move‘ {direction=me.nose,velocity=v} zero input

(returnAI‘ action) is the brain that always performs action, (move‘ s a) is just the

(Move s a) action, halt‘ makes the footballer stand still, (rotate‘ a) makes the footballer

rotate his nose over angle a, and (ahead‘ v) makes the footballer follow his nose with

velocity v.

It is useful to have similar basic brain functions such as move‘ for each of the

footballer actions (feint‘ , gainBall‘ , and so on). We assume that they are available

with their name and arguments derived from the data constructor analogously to

move‘ . Finally, players that suffer from amnesia can upgrade their brains to ordinary

brain functions with:

amnesia :: FootballerAI‘ -> FootballerAI m

amnesia f = \(input, m) -> (f input, m)

In the remainder we assume that we also have the brain functions without amnesia.

They have the same name, with the ‘ suffix removed (returnAI, move, and so on).
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4.1.2 Run a (number of) lap(s)

Let the footballer start at a corner of the football field. Make him run laps in

clockwise direction within the boundaries of the field. The dimension of the field is

relevant:

laps‘ field input

if I am close to a corner

if nose in right direction ⇒ ahead‘ 5m
s

input

otherwise ⇒ rotate‘ to next corner input

otherwise ⇒ ahead‘ 5m
s

input

With this brain, a footballer starts rotating as soon as he reaches the desired

corner, and is not facing the right direction. When he faces the right direction, or

is not close to a corner, he just runs ahead. The corner data type and its access

functions are easy:

:: Corner = NorthWest | NorthEast | SouthEast | SouthWest

next :: Corner -> Corner

dir :: Corner -> Angle

cornerOf :: FootballField Position -> Maybe Corner

The function next computes the next corner the player has to go to, dir yields the

direction the player has to face to reach that point, and cornerOf returns (Just corner)

in case the player is close to corner, and Nothing otherwise. We now implement the

brain function:

laps‘ :: FootballField -> FootballerAI‘

laps‘ field input=:{me}
| close_to_corner

| nose_ok = ahead‘ v input

| otherwise = rotate‘ angle input

| otherwise = ahead‘ v input

where

close_to_corner = isJust (cornerOf field me .pos)

corner = fromJust (cornerOf field me .pos)

angle = dir (next corner) - me.nose

nose_ok = abs angle <= 0.01

v = 5.0

Variations: Parameterize laps‘ to let the player run in either clockwise or counter-

clockwise direction; limit the number of laps to a given value; and generalize the

brain in such a way that he can start at any location on the football field and face

any direction.

4.1.3 Run to a location

A useful functionality is to run to a certain location within a range (for instance, his

default position, or to gain a freely available ball, or to try to gain the ball from an

opponent).
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fix‘ point precision input

if I am close enough to point ⇒ halt‘ input

otherwise ⇒ move‘ and rotate to point input

To implement this brain, the student learns to use angleWithObject (Section 2.2).

fix‘ :: Position Metre -> FootballerAI‘

fix‘ point eps input=:{me}
| distance <= eps = halt‘ input

| otherwise = move‘ {direction=angle,velocity=v} (angle - me.nose) input

where

distance = dist me.pos point

angle = angleWithObject me .pos point

v = max 6.0 distance

In order to reach a given point, the brain tells the player to rotate and run toward that

point. It is satisfied as soon as the player is within the given distance of that point.

Variations: Same as above, but place the position in memory; instead of a single

position in memory, use a(n in)finite list of positions that need to be visited in

sequence; use the latter version to implement the laps‘ from Section 4.1.2.

4.1.4 Passing the ball

Players need to pass the ball to other players or attempt to score a goal. Hence, it

makes sense to implement a brain that passes the ball correctly to an interesting

position. We provide the brain function with the desired new position of the ball.

