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ON WEAK HADAMARD DIFFERENTIABILITY OF
CONVEX FUNCTIONS ON BANACH SPACES

J.R. GILES AND SCOTT SCIFFER

We study two variants of weak Hadamard differentiability of continuous convex
functions on a Banach space, uniform weak Hadamard differentiability and weak
Hadamard directional differentiability, and determine their special properties on
Banach spaces which do not contain a subspace topologically isomorphic to l\.

Given a real Banach space X with dual X* , the Mackey topology on X* , T(X*, X),
is the topology of uniform convergence on weakly compact subsets of X. It has recently
been shown that a Banach space X does not contain a subspace topologically isomorphic
to £i if and only if every Mackey convergent sequence in X* is norm convergent, [1,
p.1132]. This characterisation has implications for the differentiabihty of continuous
convex functions on X.

A continuous convex function <j> on an open convex subset A of X is said to be
Gateaux differentiable at a; £ A if there exists a continuous linear functional <j>'(x) on
X and given any e > 0 and v £ X there exists a S(e,x,v) > 0 such that

< e for all 0 < t < 6.
t v '

Further, <j> is said to be weak Hadamard differentiable at x £ A if given e > 0 and
a weakly compact set K in X there exists a S(e,x,K) > 0 such that the inequality
holds for all 0 < t < S and v £ K. Moreover, <j> is said to be Frechet differentiable
at a; £ A if given e > 0 there exists a S(e,x) > 0 such that the inequality holds for
all 0 < t < 6 and v £ X, \\v\\ = 1. In a reflexive space X, <j> is weak Hadamard
differentiable at x £ A if and only if it is Frechet differentiable at x, and in l\, </> is
weak Hadamard differentiable at x £ A if and only if <f> is Gateaux differentiable at
x. It has recently been shown that on a Banach space X which does not contain a
subspace topologically isomorphic to l\, <f> is weak Hadamard differentiable at x £ A
if and only if it is Frechet differentiable at x, [1, p. 1124].

In this paper we study two variants of weak Hadamard differentiabihty of contin-
uous convex functions, uniform weak Hadamard differentiability and weak Hadamard
directional differentiability, and using the recent sequential characterisation for Banach
spaces which do not contain a subspace topologically isomorphic to ti, we determine
the special properties of these differentiabihty conditions on such spaces.
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156 J.R. Giles and S. Sciffer [2]

1. UNIFORM WEAK HADAMARD DIFFERENTIABILITY

The uniform variant of weak Hadamard differentiability of the norm has implica-
tions for the geometry of the Banach space.

The norm of a Banach space X is said to be uniformly Gateaux differentiable if it
is Gateaux differentiable at each x £ X, \\x\\ = 1, and given e > 0 and v £ X there
exists a 6(e,v) > 0 such that

< e for all 0 <t< 6 and x £ X, \\x\\ = 1.
t

Similarly, we say that the norm is uniformly weak Hadamard differentiable if it is
Gateaux differentiable at each x £ X, \\x\\ = 1, and given e > 0 and a weakly compact
set K in X there exists a 8(E,K) > 0 such that the inequality holds for all 0 < t < 6,
v £ K and x £ X, \\x\\ = 1. The norm is uniformly Frechet differentiable if it is
Gateaux differentiable at each x £ X, \\x\\ = 1, and given e > 0 there exists a S(E) > 0
such that the inequality holds for all 0 < t < 8 and x,v £ X, ||x|| = ||w|| = 1.

Just as with uniform Gateaux and uniform Frechet differentiability, uniform weak
Hadamard differentiability can be characterised by a continuity property of the sub-
differential mapping of the norm. For each x £ X the subdifferential of the norm is the
set

d \\x\\ ={feX*: f(v) ^ \\.\\'+ (x)(v) for all v £ X}

where ||.||̂ _ (x)(v) is the right-hand derivative of the norm at x in the direction v.

LEMMA 1 . 1 . A Banach space X has uniformly weak Hadamard differentiable

norm if and only if there exists a selection x H-> fx where fx £ d \\x\\ with the following

property:

given £ > 0 and a weakly compact set K in X there exists a S(E, K) > 0 such that

\{fx - fy){v)\ <e forallx,yeX, \\x\\ = \\y\\ = 1, v £ K and \\x - y\\ < 6.

