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Abstract. Our understanding of the structure and dynamics of stellar coronae has changed
dramatically with the availability of surface maps of both star spots and also magnetic field vec-
tors. Magnetic field extrapolations from these surface maps reveal surprising coronal structures
for stars whose masses and hence internal structures and dynamo modes may be very different
from that of the Sun. Crucial factors are the fraction of open magnetic flux (which determines
the spin-down rate for the star as it ages) and the location and plasma density of closed-field re-
gions, which determine the X-ray and radio emission properties. There has been recent progress
in modelling stellar coronae, in particular the relative contributions of the field detected in the
bright surface regions and the field that may be hidden in the dark star spots. For the Sun, the
relationship between the field in the spots and the large scale field is well studied over the solar
cycle. It appears, however, that other stars can show a very different relationship.
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1. Introduction
Just as the surface distributions of spots on stars can vary considerably between dif-

ferent types of stars, so too can the structure of their coronae. For massive stars, the
nature of the coronal magnetic field may have an influence on the structure of the wind
(which can remove a significant fraction of the star’s mass over its lifetime). We do not,
however, know if the magnetic fields of these stars are generated by dynamo processes
(Charbonneau & MacGregor 2001; Brun et al. 2005; Spruit 2002; Tout & Pringle 1995;
MacDonald & Mullan 2004; Mullan & MacDonald 2005; Maeder & Meynet 2005) or if
they are fossil fields (Moss 2001; Braithwaite & Spruit 2004; Braithwaite & Nordlund
2006). An equally challenging question is the source and generation mechanism of the
observed X-ray emission (Ignace et al. 2010).

In the case of solar-mass stars, the nature of the magnetic cycles and the lifetimes of
active regions are topics that will benefit enormously from the data that will soon be
available from CoRoT and Kepler. As has been mention already in this symposium, the
variation with mass of the differential rotation is another crucial question. At the bottom
end of the main sequence, the low mass, fully convective stars appear to have much
simpler, stronger fields than their higher-mass counterparts. While a decade or so ago,
it was believed that these stars could only generate small-scale magnetic fields (Durney
et al. 1993; Cattaneo 1999), more recent studies have suggested that large scale fields may
be generated. These models differ, however, in their predictions for the form of this field
and the associated latitudinal differential rotation. They predict that the fields should
be either axisymmetric with pronounced differential rotation (Dobler et al. 2006), non-
axisymmtric with minimal differential rotation (Küker & Rüdiger 1997, 1999; Chabrier
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Figure 1. Zeeman-Doppler maps of the radial field component (top) and the corresponding
spot occupancy map (bottom) for the AB Dor (observations carried out in 2004).

& Küker 2006). More recently, however, Browning (2008) has published a dynamo model
that produces a highly symmetric field with little differential rotation. This field structure
may have implications for the nature of the spin-down of these low mass stars, since they
show puzzlingly-high rotation rates, even on the main sequence.

Even in the pre-main sequence phase, the structure of star’s corona can be important
since it affects the rate at which the star can accrete mass from its disk (Gregory et al.
2006b, 2010). Low mass stars remain fully convective throughout their evolution onto
the main sequence, but higher mass stars will develop a radiative core at some stage -
perhaps even while they are still accreting from their disks. This difference in internal
structure may lead to different dynamo behaviours, and indeed there is a suggestion from
observations of a handful of stars that the field structures of stars with a radiative core
(and hence a tachocline where a solar-like interface dynamo might be active) are more
complex than those of the fully-convective stars (Donati et al. 2007, 2008b; Jardine et al.
2008; Gregory et al. 2008; Hussain et al. 2009). The implications for the spin evolution
of the stars have not yet been fully explored however.

2. Modelling stellar coronae
The first step in modelling the corona of a star is to determine the form of the sur-

face field. This is most commonly done using the technique of Zeeman-Doppler imaging
(Donati & Collier Cameron 1997; Donati et al. 1999). This typically shows a complex
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Figure 2. Field extrapolation from the original Zeeman-Doppler map shown in Fig. 1 (left)
and from the maps of the combined Zeeman-Doppler and spot field (right).

distribution of surface spots that is often very different from that of the Sun, with spots
and mixed polarity flux elements extending over all latitudes up to the pole. A compre-
hensive review of starspot distributions is given in Strassmeier (2009).

While the methods of extrapolating the magnetic field from these magnetograms may
differ, the basic procedure is the same. The most commonly-used method is the Potential
Field Source Surface method (Altschuler & Newkirk, Jr. 1969; Jardine et al. 1999; Jardine
et al. 2001; Jardine et al. 2002a; McIvor et al. 2003), but it is also possible to use non-
potential fields (Donati 2001; Hussain et al. 2002). Once the 3D structure of the magnetic
field has been determined, the structure of the coronal gas can be determined by assuming
that the gas trapped on these field lines is in isothermal, hydrostatic equilibrium. We can
then determine the coronal gas pressure, subject to an assumption for the gas pressure
at the base of the corona. We assume that it is proportional to the magnetic pressure,
i.e. p0 ∝ B2

0 , where the constant of proportionality is determined by comparison with
X-ray emission measures (Jardine et al. 2002b; Jardine et al. 2006; Gregory et al. 2006a).
For an optically thin coronal plasma, this then allows us to produce images of the X-ray
emission.

