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Smooth Values of the lterates of the Euler
Phi-Function

Youness Lamzouri

Abstract. Let ¢(n) be the Euler phi-function, define ¢o(n) = n and ¢y (n) = ¢(¢(n)) for all k >
0. We will determine an asymptotic formula for the set of integers n less than x for which ¢y (n) is
y-smooth, conditionally on a weak form of the Elliott—Halberstam conjecture.

1 Introduction

Integers without large prime factors, usually called smooth numbers, play a central
role in several topics of number theory. From multiplicative questions to analytic
methods, they have various and wide applications, and understanding their behavior
will have important consequences for number theoretic algorithms, which are an
important tool in cryptography.

Let ¢(n) be the Euler phi-function, define ¢o(n) = n and ¢p41(n) = P(Px(n)) for
all k > 0. There are several interesting results on the behavior of the functions ¢y [5].
It is known that understanding the multiplicative structure of the phi-function and
its iterates is in some sense equivalent to studying the behavior of the integers of
the form p — 1 where p is prime. It is also believed that the distribution of the prime
factors of such an integer behaves like that of a random integer, in the following sense.
Define

U(x,y) =|{n<x:pln = p <y},

mx,y)=[{p<x:iqlp-1 = q<y}.

Conjecture 1.1  FixU > 1. Ifx'/V < y < x then

m(xy)  Vlxy)
7(x) x

asx — oo.
Assuming this conjecture, one can deduce the behavior of the function 7 (x, y)
from the known asymptotic formula

W(x,y) ~xp(u) asx — oo withx = y*
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where p(u) is the Dickman function, defined as the unique continuous solution of
the differential-difference equation up’(4) = —p(u — 1) for u > 1, satisfying the
initial condition p(u) = 1for0 < u < 1.

Now let P be a set of prime numbers and define

U(x,P) = |{n < x: pln = p e P},

w(x,P)z’{pgx:(ﬂp—l — qEP}‘.
One might guess

7(x, P) N W(x, P)
7(x) x

(1)

as x — 00,

under certain conditions on the set P.

Granville [7] has an unpublished argument that Conjecture 1.1 holds for u =
log(x)/log(y) bounded, assuming the Elliott—Halberstam conjecture which states
that: )

m(y x
- < .

o(g) | " logx)

A weak version of this conjecture is the following:

Conjecture 1.2 Fixe > 0. Then

Z ’ﬂ(x;d, 1) — % =o(m(x)) asx — oo.
d<xl—¢

We will prove a version of (1) assuming Conjecture 1.2; specifically, we show the
following:

Theorem 1.3  Assume Conjecture 1.2. If P is a set of primes less than x for which

then

m(x, P) 1 Y(x, P)
7(x) N}g(l_(p—l)z) X asx oo

Note that there is an extra factor in Theorem 1.3 compared with (1). To see why
we should expect this, let g be some prime; then the probability that a random integer
n is divisible by q is 1/q. Now the probability that a random integer of the form p — 1
(where p prime) is divisible by g is 1/(g — 1) (since p is excluded from the class
0 mod q). The differences between the two probabilities are negligible as q increases,
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however this is not true for small primes g, and thus we need a correction factor (it
can be removed in some special cases, see Lemma 2.1).
Define
Pe(x, ) = [{n < x: plgx(n) = p <y},
Using Theorem 1.3 we get an asymptotic of this function conditionally on Conjec-
ture 1.2.

Theorem 1.4  Assume Conjecture 1.2. FixU > 1. If y = M where1 < u < U,
then
Dp(x, y) ~ xok (1) asx — o0

where or(u) = 1 for u < 1, and uo (u) = fou Oks1 (U — t)o(t) dt for u > 1, with
oo(u) = p(u) = ((e+0(1))/ulog(u))*. Moreover, for all k > 1

1+o0(1) )“

oilu) = (logk(u) log,,, (u)

and
log, (1) = log(log(log(- - -log(u) - - -)))  k times.

The first step in the proof uses simple combinatorics to approximate the functions
Di(x, y) by U(x, P), where Py are the sets of primes defined iteratively by Py =
{p<x:q|p—1=q€P},withPy = {p < y}.