The football player can only kick the ball if it is within kicking range, otherwise he

can do nothing.

kick‘ target input

if I can kick the ball ⇒ kickBall‘ to target input

otherwise ⇒ halt‘ input

This brain needs to know where the football is, and for that purpose it can use

the getBall function (Section 2.3). To know whether the ball is within kicking reach,

the brain function requires the maxKickReach function (Section 2.4). The interesting

question is how hard the footballer should kick the ball in order to make sure that

the ball arrives at the desired location. When playing the ball over the field, there

is a considerable friction. A simple rule of thumb is to kick the ball with a velocity

that is equal to the distance to the target multiplied by a factor five. All in all, we

get the following brain:

kick‘ :: Position -> FootballerAI‘

kick‘ point input=:{me}
| dist me.pos ball.ballPos <= maxKickReach me

= kickBall‘ {vxy = {direction=angle,velocity=v} ,vz = 0.0} input

| otherwise = halt‘ input
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where

ball = getBall input

angle = angleWithObject me .pos point

v = 5.0*dist me .pos point

Variations: Instead of playing the ball over the field, play it through the air; create

a kick function that accepts a Position3D location.

4.2 Strategy exercises

In a team, players need to act according to a strategy in order to play a good match.

4.2.1 Fix point variations

With the fix‘ brain (Section 4.1.3) the student can readily implement several

frequently occurring footballer behaviors. The first concerns the line-up of players,

which is an important aspect of any team sport. Players should place themselves on

the field in such a way that their team can control a significant part. One way to

achieve this is by assigning a region of the football field that each player controls.

His default strategy then is to move to the center p of this region when there is

nothing else to do. This is just a matter of evaluating (fix‘ p). The second behavior

moves a player to the ball:

to_ball‘ :: FootballerAI‘

to_ball‘ input = fix‘ (getBall input) .ballPos.pxy zero input

In a team you need to agree who is going to try to gain the ball if it is not

possessed by your team. A simple rule is that the player who is closest to the ball

goes for it.

gain‘ :: FootballerAI‘

gain‘ input=:{others,me}
| closest = to_ball‘ input

| otherwise = halt‘ input

where

{ballPos} = getBall input

closest = dist me.pos ballPos <=

minList [ dist pos ballPos \\ {pos} <- others | sameClub me p ]

Note that the situation may arise that there are several candidates to go to the ball,

because the comparison uses <=. However, using < may result in a situation that

nobody goes to the ball. This is clearly less desirable than having more players run

to the ball.

Variations: Make a dynamic line-up, depending on whether your team is in

possession of the ball. If it is, then the line-up should advance toward the goal

of the opponent, otherwise the line-up should withdraw toward the home goal.
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4.2.2 Intermezzo: listen to the referee

During a match, a footballer needs to know where the goals are. At the start of

the match, he is told where his home side is (Section 2.7). He needs to listen to the

referee to know when the second half starts. The referee action EndHalf (tested with

the predicate isEndHalf) tells him this. We can educate footballers with a wrapper

memory and wrapper brain function:

:: HomeM m = { home :: Home, mem :: m }

educate :: (Home -> FootballerAI m) -> FootballerAI (HomeM m)

educate home_ai (input=:{referee} , memory=:{home})

= (action, {memory & home = new_home, mem = new_memory})

where

new_home = i f (any isEndHalf referee) other id home

(action, new_memory) = home_ai new_home (input, memory.mem)

It is easy to write a similar function for footballers with amnesia. In the exercises

below, we assume that we deal with educated footballers.

4.2.3 What to do with the ball

When a player is in possession of the ball, he must decide what to do: he can pass

the ball to another player, he can dribble, or he can try to score a goal. Let us work

out a brain that decides to pass the ball to a team player who is closer to the goal.

If no such player is available, then the player himself is in the best position. If he is

too far away from the goal, he dribbles toward the goal, otherwise he tries to kick

the ball in the goal:

play‘ field home input

if I am in best position

if I am close to goal ⇒ kick‘ in center of goal input

otherwise ⇒ fix‘ center of goal input

otherwise ⇒ kick‘ to player in best position input

play‘ :: FootballField Home -> FootballerAI‘

play‘ field=:{fwidth,flength} home input=:{others,me}
| in_best_position

| near_goal = kick‘ goal input

| otherwise = fix‘ goal zero input

| otherwise = kick‘ best input

where

in_best_position = isEmpty better

better = [p \\ p <- others | sameClub me p && dist p .pos goal < d_goal]

best = (hd better) .pos

goal = {py = fwidth / 2.0 , px = i f (home == West) flength zero}
d_goal = dist my.pos goal

near_goal = d_goal <= 20.0
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Variations: Take intermediate opponents or the offside rule into account. A player

is in offside position when he is at the opponents’ half of the field and is closer to

the goal line of his opponents than both the ball and the last two opponents.