PROOF: Given x £ X, \\x\\ = 1, any /„ £ 9||a;|| and fx+tv £ d\\x + tv\\ we have

for t > 0 and v £ X, with the inequalities reversed for t < 0. So it is clear that the
continuity property for the selection implies uniform weak Hadamard differentiability
of the norm.

Conversely, given e > 0 and a weakly compact set K in X there exists a 6(E, K) >
0 such that

< e for all x £ X, \\x\\ = 1, v £ K when -6 <t<6.
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Then

- f(y)M)\
\\y + H - \\y + HI -

<4e

for all x,y E X, ||x||,||y|| = 1 and v EK when ||x - y\\ <e6/2. D

There is a significant rotundity property dual to uniform weak Hadamard differen-
tiability of the norm, similar to the rotundity properties dual to uniform Gateaux and
uniform Frechet differentiability of the norm.

A Banach space X is said to be weakly uniformly rotund if given e > 0 and / £ X*
there exists a S(e, f) > 0 such that

|/(a: - y)\ < e when ||x + y|| > 2 - 6 and ||x||, ||y|| ^ 1,

and the dual X* is said to be weak* uniformly rotund if given e > 0 and x E X there
exists a 6(e, x) > 0 such that

l(/ - 9){x)\ < e when \\f + g\\ > 2 - S and ||/ | | , \\g\\ < 1.

A Banach space is weakly uniformly rotund if and only if its dual X* has uniformly
Gateaux differentiable norm, and X has uniformly Gateaux differentiable norm if and
only if its dual is weak * uniformly rotund, [5, p,63].

A Banach space X is said to be uniformly rotund if given e > 0 there exists a
6{e) > 0 such that

||x - y\\ < e when ||x + y\\ > 2 - S and ||x|| , ||y|| ^ 1.

A Banach space X has uniformly Frechet differentiable norm if and only if its dual X*
is uniformly rotund. A Banach space which is uniformly rotund is reflexive.

We say that a Banach space X has uniformly Mackey rotund dual X* if given
e > 0 and a weakly compact set K in X there exists a 6(e,K) > 0 such that

IK/ - s)(v)ll < e ioi aH.v E K when ||/ + g\\ > 2 - 6 and ||/ | | , \\g\\ ^ 1.

LEMMA 1 . 2 . A Banach space X has uniformly weak Hadamard differentiable

norm if and only if its dual X* is uniformly Mackey rotund.

PROOF: Given any selection x •-» /* where fxEd \\x\\ on the unit sphere, we have
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158 J.R. Giles and S. Sciffer [4]

When X* is uniformly Mackey rotund then given e > 0 and a weakly compact set
K in X there exists a S(e, K) > 0 such that

l(/» - fy)(v)\ < e when \\fx + fy|| > 2 - S for all v G K.

Therefore, when ||s; — y|| < & we conclude that

! < e for all „ £ if.

Conversely, when X has uniformly weak Hadamard difFerentiable norm, given e >
0 and a weakly compact set K in X there exists a 6(e,K) > 0 such that

< e and < e
t J -

for all x G X, \\x\\ = 1 and v G if for 0 < t < 6. Therefore,

||z + tv\\ + \\x - tv\\ <2 + 2et for all x G X, \\x\\ - 1, v G if and 0 < < < S.

For any f,g£ X* , \\f\\, \\g\\ ^ 1 such that for some v0 £ K, ( / — </)(t>o) ^ 3e we have

= sup{/(z + tv0) + g{x - tv0) - t(f - g)(v0) : \\x\\ ^ 1}

< sup{||as+<r;o|| + | |a;-teo| | - 3et : \\x\\ ^ 1 } for all t> 0,

< 2 - eS when 0 < t < S.

Therefore,

l ( / - 0 ) ( » ) l < 3 e for a U « e / f when | | / + <7||> 2 - ^ and | | / | | , | | 5 | | ^ 1 . Q

We are now in a position to determine the geometrical implications of these prop-
erties in Banach spaces which do or do not contain a subspace topologically isomorphic
to lx.