Proposition 1.5

1 2k
@y(x.y) = W By + O T,
y
From the fact that |Px| = m(x, Px_1), the next step in proving Theorem 1.4 is to es-
tablish a relation between |P| and ¥ (x, P) for any given set of primes P. This was
done by Granville and Soundararajan [8] while studying mean values of multiplica-
tive functions. They proved the following proposition:

Proposition 1.6 ([8, Proposition 1]) Let f be a multiplicative function with
|f(n)| < 1 foralln, and f(n) = 1 forn < y. Let O(x) = Zp<x log(p), and de-
fine a
1
u) = lo .
X = G P; f(p)log(p)

Then x(t) is a measurable function with x(¢t) = 1 for allt < 1. Let o be the corre-
sponding unique solution to the equation:

(2) uo(u) = /u o(u—t)x(t)dt foru>1
0

subject to the initial condition o(u) = 1 for 0 < u < 1. Then

1 u
= 3 f) = o)+ o(log(y)) .

n<y"
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From this result and by partial summation we can deduce

Corollary 1.7  FixU > 1. Let P be a set of primes less than x such that Py C P, and f
be a completely multiplicative function such that f(p) = 1 if p € P and 0 otherwise (so
that f(n) =1 foralln < y). For 1 < u < U, define

) = o S,

u
m(y*) peP
<y

then
U(y",P) = f(n) ~ y'o(u)

n<x

where o is the corresponding solution to (2).

It remains to study (2), a delay integral equation, and to try to estimate the solution &
where x is a certain measurable function. In several interesting cases x () decays like
({1 + 0(1)}/h(u))* where h is positive and non-decreasing. We prove the following:

Theorem 1.8  Let x be a real measurable function for which x(t) = 1for0 <t <1,
and 0 < x(t) < 1fort > 1. Moreover suppose that

i) fToo x(t) dt = 0 for some constant T. We define T = min{t : fTOO x(t)dt = 0}
to avoid redundancy, and suppose that T > 1.
(ii) x(t) = ({1+0(1)}/h(¢))" where h(t) is non-decreasingand h(t) — oo ast — oo.

Let o be the corresponding solution to (2). Then

9] E(u)v
o(u) :exp((—f(u)‘FO(l))U"‘/ %dv),
1

where £(u) is the unique solution tou = [ x(v)e*™" dv.

Moreover, we can get explicit asymptotics in a number of interesting cases:

Proposition 1.9 Let x be a real measurable function with x(t) = 1 for0 <t <1
and 0 < x(t) < 1 fort > 1. Suppose that f;o x(t) dt = 0 for some constant T. We
define T = min{t : [ x(t)dt = 0} to avoid redundancy, and suppose that T > 1.
Then £(u) = 8" (1 + o(1)), and

ulog(u)
T

o(u) zexp(— (1+o(1))).

Proposition 1.10  Let  be a real measurable function with x(t) = 1for 0 <t < 1,
and 0 < x(t) < 1fort > 1. Suppose that x(u) = ({1 + o(l)}/h(u))u where h satisfies
the following conditions:

(1)  his positive and non-decreasing with h(u) — oo as u — oo;
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(ii)  h is continuously differentiable and uh'(u)/h(u) — n as u — oo for some 0 <

n < oo.
We distinguish two cases: (a) 0 < n < oo; (b) n=0. Then
B I1+o(1) \*
ou) = (h((log(u))) ’

where ( = e/n in case (a) and { = 1 in case (b).

The distinction between cases (a) and (b) in Proposition 1.10 justifies the appear-
ance of the constant e only in the asymptotic of o, in Theorem 1.4.

2 Proof of Theorem 1.4

Lemma 2.1  Assume Conjecture 1.2. Fix U > 1. Suppose that P is a set of primes less
than x for which {p < y} C P, where y = x"/* and 1 < u < U. Then

w(x, P) N U(x, P)
7(x) x

as x — 0.

Proof We have that
1 1 log(x)
- < —<lo =log(u) < 1
2,52 g(log(y)) 8w

péP y<p<x
p<x

and, since 1 —t > e % for 0 <t < 1/2, then
1 1 1
1211;(1—(1)_1)2) Zg(l— m) Zexp(—Zg(p_l)z)

=1+o0(1).
The result follows by Theorem 1.3. ]

Proof of Theorem 1.4 First note that the sets Py for k > 0 satisfy the conditions of
Lemma 2.1. Now YU (x, Py) = ¥(x,y) ~ p(u)xasx — oo. We use induction on k:
suppose that W(x, Px) ~ ox(u)x as x — oo for some smooth function oy(u). Then
by Lemma 2.1

[Proi| _ 7, PO W(x, P

v S ~ or(u) asx — oo.