3. Effect of spot magnetic fields on coronal structure
The fraction of a star’s surface that is covered in spots and the strength and de-

gree of complexity of the coronal magnetic field all vary with stellar mass. While low
mass, fully convective stars commonly have strong, simple surface fields with few spots
(Donati et al. 2008a; Morin et al. 2008, 2010), solar mass stars such as AB Dor (shown in
Fig 1) typically have complex fields and spots that can cover a significant fraction of
their surfaces (Strassmeier 2009). Zeeman-Doppler imaging does not recover all of the
magnetic field in these spotted regions - a factor that may be more important in stars
with greater spot coverage (Johnstone et al. 2010). Although we do no know the polarity
of the magnetic field in the spots, we can take a statistical approach. We randomly allo-
cate a polarity to each spot (defined at a certain level of spot occupancy) and then add
this field to the surface field reconstructed by Zeeman-Doppler imaging. By repeating
this process many times and each time extrapolating the coronal field, we can create
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Figure 3. X-ray rotational modulation of AB Dor. The dots represent the X-ray rotational
modulation calculated from the ZDI map. The lines represent the X-ray rotational modulation
using the combined maps (ZDI + spot maps).

many realisations of the structure of the corona (see for example Figs 2). By doing this
for stars of different masses, we can determine the possible effect that the flux hidden in
the spots might have on the corona (Arzoumanian et al. 2010). Because the spot field
typically has a greater degree of axial symmetry, this process often shifts the large-scale
dipole axis closer to the rotation axis. The fraction of open flux and the magnitude of
the X-ray emission measure also typically increase. Fig. 3 shows some examples of the
X-ray light curves that might be produced.

4. Moving towards full MHD
While the potential field source surface models have the advantage of computational

speed and simplicity, they only allow indirectly for the effect of the stellar wind. In
order to improve our understanding of the interplay between coronal and wind processes
in stars we need to incorporate the observed surface magnetograms into an MHD code
(Cohen et al. 2010; Vidotto et al. 2010). First results from this for the fully-convective star
V374 Peg have been extremely interesting (see Fig. 4). Like many low mass stars, V374
Peg rotates extremely rapidly and has a strong, almost dipolar field. This means that
magnetic forces dominate over the other forces and results in a very non-solar, magneto-
centrifugally driven wind. The general scalings that emerge from this study are that
both the angular momentum loss rate and the mass loss rate scale as n1/2 (where n is the
density) and hence the spin-down time scales as n−1/2 . The fact that V374 Peg is a rapid
rotator therefore suggests it has a coronal density that is low by stellar standards, if high
relative to the Sun. The mass loss rate and speed of the wind are both also higher than
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Figure 4. Current density.

solar values. Most interesting, however, is the ram pressure which may be five orders
of magnitude higher than that of the solar wind. This has significant implications for
planet habitability, since such a high ram pressure may crush planetary magnetospheres.
If, for example, we place a planet in the habitable zone of an M-dwarf star, it needs a
field of about 8G (around half that of Jupiter) to maintain a magnetosphere. The means
by which such a field might be generated in the planetary interior are still a matter of
debate.

5. Conclusions
The availability of spot maps and magnetograms for stars other than the Sun has rev-

olutionised our view of stellar magnetic fields. By using these maps to model the coronal
structure of a range of stars we can also gain insight into their winds, their rotational
evolution and their coronal emission. Advances in MHD modelling that incorporate the
three vector components of the surface magnetic field promise to bring about a similar
revolution.
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Discussion

Strassmeier: You are quite right with our inability to reconstruct magnetic field from
flux deficient spots. However, we know that this is an artifact and recent results by
Berdyugina and her group showed the existence of fields in starspots.

Jardine: I think it would, and I think the solar community should solve the problem
for the sun as well. It’s – it’s only true in its very [INAUDIBLE] limit where you have
the very, very strong fields. It’s not true for a solar type. So it’s specific to these low
mass stars in their incredibly strong field and rapid rotation. We tried several different
types of assumption. We tried two types of star. We took Capella and V374Peg which
has very small thin red pots, and we tried three different ways of allocating the field to
the spot – so taking a different brightness contour to be a different field strength. The
results you get depend on what you assume. I think it would be very nice actually to
have some input perhaps from the solar community as to what might be a better way to
do that. We recently tried three different parametration.

Dupree: I have a wind question. If the sun was rapidly rotating and the centrifugally
driven wind, how would the profile of the wind compare as to our standard solar wind?

Jardine: It would be very much faster, and the RAM pressure would be very much
greater. The critical point – the critical point essentially depends on the temperature.
So it would depend on how hot the wind is. If the sun was still at its same temperature,
the critical point would be the at the same point. So the sonic point would be the same;
but the terminal velocity would be very different, much higher.
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