THEOREM 1 . 3 . A Banach space X which does not contain a subspace topologi-
cally isomorphic to l\ is reSexive Hits norm is uniformly weak Hadamard difFerentiable.

PROOF: We show that the dual X* is uniformly rotund. Suppose that this is not
so. Then there exists an r > 0 and sequences {/n}>{<7n} in X* where | | / n | | , ||</n|| ^ 1
for all n £ N such that | | /n + gn\\ —> 2 as n —> co but | | /n - gn\\ > r for all n € N .
Since X does not contain a subspace topologically isomorphic to l\ we can conclude
that {/„ — gn} is not Mackey convergent to 0; that is, there exists a weakly compact
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set K in X such that { ( / „ — gn){v)} does not converge to 0 uniformly for all v £ K.

This contradicts X* being uniformly Mackey rotund. D

However we should note that a non-reflexive Banach space which does not contain

a subspace topologically isomorphic to t\ may have a dual whose norm is uniformly

weak Hadamard differentiable. The space c<> can be equivalently renormed to be weakly

uniformly ro tund and then €«> is weak * uniformly rotund. Since weak compact sets in

^i are norm compact, the Mackey topology on t^ is the weak * topology and so t^

is uniformly Mackey rotund. Further, a Banach space whose dual has uniformly weak

Hadamard differentiable norm cannot contain a subspace topologically isomorphic to l\ .

Weakly convergent sequences in ^i are norm convergent, so if such a space did contain

a subspace topologically isomorphic to i\ then l\ could be equivalently renormed to

be uniformly rotund, which is impossible.

Given a measure space ( f i ,E , / i ) it has been shown that the Banach space

•Li(n,E, / i ) admits an equivalent weak Hadamard differentiable norm if and only if

/i is (7-finite, [2, p,409]. However this can be extended to give the following stronger

i result.
I

THEOREM 1 . 4 . A Banac i space £i(£7, S , p ) has an equivalent uniformly weak
Hadamard differentiable norm if and only if fi is a-finite.

i

\ If the measure fj. is not <r-finite then Li(fi,E,/z) does not admit an equivalent

; Gateaux differentiable norm, [4, p.161].

The proof of the theorem depends upon the following strengthening of Proposition

: 2.3, [2, p.409].

LEMMA 1 . 5 . Given a Banach space L\ (fi, S, fi) with y, finite, the dual Z»oo(fi, X, (i

has an equivalent uniformly Mackey rotund dual norm.

PROOF: On i ^ f i ^ , ^ ) consider the equivalent dual norm

11/11 = y/WfWl + WfWl
We show that this is a uniformly Mackey rotund norm. Suppose not, then there exist

sequences {/n}>{fln} in -^oo(fi)S,/i) such that ||/n|| > ||fln|| ^ 1 f°r all n £ N and

||/n + <7n|| —* 2 as n —» oo but {/„ — gn} does not converge to 0 in the Mackey topology

on Loo(n,E,/i). Then by [2, p.408], | | / n — flnllj does not converge to 0 as n - t oo.

Then | | / n — <7n||2 does not converge to 0 as n —> oo, but as £2(^1 £,/-0 is uniformly

rotund we deduce that | | / n + <7n||2 does not converge to 2 as n —> 00. However this

contradicts the original choice of the sequences {/n} and {gn} • U

Again since weakly compact sets in li are norm compact, an equivalent norm on

l\ is uniformly weak Hadamard differentiable if and only if it is uniformly Gateaux

differentiable.
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2. WEAK HADAMARD DIRECTIONAL DIFFERENTIABILITY

Consider a continuous convex function <j> on an open convex subset A of a Banach

space X . Now at each x £ A the right-hand derivative </>'+(x)(y) exists for all v £ X

and is a continuous sublinear functional in v.

We introduce the following weaker differentiability conditions. We say that (j> is

weak Hadamard directionally differentiable at x £ A if given e > 0 and a weakly

compact set K in X there exists a S(e, x, K) > 0 such that
(x + tv) - 4(z) ,, . ,

< e for all 0 < i < 6 and v £ K.
J ' T V '

We say that <f> is Frechet directionally differentiable at x £ A if given e > 0 there exists
a S(e,x) > 0 such that the inequality holds for all 0 < t < S and v £ X , ||i>|| = 1.