4.2.4 The referee as a coach

During a match, the referee constantly inspects all executed effects, and creates

verdicts. Hence, a referee monitors the performance of brain functions. For instance,

in case of the running laps exercise (Section 4.1.2), a referee can check whether the

footballer is constantly close to an edge of the football field and running in the

correct direction. If he is not, he issues a message. Currently, Soccer-Fun has four

“coaching” referees. The first checks whether a footballer is running in a slalom

fashion around a number of stationary opponents to the ball at the other side of

the field. The second checks whether footballers pass the ball correctly in sequence

to each other. The third checks whether one player passes the ball to another team

player such that moving opponents can not intercept the ball. The fourth checks

whether a goalkeeper is correctly defending the center of his goal. Students work on

exercises until the referee is satisfied. They need less supervision, and examination

time is reduced because the referee gives the verdict.

4.3 Discussion

In this section we have presented a range of exercises that can be used to

create footballer brain functions. They illustrate that Soccer-Fun is suitable for

an incremental approach using a functional style in which brain functions are glued

together to create more complex brain functions. With the brain functions gain‘ and

play‘ basic footballers are created. This stimulates students to continue improving

their teams and challenges them to invent a better set of rules for their players’

brains. Brain sketches let the students think about the brain function without getting

swamped early in programming details.

The topics that are covered in the exercises cover mainly working with structured

data types such as algebraic types, record types, and lists. One can use the framework

to illustrate applications of more advanced list processing tasks as well as working

with tree structures. In particular, the exercises that concern implementing strategies

are suited for this purpose. As one example consider using lists: in the memory,

store a list of actions that need to be performed until the list is empty, and compute

a new list when done. The list can be created in a typical function compositional

style: generate a list of possible decisions, map a weight function to compute success

rates, select the decision with maximum success, and map the decision to footballer

actions. Alternatively, one can use game trees (Bird & Wadler 1988), which is also

an appealing technique for artificial intelligence students.

5 Experience

We have used Soccer-Fun in the compulsory second-year bachelor functional

programming course for the past four years. Soccer-Fun succeeds in keeping
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significantly more students motivated. Almost all students like the assignment.

At the end of the course the students have created a complete team. We wrap up the

course with a tournament together with all students. It always has the atmosphere

of a real football tournament. The tournament yields a champion, who is awarded.

Because the code of the champion team is not necessarily a champion as well, we

also award a prize for the “most functional style” code.

We have used Soccer-Fun for promotional activities to interest pupils from

secondary education to study computer science at the Radboud University Nijmegen.

Pupils take part in a full-day program, in which they receive a crash course on

functional programming based on Soccer-Fun. Most pupils have experience in

mostly imperative languages. Functional programming is entirely new to them. We

use the brain sketches to think about the brain’s function and compare this with

the Clean implementation. Pupils respond enthusiastically to Soccer-Fun. They

appreciate the example implementations, and usually come up with improvements

quickly. Because we have noticed that encoding the improvement gives them a hard

time, we have provided all the functions that have been described in Section 4, and

show them with small prescribed steps how they can enhance a very simple footballer

that implements to_ball‘ (Section 4.2.1). We wish to experiment with constructing

another API on top of Soccer-Fun to further close the gap with the brain sketches.

6 Related Work

Mathew Nelson’s Robocode (http://robocode.sourceforge.net/) is an exemplary

framework that is targeted at teaching object orientation and Java in particular,

and with slightly less peaceful intentions than Soccer-Fun, in which you program a

military tank that drives around on a square area, together with other military tanks.

Each tank executes an algorithm, aiming to eliminate other tanks by firing grenades

at each other, and hopefully survive longest and become champion. Robocode has

been around for quite a while (since late 2000). It has very attractive graphics and

sound effects. It effectively uses the OO paradigm to quickly get programmers up

and running with their first tank. In the past, we have used Robocode ourselves

for promotional activities as described in Section 5. Such a framework can be an

effective teaching tool, as well as stimulating and fun.