Now by Corollary 1.7 we have
W(x, Pis1) ~ opr1(u)x  asx — oo,

where 041 (1) is the corresponding solution to (2) with x(u) = o(u). Noting that
oo(u) = p(u) = ((e+ 0(1))/ulog(u))* and using Proposition 1.10, we deduce that

) ( 1+o0(1) ) u

o = —

¢ log, (1) logy,., ()

by induction. Thus, using Proposition 1.5, the Theorem follows. |
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3 Proof of Theorem 1.3

Lemma 3.1 If P is a set of primes < x, then

E: <1 II( ) .

p¢P peP log(x)
p<x

Proof The result follows since

005 -00-3) 05 =o(o(25) )

peP pEP P<x pEP
p<x p<x
by Mertens’ theorem. ]

Lemma 3.2 Let m, d be positive integers such that d|m, then we have

(r) 1 (r)
PRI VD D

r<x n>1 r<x/n
d|r|m djn r|m
pln=pld

Proof The result is trivial if 1(d) = 0 or d = 1. We fix m and do a double induction
ond > 1landx > 1. Now

Z ) Z u(dﬂ) u(d) 3 u(n) u(d) 3 u(n)z @

r<x n<x/d n<x/d n<x/d
d|r|m n| 4 n|m n|m a|d
(n,d)=1
d n d
= S ) Y0 B S s, ),
ald n<x/d ald
a|ln|m

Now each a < d and x/d < x, so by induction

(d) 1 (r)
si)=E= Y u@? Y - 3 B

ald n>1 r<x/nd
aln rlm
pln=-pla
1 pu(r) 2
e IR Dl DO
n r
n>1 r<x/nd ald
pln=>pl|d r|m aln
pln=-pla

Now if we write n = pbipb . pzk with each b; > 1, then p|n = p|d implies that
P1p2 -+ - prld. Moreover if a satisﬁes a|d, a|n, p|n = p|a, and a is a squarefree, then
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amustbe p;p; - - - px, which implies

Then, writing = nd, we have

S = i) Y0 LI

I>1 r<x/1
d|l rlm
pli=pld
as desired. [ |

Lemma 3.3  For any positive integer k we have

log(n) 1 log(p) _ log(k)
> S aw (Xt ) <

nk|21 plk
n
pln=>plk

Proof Writing n = kd we have

Z log(n) Z log(d) +log(k) 1 log(d) N log(k)
= = dk k= T d 0
k|n pld=plk pld=plk
pln=-plk
Now if py, pa, . .., pn are the prime factors of k then

Z log(d) _ Z ar log(p1) + axlog(py) + - - - + a, log(p,)

= = Py Py P
p\d=>p|k 1<i<n

& a;log(pi) 1

() (LX)
i=1 “a;>0 ! 1<j<n a;>0 1]

j#i

- log(pi) 14\ !

= it =LY S VAN 1— —

i#i

_ kg log)

o) <= p—1
which gives the result. ]
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We state a classical result of sieve theory which is used throughout the proof:

Lemma 3.4 (Brun’s Sieve)  Let A be a set of positive integers contained in [1, N]. Sup-

pose that for each prime p < N, A is excluded from w(p) residue classes modp, where

w is a multiplicative function and w(p) < 1. Then

|A|<<NH(1—%).

p<N

Proof of Theorem1 Lete > 0, P* = {p < x} \ P,and m = [] .p- p. Then we
have

3 meP)= Y 1= Y 1= > ud= Zu(d) Y1
p<x p<x p<x d|(m,p—1) p<x
q|lp—1=-q€P (p—1,m)=1 dlp—1
=Y udn(xd,1).
dlm

Now by a similar argument we have

(4) U(x,P) = u(d)[g} .
d<x
dlm

By (3) and assuming Conjecture 1.2 we have

5) w(x,m—( ) ;EZ;) <>+o( 3 w(x;d,n) +o(m().

d<x'~¢ X Tf<d<x
d|m d|m

From (4), Lemmas 3.1 and 3.4 we deduce

(6) ‘\I/(x,P)—xZM(dd)‘ Zl< Z 1<<xH(1——) X

log(x)
d<x d<x d<x pEP g( )
d|m pld=p¢P

Also by Lemmas 3.1 and 3.4 we have

1 AV, P _ U P) *Q(r, P)
@ > 5 < o5 / . +/x — 5t

1—e

X! TC<d<x <d<x
dlm p|d$p€P
<I(1-2) (14 [ F) <TI(1- ) clogtw <«
o t P & ’
pepP peP
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Then from (5), (6) and (7) we deduce