The differentiability of a continuous convex function <p on an open convex subset
A of a Banach space X is studied by means of the subdifferential mapping x t—> d4>(x)
where

0<£(z) EE {/ £ X* : /(v) < <AV(z)(") for aU v £ X } .

This mapping is a weak* cusco; that is, for x £ A, d(f>(x) is weak*compact and convex
and given a weak*open set W in X* such that d(f>(x) C W there exists an open
neighbourhood N of x such that d<f>(N) C W. But it is also minimal; that is, given
any open set U in X and weak*open half-space W in X* where d<f>(U) C\ W ^ 0,
there exists a non-empty open set V C U such that 9<£(F) C W.

We say that the subdifferential mapping x i-> d<f>(x) is Hausdorff Mackey upper
semi-continuous at z £ A if given a weakly compact set K in X with polar K° in
X* there exists an open neighbourhood N of x such that d(j>(N) C 9^(x) + A"0, and
we say that it is Hausdorff norm upper semi-continuous at x £ A if given e > 0 there
exists an open neighbourhood N oi x such that d<j>(N) C d<j>(x) + eB(X*).

Frechet directional differentiability for continuous convex functions has recently
been characterised by Hausdorff norm upper semi-continuity of the subdifferential map-
ping, [6, Theorem 3.2]. A similar characterisation can be given for weak Hadamard
directional differentiability.

LEMMA 2 . 1 . A continuous function <j) on an open convex subset A of a Banach
space X is weak Hadamard directionally differentiable at x £ A if and only if the
subdifferential mapping x H-» d(/)(x) is Hausdorff Mackey upper semi-continuous at x.

PROOF: Suppose that <f> is weak Hadamard directionally differentiable at a £
A but the subdifferential mapping x >-* d<f>{x) is not Hausdorff Mackey upper semi-
continuous at x. Then there exists a weakly compact set K in X and for every open
neighbourhood U of x,

d<t>(U) <f_ d</>(x) + K° = {/ £ X* : ( / - fx)(v) ^ 1 for some fx € d^>(x) and all v £ K}.
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So given an open neighbourhood U of x there exists an /o 6 d<j>(U) and a vo E K
such that

(/o - fm)(v0) > 1 for all / , G

That is, «o G K separates /o from 00(a;) + K°. Since the subdifferential mapping
x H-> d<j>(x) is a minimal weak*cusco there exists a non-empty open set V C U such
that 84>{V) is separated from d<l>(x) + K" by v0. Then

(/ - / * ) M > 1 for all / G d(j>{V) and fx E dtftx).

Now given 0 < e < 1/2 there exists a S(e,K) > 0 such that

(x + tv) -cj>(x) ,
<e for all 0 < t < 6 and v G K.

j ' T \ /

Write y0 = 6vo. Then since

<j>'+(x)(y0) = sup{/x(j/o) : fx G S0(*)}

there exists an f'x E d<f>{x) such that

Now f{(x + y0) - x') ^ <f>(x + y0) - </>(x') for aU x' <E V and / G d^(a:'). So

/(j/o) < <A(a: + IA>) - <K*) + / ( * ' - *) + *(*) - ^(* ')-

Then

6 < (f - K)(Vo)

^ 4>{x + yo) - 4>{x) - f'x(yo) + / ( * ' -x) + <t>{x) - <j>(x')

< eS + M \\x' - x\\ + 4>(x) - ^(x') for some M > 0 and all x' E V C U.

But this implies <f> is not continuous at x.

Conversely, suppose that the subdifferential mapping x i-» d<j>(x) is Hausdorff
Mackey upper semi-continuous at x E A. Then given e > 0 and a weakly compact set
K in X there exists a ^(£,3!,^) > 0 such that

d<f>{x') C d<t>(x) + eK° for all x' E B(x; 6);

that is, ( / -fx)(v) ^ e for some /„ G d<j>(x), all / G d<t>{x'), x' G B(x;6) and all
v G K. Now A" is bounded so there exists a 5' > 0 such that ||to|| < 5 for all 0 < t < 5'
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162 J.R. Giles and S. Sciffer [8]

and v £ K. So {fx+tv - fx)(v) < £ for some fx £ d(j>{x), all fx+tv £ 8<j>(x + tv),

0 < t < 6' and all v £ K. As ^_(a;)('t') = suv{fx{v) '• fx £ 8(j>(x)} and < !̂)_(x)('y) is

positively homogeneous in v,

We conclude that

tv) - </>(*) Al f_^f^ <£ for aU o < < < ^' and v £

D
We now determine the special properties of weak Hadamard directionally differen-

tiable convex functions on a Banach space which does not contain a subspace topolog-
ically isomorphic to l\.

