J. Austral. Math. Soc. (Series A) 31 (1981), 289-293

DIRICHLET-FINITE OUTER FUNCTIONS

SHINJI YAMASHITA

(Received 28 April 1980)

Communicated by E. Strzelecki

Abstract

Given a measurable function k non-negative a.e. on the circle |z| = 1, when is the outer function T_k (see (1.3)) continuous on the disk |z| < 1 and further, Dirichlet-finite: $\int \int |z| < 1 |T'_k(z)|^2 dx dy < \infty$? We shall show, among other results, that the answer is in the positive if $k \in \Lambda^2_{\alpha}$, $\frac{1}{2} < \alpha < 1$, with ess inf k > 0.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 30 E 20, 30 E 25; secondary 31 A 10, 31 A 20, 31 A 25.

1. Introduction

By the Dirichlet integral D(f) of a function f analytic in $U = \{|z| < 1\}$ we mean

$$D(f) = \int \int_U |f'(z)|^2 dx dy \qquad (z = x + iy).$$

Let \mathfrak{D} be the family of Dirichlet-finite analytic functions f in U, namely, $D(f) < \infty$. Then $f \in \mathfrak{D}$ has the finite angular limit $f^*(e^{it})$ at a.e. (almost every(where)) point e^{it} of the unit circle $C = \{|z| = 1\}$, and that f^* is a member of complex $L^p(C)$ for all p, 0 . J. A. Cima [3] raised the following question:

Given a $k \in \bigcap_{p>0} L^p(C)$, non-negative a.e., when can we find an $f \in \mathfrak{V}$ such that

(1.1)
$$|f^*(e^{it})| = k(e^{it})$$
 a.e. on C?

©Copyright Australian Mathematical Society 1981

The above problem is a part of the following:

(Q1) Find a necessary and sufficient condition for $k \ge 0$, a.e. on C, so that there exists $f \in \mathfrak{N}$ satisfying (1.1).

This is essentially answered by L. Carleson [1].

THEOREM 1 (Carleson [1]). A necessary and sufficient condition on k for (Q1) is that, k is measurable, that $\log k \in L^1(C)$, and that

(1.2)
$$J(k) \equiv \int_0^{\pi} \frac{dt}{\sin^2 \frac{t}{2}} \int_{-\pi}^{\pi} \left[\log \frac{k(e^{i(s+t)})}{k(e^{is})} \right] \left[k(e^{i(s+t)})^2 - k(e^{is})^2 \right] ds < \infty.$$

In effect, the necessity of (1.2) follows from Carleson's result [1, Theorem]. To prove the sufficiency we let $\operatorname{Exp} L^1$ be the family of measurable functions k > 0 a.e. on C such that $\log k \in L^1(C)$. By an outer function we mean an analytic function T_k in U defined by

(1.3)
$$T_k(z) = \exp\left[\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log k(e^{it}) dt\right], \quad z \in U,$$

where $k \in \text{Exp } L^1$. Then the angular limit $T_k^*(e^{it})$ exists and

(1.4)
$$|T_k^*(e^{it})| = k(e^{it})$$
 a.e. on C.

Returning to Theorem 1 we assume (1.2). It follows from the inequality [1, (7)] (this is used, in effect, for the proof of his main theorem by Carleson, yet [1, Section 4] is self-contained) that $D(T_k) \leq (8\pi)^{-1}J(k) < \infty$.

Since the outer function is considered in the proof of the sufficiency of (1.2), it is natural to restrict the family \mathfrak{V} within outer functions. More restrictively, let \mathfrak{V}^* be the family of $T_k \in \mathfrak{V}$ such that T_k can be extended continuously to $\overline{U} = U \cup C$, or, continuous on \overline{U} , for short.

(Q2) For what function $k \ge 0$ a.e. on C, is $T_k \in \mathfrak{N}^*$ true?

We begin with continuous k. Let Λ_{α} ($0 < \alpha \le 1$) be the family of complexvalued functions k on C such that

$$|k(e^{it}) - k(e^{is})| \le A_k |e^{it} - e^{is}|^{\alpha}$$
 on C,

where $A_k \ge 0$ is a constant [4, p. 72]; apparently, $|e^{it} - e^{is}|^{\alpha}$ in the definition may be replaced by $|t - s|^{\alpha}$, $t, s \in (-\infty, +\infty)$.

THEOREM 2. Let $k \in \Lambda_{\alpha}$ (0 < α < 1) be positive on C. Then T_k is continuous on \overline{U} such that

(1.5)
$$|T_k^*(e^{it})| = k(e^{it}) \text{ for all } e^{it} \in C.$$

Furthermore,

(1.6)
$$T'_k(z) = O((1-|z|)^{-1+\alpha}) \text{ as } |z| \to 1-0.$$

In the special case $\frac{1}{2} < \alpha < 1$, it follows from (1.6) that $T_k \in \mathfrak{P}^*$. K.-N. Chow and D. Protas [2, Theorem 2.2] proved that if $k \in \Lambda_\beta$ ($\frac{1}{2} < \beta < 1$) is positive, then $D(T_k) < \infty$ and (1.4) holds. We can drop the word "almost" in (1.4) in the preceding sentence. Actually, choose $\frac{1}{2} < \alpha < \beta$. Then $k \in \Lambda_\alpha$ because $\Lambda_\beta \subset \Lambda_\alpha$. Therefore, (1.5) and $D(T_k) < \infty$ are true.