®) ‘W:&};) _Ig(l (p —1 1)2) W(i’P)‘
(d) (d)
<| ¥ fa- T Pt
dim “d|m

+0(1)+O(e)+O< Z M)

m(x)
x T <d<x
dlm

Now by Lemmas 3.1, 3.4 and the fact that Zr<x 7 < log(x), we get

© ¥ swdn=% 3 1<<Z§H(1—%>H<l—l)

x' T<d<x r<x yl = <d<x/r r<xt  pepP p<x P
d|m pld=peP ptr
dr+1prime

<« > 1 e
log(x)? <= ¢(r) ~ log(x)’
And from Lemma 3.2 we have

B ) itk
D D P D kzd:cﬁ(k)

d<x'—¢ A<xi—¢
dim dlm
N ) i) s s )
*Zwk)z “2om 2w 2
k|m k|m n=1 r<x'=/n
k|d\ kjn r|m
pln=-plk
(k) u(r)
e o(k) Z ;
k| r\m
pln=plk
(k) 1 u(r)
I ID DY
k| nk\znl x! (/n<r<xl €
pln=-plk rim

The first term in the right-hand side of (10) is equal to:

YOS EGI0-5) = S P )

r<x'=¢
r|m r|m
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By integration by parts and using Lemma 3.4 we have

(r) 1 <70 (s, PF)
I TR

1 1 1 1 '=</n
x " n<r<x ¢ x " n<r<x ¢
r|m r|m

e

<I(-9) 0 [, F) <o

peEP X

Then, by Lemma 3.3

(k) 1 u(r p(k) log(n)
(12) WM Z n Z Z¢(k) 24: nlog(x)

n>1 X T n<r<xl e n>
k|n r|m k|n
pln=plk pln=plk

1 (k) log(k) 1
< < .
log(x) kzn; B(k)? log(x)
Thus combining (8), (9), (10), (11) and (12) gives the result, letting e — 0. [ |

4 Proof of Proposition 1.5
Lemma4.1 Py={p<y}CP CP,C---CPC---,where
Py = {primesq < x:plg—1 = p € P}
Proof Ifp € Pythenp < yandsop —1 < y, which impliesgq|p — 1 = q < y.
This means that p € P;. Now using a simple induction argument: if p € Py then

qlp — 1= g € Px_; C Pr,and so p € Pyy1. ]

Lemma 4.2  Let r be a positive integer. Then

1 +1
R(r, k,x) == Z S M
dk r
y<r<q<---<qp<x
rlg—1qilq2 =1, sqi—1lgx—1
We deduce that
x(logx + 1)
S(r, k, x) := 1 < 228 )
(r,k, %) > <=

y<r<qi<---<qpr<n<x
rlgi—1.q1]q2—1,....qk—1|qk— 1.qx|n

Proof Writing gx — 1 = mq,_; we have

1
R(rk,x) < ) —R(r,k—1,%) <Rk —1,x)(logx +1),

x
m< %
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and
< logx +1

1
R(r71>x) S Z E = fa

m< 3§
then by induction

k
R(r,k, %) < w

The second inequality follows since

X
S(r k,x) < g — = xR(r, k, x). [ |
y<r<qi<---<qp<x x
rlai—Lqilg2—1,....gk—1 |qe—1

Lemma 4.3 Define
Sk(x, ) = {n < x : there is a prime p > y such that p*|¢y(n)}.

Then
k—1

[W(x, P) — e, )| < [SiCx, ).

i=0

Proof LetAi(x) ={n<x:pln=p € Pc}.Ifn € A1 (x) and ¢(n) ¢ Ax(x), then
there is a prime p which divides ¢(n) and p ¢ Pr. Now n € Ay (x) so every prime
factor of g — 1, where g|n, is in Py, which implies that p?|n. This gives