THEOREM 2 . 2 . Consider a continuous convex function (j> on an open convex
subset A of a Banach space X which does not contain a subspace topologically isomor-
phic to t\. If <f> is weai Hadamard directionally differentiable on A then <f> is Frechet
differentiable on a dense Gs subset of A.

PROOF: If X is separable it is a weak Asplund space and so <j> is weak Hadamard
differentiable on a dense Gs subset of A. But since X does not contain a subspace
topologically isomorphic to l\, then <j> is Frechet differentiable on a dense Gs subset
of A. If X is not separable, it follows from [7, p.162] that it is sufficient to prove that
for every separable closed subspace Y of X where A D Y ^ 0, (f>\y is weak Hadamard
differentiable on AClY. This follows since the injection is continuous, mapping Y with
its weak topology into X with its weak topology and so K weakly compact in Y is
weakly compact in X . U

We cannot expect such a result to extend to Banach spaces in general. Phelps
has shown that i\ can be given an equivalent norm which is Gateaux differentiable
except at the origin and is nowhere Frechet differentiable, [8, p.86]. Again since weakly
compact sets in li are norm compact, such a norm is weak Hadamard differentiable
except at the origin.

3. COUNTEREXAMPLES

Although it has been shown that for a Banach space X which does not contain a
subspace topologically isomorphic to li, every Mackey convergent sequence in X* is
norm convergent, it is instructive to see that this does not necessarily imply that se-
quences which are Hausdorff Mackey convergent to a set are Hausdorff norm convergent
to the set.
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EXAMPLE 3 .1 . We exhibit a sequence {/„} in l-i = cj which is Hausdorff Mackey
convergent to a weak * compact convex set in li but not Hausdorff norm convergent to
that set.

Consider {en} the canonical basis for CQ and {e£} the dual basis for l\. Consider
the set

C^c^'ie^-e^-.m^n, m,n E N}.

For each n £ N consider /„ = — e*n. Then d(fn,C) = 1 for all n 6 N and so the
sequence {/n} is not Hausdorff norm convergent to the set C.

Suppose that {/„} is not Hausdorff Mackey convergent to C. Then there exists a
weakly compact convex set K C Co and a subsequence {/nt} such that

(fnh +Ko)nC = <b for all ife <= N.

Then there exists a sequence {vnk} in K such that

(fnh +K°)nC = <l);

that is,
(/-/-»)(»»*) >! forall/€C.

oo

Now consider that we have passed to the subsequence and write vn = ^ anjej. Then
i=i

since 0 6 C, we have

( \
-fn{vn) = e* I ̂ 2 aniei 1 = ann > 1.

Vi=i /
Also, since (ej^, — e^) G C for all 771 ^ n , we have

/oo \

((em - O - U){vn) = e*m I ] T aniei 1 = anm > 1 for all m ^ n.
\»=i /

But then the sequence {vn} cannot converge weakly in CQ and this contradicts the weak
compactness of K.

However, it is interesting to note that Hausdorff Mackey convergence to the unit
ball of li does imply Hausdorff norm convergence.