Let Λ^p_{α} $(1 \le p \le \infty, 0 \le \alpha \le 1)$ be the family of complex $k \in L^p(C)$ such that

$$\sup_{0 < h < t} \int_{-\pi}^{\pi} |k(e^{i(s+h)}) - k(e^{is})|^p \, ds = O(t^{p\alpha}) \quad \text{as } t \to 0;$$

see [4, p. 72]. Then $\Lambda_{\alpha} \subset \Lambda_{\alpha}^{p}$ for $1 \leq p < \infty$, $0 < \alpha \leq 1$.

THEOREM 3. Let $1 and <math>1/p < \alpha < 1$. Suppose that $k \in \Lambda^p_{\alpha}$ is real and there exists a constant m > 0 such that $k \ge m$ a.e. on C. Then T_k is continuous on \overline{U} with (1.4). Furthermore,

(1.7)
$$\int_{-\pi}^{\pi} |T'_k(re^{it})|^p dt = O((1-r)^{-p+p\alpha}) \quad \text{as } r \to 1-0.$$

Especially if p = 2 and $\frac{1}{2} < \alpha < 1$, then $T_k \in \mathfrak{N}^*$ by (1.7). Therefore, the best answer to (Q2) in the present paper is that $k \in \Lambda^2_{\alpha}$ ($\frac{1}{2} < \alpha < 1$) with ess inf k > 0.

2. Proofs

For the proof of Theorem 2, let

$$0 < m \leq k(e^{it}) \leq M < \infty$$
 for all $e^{it} \in C$.

Then, $T_k = M \exp g$, where

$$g(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \frac{k(e^{it})}{M} dt.$$

Since $1/k \le 1/m$, it follows that $\log(k/M) \in \Lambda_{\alpha}$. It further follows from [4, Theorem 5.8, p. 83] that g is continuous on \overline{U} with $g^* \in \Lambda_{\alpha}$. Therefore T_k is continuous on \overline{U} with $|T_k^*| = M \exp(\operatorname{Re} g^*) = k$ everywhere on C. To observe

(1.6) we note that

$$g'(z) = O((1 - |z|)^{-1 + \alpha})$$

by [4, Theorem 5.1, p. 74]. Since Re $g \le 0$, it follows that $|T'_k| \le M |g'|$, whence follows (1.6).

For the proof of Theorem 3 we note that, by the result [5, Theorem 5(ii), p. 627] due to G. H. Hardy and J. E. Littlewood, there exists $K \in \Lambda_{\alpha-1/p}$ such that $k(e^{it}) = K(e^{it})$ a.e. on C. Consequently, K is bounded from above and from below,

$$0 < m \leq K(e^{it}) \leq M < \infty$$
 for all $e^{it} \in C$,

where m is the number in Theorem 3. Now, $T_k = T_K = M \exp G$, where

$$G(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \frac{K(e^{it})}{M} dt$$

Since $K \in \Lambda_{\alpha-1/p}$, it follows from Theorem 2 that $T_k = T_K$ is continuous on \overline{U} and that $|T_k^*| = |T_K^*| = K = k$ a.e. on C. For the proof of (1.7), we note that Re G is bounded because $|\log(K/M)| \leq \log(M/m)$. Therefore, G is of Hardy class H^q for all q > 0 by [4, Theorem 4.1, p. 54]. Since $\log(k/M) \in \Lambda_{\alpha}^p$, it follows that $\log(K/M) \in \Lambda_{\alpha}^p$. Thus, by the Λ_{α}^p analogue of [4, Theorem 5.8, p. 83], being [4, Exercise 12, p. 91], one knows that $G^* \in \Lambda_{\alpha}^p$. Then by [4, Theorem 5.4, p. 78],

(2.1)
$$\int_{-\pi}^{\pi} |G'(re^{it})|^p dt = O((1-r)^{-p+p\alpha}).$$

Again, by $|T'_k| = |T'_K| \le M |G'|$, together with (2.1), one observes that (1.7) holds.

3. A concluding remark

As far as the condition of the type (1.7) is concerned, the following might be noteworthy.

Suppose that $k \in \Lambda^p_{\alpha}$ (1 is real and that there exist constants <math>m > 0 and M > 0 such that $m \le k \le M$ a.e. on C. Then

(3.1)
$$\int_{-\pi}^{\pi} |T'_k(re^{it})|^p dt = O((1-r)^{-p+p\alpha}) \quad \text{as } r \to 1-0.$$

For a sketch of the proof we set

$$\Gamma(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{it} + z}{e^{it} - z} \log \frac{k(e^{it})}{M} dt.$$

Then, $T_k = M \exp \Gamma$ and $\log(m/M) \le \operatorname{Re} \Gamma \le 0$. We can show that $\int_{-\pi}^{\pi} |\Gamma'(re^{it})|^p dt = O((1-r)^{-p+p\alpha}),$

which, together with $|T'_k| \leq M |\Gamma'|$, proves (3.1).

References

- L. Carleson, 'A representation formula for the Dirichlet integral', Math. Z. 73 (1960), 190-196.
- [2] K.-N. Chow and D. Protas, 'The bounded, analytic, Dirichlet finite functions and their fibers', Arch. Math. (Basel) 33 (1979), 575-582.
- [3] J. A. Cima, 'A theorem on composition operators', Banach spaces of analytic functions, pp. 21-24 (Lecture Notes in Mathematics 604, Springer-Verlag (1977)).
- [4] P. L. Duren, Theory of H^p spaces (Academic Press, New York and London, 1970).
- [5] G. H. Hardy and J. E. Littlewood, 'A convergence criterion for Fourier series', Math. Z. 28 (1928), 612-634.

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya Tokyo 158, Japan