A () \ {n < x:¢(n) € Ak(x)}

={n<x:n¢€ A (x),Iaprime p € Py \ Py, p*|n}.
Then by Lemma 4.1

0 < W(x,Pr) — Prlx, y) = |Ar(x)| — [{n < x: gr(n) € Ag(x)}

k—1

=> n<x:i(n) € Aci(@} — [{n < x: ¢ini(n) € A1 (0}

i=0
k—1
= Z {n < x:¢;(n) € Ax_;(x), thereisa prime p € Pr_; \ Pr_;_1, p*|¢i(n)}]

i=0

k—1
<D IS p)l: =
i=0
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Proof of Proposition 1.5 Note that if g|(¢(n), n) for some prime g, then g*|n. De-

fine
k—1

St ) = Selx, )\ | i, »).
i=0
Ifn € S{(x, y) and q2|¢j(n) for some 0 < j < k— 1, then q < y (by definition); also
there exists some prime p satisfying p*|¢x(n) with p > y, which implies p? { ¢x_;(n).
Thus we have two cases:
(i)  There exists a prime q;|¢x_1(n) such that p*|q; — 1.
(ii)  There are two primes q;|¢r—1(n) and Qi|¢r—1(n) such that p|gq; — 1 and
plQ1 — L.
In the first case q;|dx—1(n) = d(Pr—2(n)), p|lg1 — 1, so that gq; > y, which implies
that g2 { ¢x_»(n), so that there exists a prime g, |@x_(n) such that g;|q, — 1 and g, >
q1 > p > y. By a simple induction, there exist primes y < p < q1 < g2 < -+ < g

for which p2|g1 — 1,q1]q2 — 1, ..., qk—1lqx — 1, qc|m.
We deduce that the total number of possibilities for this case is:

Si= Z 1= Z S(p?, k,x) < x(logx + 1)k2§

y<p<qi<---<qp<n<x y<p<+/x p>y
Pla—Lalg2—1,..qe—1|ax—Lacln
x(log x)*
< (logx)
Yy
by Lemma 4.2.

Now, following an analogous argument we find (for the second case) that there
exist primes p,qi,qa,-.-,qk, Q1,Qa,...,Qk such that plg; — L,qi|lq2 — 1,...,
Gi—1lgx — 1,qxln and p|Q; — 1,Q1|Qy — 1,...,Qx—1|Qx — 1, Q|n; we shall have
two cases again:

(a) g #Qiforalll <i<k
(b) There exists i such that q; = Q;;solet j = min{1 <i <k:q; = Q;}.

For case (a) the total number of possibilities is:

S, = 3 1< 3 ﬁ

y<p<qi<--<qpr<n<x y<p<qi<-<qp<x
p<Qi < <Qu<n<x p<Qi< - <Q<Lx
Pl —Lq]g2—1,..qk—1|qx— Lkl n plo—Laqlqa—1, qk—1]gx—1

PlQI—1,Q11Q— 1,0, Q1 | Qe —1,Qx|n PlQI—1,Qi|Q—1,...,Qr—1 Qe —1

)

1 2k
<x) R(pkx?’= O(m
P>y
by Lemma 4.2.
Now for case (b)
plar—Liqilga — 1,....qj-1lq; — 1,
Pl —1,QQ —1,...,Q;1|Q; — 1,

Q; = qjlpr—(n).
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Then following the same logic there exist primes gji1,qj+2,...,qx such that

ajlgj — 1, qr—1lqe — 1, qefn.
We deduce that the total number of possibilities is: s

y<p<qi<--<q;<x P<Qi<--<Qj=g; qj<qj<-<qp<n<x
plai—Lqilg2—1,....qj—11g;—1  p|Qi—1,Qi|Q:—1,...,Q;—1|Qj—=1  gjlqjs1—1,.;gr—1|qx—L,qk|n

- Y (T swkeiw)

y<p<qi<---<q;<x P<Qi<--<Qj=q;
plai—laqi|ga—1,.9j-1lq;—1  plQi—1,Q1|Q—1,...,Qj—1]|Q;—1

s 0y ( x e

y<p<qi<---<q;<x p<Qi<-<Qj=q; 1
plai—laqi|ga—1,.9j-1lq;—1  plQi—1,Q1|Q—1,...,Qj—1]|Qj—1

Now writing Qj — 1 = ¢; — 1 = mQ; 14— we have:

1 1 logx +1
> <> < OBXT
q;<x i m<x mQj*lqul ijqufl

qj—1,Qj—1]qi—1

Thus by Lemma 4.2

j 1 k+j—1
S5 < x(logx)* /" Y TR(p, j— 12" < x(log)™ ™
P>y
We deduce from cases (i), (ii) (a) and (b) that
x(log x)*
() 5566 )] = 51+ 5+ 5 = O B2,

Now

1S1(x, ¥)| = [So(x, )| +[ST (x, y)