EXAMPLE 3.2. Consider a bounded sequence {/n} in l\ = cj which is Hausdorff
Mackey convergent to the unit ball in £1. We show it is Hausdorff norm convergent to
the ball.
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164 J.R. Giles and S. Sciffer [10]

Suppose {/„} is not HausdorfF norm convergent to the ball. Then | | /n | | > 1 + r
for some r > 0 and all n £ N . We may assume that {fn} is weak * convergent to
/ € B(li). Given e > 0 there exists a v £ c0, ||v|| = 1, such that f(v) > \\f\\ - e.
Writing /„ = {Ani, An2,-- • ,*„*, . . .} and / = {Ai, A 2 ) . . . , A*,...} £ £lt since { / „ - / }
is weak * convergent to 0, given e > 0 and p £ N there exists an np £ N such that

oo

X) |A»*-A*|>||/n-/| |-e foralln^rv
k=p+l

So for each p £ N we can choose vp £ CQ, \\VP\\ = 1, with zero entries for the first p
terms such that

Then the sequence {vp} is weakly convergent to 0 and

UP(v + vp) = (fnp - f)(vp) + fnp(v) + f(vp).

So for sufficiently large p € N we have

> ||/nJ-2e>l+r-2£.

Now the set K = {v,v + vp : p £ N} is weakly compact, and choosing e = r /3 we see
that

for sufficiently large p. But this contradicts {/„} being Hausdorff Mackey convergent
to the ball.

Although it has been shown that for a Banach space which does not contain a
subspace topologically isomorphic to li, every continuous convex function which is weak
Hadamard differentiable at a point is Frechet differentiable there, it is also instructive
to see that a comparable result does not extend to directional differentiability.

EXAMPLE 3.3. We exhibit a continuous convex function <j> on Co which is weak
Hadamard directionally differentiable at 0 but not Frechet directionally differentiable
there.

oo

Given x = 53 Aje; £ Co, we define

(j>(x) = sup{Am - An, - A n : m < n, m,n € N} .
n
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Clearly (f> is continuous and convex. For <f>{x) > 0, since Am - A n -» 0 a s m , n - * o o

and —\n — 1/n —» 0 as n —> oo, there are only finitely many choices of m and n

for which <j>{x) is (strongly) attained. If <l>{x) = 0 then of course <t>{x) is attained for

m = n. There may be a sequence {rajfe} such that — e*t(j;) — l / n j —> <j>(x) = 0 but in

any case — e f̂c is weak * convergent to 0, and so we conclude that, given x G Co ,

d<f>(x) = 'cow {e^, — e*n where <j>(x) = Xm — An for m ^ n and

—e*n where (j>(x) = — An — 1/n for m,n G N} .

We now use the characterisation of directional differentiability given in Lemma 2.1 and
show that the subdifferential mapping x i-» d<p(x) is Hausdorff Mackey upper semi-
continuous at 0 but not Hausdorff norm upper semi-continuous at 0.

n

Consider the sequence {xn} in Co where xn — ^ —(l/w)e,- for all n E N . Then
»=i

xn —y 0 as n —> co and 90(0) = co"1 {e^, — e^ : m ^ n, TTi,ra G N } . However
—e^ G 0^(zn) and d(—e^,d(j>(0)) = 1 for all n G N , so the subdifferential mapping
x i-> d(j>{x) is not Hausdorff norm upper semi-continuous.

Now for each n G N there exists a neighbourhood U of 0 such that — e*n ^ d(j>(U),
so to show that the subdifferential mapping x i—> 9^(a;) is Hausdorff Mackey upper
semi-continuous at 0 it is sufficient to prove that the sequence {—e£} is Hausdorff
Mackey convergent to 90(0). But this follows from Example 3.1.

4. REMARKS

We note that the characterisation given in Lemma 1.1 holds for any continuous
convex function and Lemmas 1.1, 1.2 and 2.1 hold for a Banach space with any of the
recognised bornologies considered for differentiability questions, [2, p.410]. However we
have confined ourselves to Banach spaces with the weak Hadamard bornology as our
interest is in determining the special properties of uniform weak Hadamard differentia-
bility of the norm and weak Hadamard directional differentiability of continuous convex
functions on Banach spaces which do not contain a subspace topologically isomorphic
to ^ .

In [3, p.453] it was shown that a Banach space X is an Asplund space if the sub-
differential mapping for the norm x i—> 9||z|| is Hausdorff weak upper semi-continuous
on the unit sphere. Lemma 2.1 and Theorem 2.2 prompt us to pose the associated
problem.

PROBLEM. IS a Banach space X which does not contain a subspace topologically iso-
morphic to l\ an Asplund space if the norm on X is weak Hadamard directionally
differentiable on the unit sphere?
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