Another object-oriented framework is Alice (Conway 2000). With this framework

novice programmers can create intricate 3D environments that are populated with

objects. These objects react to their environment in the usual object-oriented sense

by programming event handlers. One strong point of Alice is that users can create

behaviors in a compositional way that strongly resembles a combinator style of

programming. Another strong point of Alice is that the code is executed while

developing to show the user the effect of her code. If we want to make Soccer-Fun

more comprehensible for a secondary education audience, we should take the lessons

learned by the Alice team into account.

In the NetLogo (Wilensky 1999) programmable modeling environment, complex

dynamic systems are described with scripts that are applied to turtles. The envi-

ronment allows users to interactively and incrementally experiment with dynamic
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systems. The base language and concepts of NetLogo are imperative. An environ-

ment such as Soccer-Fun can certainly be modeled within NetLogo: the football

players are turtles that follow their rules as dictated by their brain, the football

field is modeled as a “non-wrapping” plane (otherwise football players can leave

the field from one edge and appear at the opposite side), the referee is modeled as

an observer, and the football can be a turtle as well. We distinguish Soccer-Fun

from NetLogo by our focus on modeling the brain as a pure function, and using

functional concepts only to implement brain functions.

The RoboCup project (http://www.robocup.org/) is related to Soccer-Fun, but

is targeted at entirely different technology. It is the ultimate aim of this project

that hardware robots compete with humans in a football match. In this project a

simulator software, the RoboCup Soccer Simulator, is available in which you can

create your own robots.

universe (Felleisen et al. 2009) is a library that extends the DrScheme (Findler

et al.2002) programming environment with functions to handle distributed, window-

based I/O applications in a functional style. universe has been designed to teach

functional programming concepts to middle school, high school, and university

students. This has been achieved by imposing a strict and clear separation of concerns

when programming interactive applications: the students only write functions within

the functional domain (describing numbers, text, and images), as well as callback

functions that handle events (keyboard, mouse, and messages). The universe library

takes care of all low-level, boilerplate issues. This is very similar to Soccer-Fun,

where the student only writes a brain function, and the framework takes care of

the rest. universe is obviously more general than Soccer-Fun. An interesting (range

of) exercise(s) for universe is to implement a Soccer-Fun-like application and the

suggested exercises in this paper.

Yampa (Hudak et al. 2003) is a functional reactive programming language in

which robots can be created. Functional reactive programming promotes high-level

construction of time-based behaviors, called signals. These signals can be continuous

(e.g., the motion of the robot) as well as discrete (e.g., collision detection). Dance

(Huang & Hudak 2003) is a high-level language based on Yampa and Labanotation,

which is a formalism to denote humanoid movement. We are not aware of any

project that uses Yampa or Dance to play football in either a competitive or

educational setting, but one can certainly imagine that this is possible. We speculate

that in these approaches a specification of a footballer brain is more geared toward

controlling physical movement. We have not explored this avenue.

7 Conclusions

The main goal of the Soccer-Fun project is to motivate students to functional

programming. Soccer-Fun is stimulating because it covers a well-known problem

domain, and offers a graphical user interface (GUI) that despite its simplicity,

effectively shows what the brains are thinking. Students get visual feedback about

the performance of their created brains. The competitive element makes students

want to create a better team and therefore they are motivated and required to
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express their ideas in a functional language. Talented students can show how

well they understand functional programming, and less skilled students can still

achieve acceptable results, and even become tournament champion. A special feature

of Soccer-Fun is the coaching referee that monitors the performance of student

exercises. Although Soccer-Fun could have been realized as a teaching vehicle for

imperative or object-oriented programming, we think that it displays a number of

interesting functional language aspects. Most importantly, the brain is naturally

modeled by a pure function because it computes one action from input data. The

type system restricts the set of admissible brain functions that a student might

come up with. Function abstraction and composition is stimulated by creating

bigger brains from smaller ones. We think Soccer-Fun is a welcome addition to the

exercise repertoire for any introductory course in functional programming.
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