2
= |[{n < x:3Japrime p > y, p*|n}| +O(M)
Y
x(log x)? x x(log x)?
<N 1+0(F=) <N S o 224
nzgx ( ¥ ) ; p? ( ¥ )
p>y
plln
(% x(logx)?\ 7 x(logx)?
=0(;) +o(77) =o(757)
and by simple induction we obtain:
k-1
x(log x)%
1) Il =[5+ 3 I )] = O B,
i=0
Thus by (14) and Lemma 4.3 the result follows. ]
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5 Proof of Theorem 1.8

Lemma5.1  Let x be a real measurable function for which [~ x(t)e*' dt converges

for all € and such that C := floo X(v)dv > 0. Then for u > C? and for any € > 0, we
have

o0
/ X (V)W gy >yl
1

Proof Lete’ > 0ands > 0. Using Holder’s inequality we get

(/100 x(v) dV) g (/100 x()e” dv) e > /loo Y e dy,

Now putting s = £(u)/(1 — €’) = E(u)(1 + €'’), from u > C? we deduce that

0 N 1 0 1+€” .
/ X(V)ef(u)(l+f W dy > (/ X(V)ef(u)v dv) > uie 2
1 1

Z oo
The lemma follows, taking e = &(u)e’’. [ |

Proof of Theorem 1.8

The Upper Bound: From [8, Lemma 3.4] we note that

(1) = ()+il XW...M( —t = —t)dty - dE
ol = piu ezt g ;o P h P78 J
j=1 i+t <u ]

Therefore for any £ € R

1
o(wet = pu)e™ + ) =
= 7
x(r)es  x(t))e P
fot>1 " ; plu—t —"'—l‘j)eg(” h tﬁ)dtl...dtj.
titeet+t<u 1 J

Setting F(§) = max; > p(t)e we deduce (by forgetting the condition £, +- - +t; <

u) that
a1 /°° X0 NI e /°° x(£)eft
o(u) < F()e ;ﬂ( e dt) — F(£)e exp( e dt).

Choose & such that u = [ x(t)e* dt, thatis £ = £(u).
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Now putting C := floo x(v) dv we have u = floo X1 ef™r dy > Cet™ | which
implies that

(e+o(1)u\" O(u/ log(w))
F(u) < max <7tlog(t)C > = e\,

and the upper bound follows. ]

The Lower Bound: Fix e > 0.
We will show that there exists a constant C, such that

> Eu)y
(15) o(u) > C, exp((_g(u) —u +/ x(v)et”

1 v

dv) forallu > 0.

Let 1 be a suitably large number, and define

00 (u)v
€. = Couy = jnf ou) exp ((§(w) + u — /1 % av).

Evidently (15) holds for all 4 < wuy.
We use an induction argument. Let n € N such that n > 1, and suppose that (15)
is verified for all t < #, then we will show that (15) holds for all t € [n,n + 1].

Define f(§) = loo @ dv,and let u € [n,n+ 1]. Then using our hypothesis we
have

U(u)e((f(u)ﬂ)u)
Ceexp(f(£(w))

zéﬁwmwapUﬂm+owuaw—§W—nXu—n

1 u
(16) a / X(t)e(g(”)“)ta(u _ t)e((f(u)Jrf)(u—t)—f(E(u))dt
e Jo

+f(E =) = fEw)) dr.
Since f/(&) = [ x(v)e*” dv, using the mean value theorem we deduce that

o fEw) — few—1) _

) B N

Now differentiating u = |’ loo X(»)ef™Y dy with respect to u we get that

(18) €w>:(/MVAWﬂWuQ_1g$.
1

By (18) and using the mean value theorem again we have

(19) €) — Eu—1) < ——.
u—t
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Therefore by (17), then (19) we deduce that
(20)

%/ x(@) exp((€(w) + o)t + (E(w) — E(u— 1) — 1) + f(E(u— 1)) — f(E(w)) dt
1

Y

L[ o esp(t€w + o = a6t — etu— 1)
1
2

t
(u—1t)

Y%

1 u
;/1 x(t) exp((f(u) + et — ) dt

Y%

1 Y
—/ () EWTDt gr - for u > ug.
Uy

For case (i), since f;o x(#)dr = 0and x(¢) > 0 for all ¢, then meas{t > T :
x(t) # 0} = 0 which implies that meas{t > T : x(t)e{™" # 0} = 0, and so
J7° x()e*™" dt = 0. Then taking uo > T2 we have

Vi T T
(21) / (1)l €W/t gy — / Y (£)e €W/t gy / x(O)et™t dt = u.

1 1 1

Now for case (ii), since x(t) = ({1 +o(1)}/h(1)) !, there exist two constants A, and
B, for which

exp(—e/16)
h(t)

exp(e/16)

t
0 ) for every ¢t > 0.

(22) Ae( )t <x(t) < BE(

We consider two cases

Case 1 (;I?L\/“;) > exp(—9).) Since his non-decreasing, we have by (22)

Vi Vi S(Eu)+7e/16) | ¢
Ewre/t gy > A € dt
@ [ bz a ()

> A, /ﬁ( heg(“))) te(76/16)t dt > A, /\/a £3¢/16)t 34
1 1

(Vu
_ 16A. (6(35/16)ﬁ — 16y 5y
3¢ ’
for u > uy.
Case 2 (hi;)ﬂ) <exp(—7).) Using Lemma 5.1 and (22), then the fact that h is non-
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decreasing and u > C £ we conclude that

Ve Vi
(24) / y(t)eC+e/dx dtz/ Y(£)eCwre/dr gy

1 1

> 3¢/16
) Vi h(t)

> g l+e/(166w) _B, /00( s )te(35/16)t "
= vi N (/)

u

16
> y!*/068W) _ B~ exp(—ey/u/16) > u,
€
for u > uy. Thus using (16), (20) then (21), (23), and (24) the result follows. |

6 Getting the Asymptotic Approximation of o Explicitly

Lemma 6.1 If&(u) = o(log(u)) as u — oo, then

00 E(u)v
/ 4X(V)e dv = o(u)
1

v
and so o(u) = exp((—&(u) + o(1))u).
Proof Since x(t) < 1for everyt > 1 and using our assumption, we have

log()
X v ()W T y(y)esr o0 p)es v
/ X() d_/ X() dv+/ XWE
1 14 1 v log(u) 14

&(u)

log(u)

€w) o0
< / v gy SB[ et gy
1

log(u) J,
- L s E(wu .
= (u—e) + fog(u) o(u). -

Proof of Proposition 1.9 Let ((u) be the unique continuous solution to the equa-
tion u = e<(“)T/C(u). Since x(t) < 1 for all ¢, we have

)T _ p&(u) ST

€w €

C(u)T T
T :/ Xy < -
u 1

and since the function f(£) = €t /¢ is non-decreasing for & > 1 we deduce that
C(u) < &(u). Now fix € > 0 (such that T(1 — €) > 1), and suppose that there is
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arbitrary large u for which £(1) > ((u)(1 + ¢€). Define s, = f]?;lff/Ev) x(t)dt > 0 (by
the definition of T). We deduce under our assumption that

ST

T
Sfe((lt)(1+e/3)T S SEeT(176/3)£(u) S/ X(V)ef(u)v dv S ’
T(1—€/3) C(u)

which is impossible if u is large enough. Thus £(u) = ((u)(1+0(1)) as u — oco. Now
we trivially have 1 < ((u) < log(u), then

log(u) N log(¢(u)) _ log(u)

Clu) = — T 7 (L+0(1)).
We deduce that £() = 8 (1+0(1)), and the result follows combining Theorem 1.8
with the fact that [ X2 gy — O(u), m

Now we prove Proposition 1.10; define g(u) := h(u)/(uh’(u)).

Lemma 6.2  Let h(u) be a real differentiable function with uh’(u)/h(u) = n + o(1),
where n is a positive constant. Then for all k > 0 we have h(ku) = h(u)kmro),

Proof We have that

hku)\ (K@) (o)
log( h(u)) */u h(t) dt*/u fdt—(nJrO(l))logk. [

Lemma 6.3  Assume the hypothesis of Proposition 1.10(b). Then h(v(u)log(u)) =
(1+0(1))h(log u), where v(u) := min(log(u), minyeg(,) </ <1og2 () §(t)), and v(u) — oo
asu — oo.

Proof Since g(t) — oo ast — oo then v(u) — 00 as u — 00, so if u is large, then
v(u) log(u) > logu, so that h(v(u) log(u)) > h(log u). On the other hand,

h(v(u) log(u)) B v(u) log(u) h/(t) B v(u) log(u) 1
log<W) _/1 w (h(t)) dt—/l @dt

og og(u)

] / (w)log(w) 3,
< — —
MiNog(u) <t <v(u) log(u) §(£) Jiog(u) ¢

1

ST (1 +log(v(u))) = o(1). m

Proof of Proposition 1.10 Fix ¢ > 0 and suppose that there is arbitrary large u for
which £(u) > log(h(Clog(u))) + €. Then for such u we have in case (a), by (22),
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Lemma 6.2, and since h is non-decreasing,

o0 00, LE(u)—c/16 | ¢
= £)es " dr AE/ )
u /1 x(t)e > 1 ( 0 ) t

log(u)/n
> A, / g (Helog)/m)y e
I )

oglog(u h(log(u)/n)
log(u)/n log(u)/n
— Ae/ e(e/2+n+o(l))t dt > Ae/ e(e/4+n)t dt > u,
log log(u) log log(u)

for u large enough, which is a contradiction.
Now in case (b), our assumption and Lemma 6.3 imply that

E(u) > log(h(v(u) log(u))) +¢€/2.

Then by (22) and since & is non-decreasing and v(u) — co as u — 00,

o oo ef(u)—f/lﬁ t v(u) log(u)
u= / X(t)ef(u)t dt > AE/ (7) dt > Ae/ e(e/3)t dt
! U :

:Agi(uv(u)e/S _ 65/3) > u,
€

for u large enough, which is a contradiction.
Now we suppose that there is arbitrary large u for which

&(u) < log(h(Clog(w))) —e.

Then for such u let q(t) := (£(u) + €/16 — log(h(t)))t, so that

th’(t)) .

P €
a'(t) = €0 + ¢~ log(h(1) — (55

Now in case (a), q'(t) = £(u) + €/16 — log(h(t)) — n+ o(1), therefore the maximum
of g(t) holds at some point ¢, for which g’ (fo) = 0, so that under our assumption,

(25) h(to) — eg(“)"'f/léffl‘*'ﬂ(l) < h(elog(u)/n)e’""/z,
Now we must have
(26) to < log(u)(1 — €/(4n))/n,

otherwise, since 4 is non-decreasing and by Lemma 6.2,

) >%m@#%1—fﬁ)::((l_ e)el)“““>endz

helog(u)/n) —  h(elog(u)/n)

https://doi.org/10.4153/CJM-2007-006-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2007-006-4

146 Y. Lamzouri

contradicting (25). By (22), (25), and (26) and since h is non-decreasing, we deduce

that
00 oo eg(u)+e/16 '
o= [Txwera<n [T(S0
/1 X VT

elog(u)/n e&(u)+5/16 ¢ oo ef(“)Jrf/lﬁ t
=B, —— ) dt+ B, — ) dt
/1 (h(t)) +'/e (h(t))

log(u)/n
S(u)+e/16
< Beelog(u) ( e/ )tﬂ B, /OO /2 gy
n h(tO) elog(u)/n
1
_ B, 080 oty 4 (1) < 4,
n

for u large enough, which is a contradiction.

For case (b) q’(t) = £(u) +¢/16 —log(h(t)) — g(—lt), and the maximum of q(#) holds
at some point #y for which q’'(ty) = 0 (to avoid redundancy we take t;, = min{t :
q'(¥) = 0}, which is possible by the continuity of h(¢) and g(¢)). Now t; — oo as
u — 00, otherwise q’(fg) > 0 for u large enough. Thus,

eSte/16 | 1 to
27 = — ) =),
(27) ( h(te) ) eXp(g(to)) ¢
Now by (22),
o) o) S(u)+e/16 ¢t
_ gt g, ¢
(28) “ /1 V() EW dr < B, /1 ( W ) dt
log(u) ef(u)+6/16 ' oo ef(u)+6/16 ‘
= B, dt + B, / dt
/1 ( h(t) ) log(u) ( h(t) )

Considering the cases t; < log(u) and fy > log(u) (in which case g(t) is increasing
on [1,log(u)]), and using (27) and our assumption on &(u) we get that

log(u) L+e/16| 1
/ ( 0 ) dt < max(log(u)eo(l"g(“)),log(u) exp(—e/2log(u))) = u'®
1

using this, (28) and the assumption on £(u) we deduce that
(oo}
u < B’ + BE/ e~ dr = u°W + o(1),
log(u)

which contradicts our hypothesis.

Now in both cases h'(t)/h(t) < ¢/t for some positive constant ¢ and for all .
Then integrating both sides gives h(t) < t¢, and this with our result implies £ (u) <
log(log(u)). Thus by Lemma 6.1 and Theorem 1.8 the proposition follows. [ |
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