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1. Introduction. Let 5 be a completely regular topological space. Let 
C(S) denote the set of bounded, real-valued, continuous functions on 5. It is 
well known that C(S) forms a distributive lattice under the ordinary pointwise 
joins and meets. For any distributive lattice L and any ideal IQ L, a quasi-
ordering of L can be defined as follows : / 3 g if, for all h Ç L,fC\h 6 / implies 
g C\h G I . If equivalent elements under this quasi-ordering are identified, a 
homomorphic image of L is obtained. In this paper, the particular case where L 
is C(S) and / is any principal ideal will be studied. It will be shown that the 
homomorphic image obtained in this way is isomorphic to a sub-lattice of 53(5), 
the Boolean algebra1 of regular open sets of 5. This homomorphic image will be 
denoted by 8(5); it does not depend on the choice of the principal ideal / . For 
the case where 5 is a normal space, a topological characterization of 8(5) will be 
obtained. Finally it will be proved that 33(5) 'is isomorphic to the normal com­
pletion (see [1]) of 8(5). Incidentally these results prove, without using trans-
finite methods, that for any completely regular space 5, 33(5) is determined to 
within isomorphism by C(S), a fact which could also be inferred from the 
theorem of Kaplansky [3] that a compact Hausdorff space 5 is determined to 
within homeomorphism by C(S). 

2. A congruence relation. In everything that follows, 5 will denote a 
completely regular topological space. Denote by < , P\, U the ordinary point-
wise inequality, meet and join operations in C(S). 

Definition 2.1. / 3 g if, for all h € C(S),f r\h<0 implies2 g H h < 0. Write 
f ~ g if/ 3 g and g 2 / . 

LEMMA 2.1. On C{S), 2 is a quasi-ordering and ~ is a congruence relation. 

Proof. If / 3 g and g'Q.h, t h e n / Z> h is an immediate consequence of the 
definition. Also/ 3 / i s clear. Thus 2 is a quasi-ordering and consequently ^ is 
an equivalence relation (Birkhoff [1]). 

Received September 17, 1951. The author wishes to thank Professor R. P. Dilworth for 
his generous help and inspiration. 

xAn open subset of a topological space is called regular open if it coincides with the interior 
of its closure. It is well known (see Birkhoff [1, p. 177J) that the regular open sets form a 
complete Boolean algebra. 

2This definition puts the zero function in a distinguished position—a position which the 
lattice structure of C{S) does not support. It is easy to see however that if 0 is replaced by 
an arbitrary (fixed) /oG C(S), all the results of the paper go through with only slight modi­
fication. 
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Let / 2 g and f\ be any continuous function; then / O / i ^ ^ / i and 
/ U / i 3 g U / i . For suppose ( / P / i ) Pi A < 0. Then / P i (fi P A) < 0, so 
since / 2 g> g P (/i P A) < 0. Thus (g P / i ) P A < 0 and, since A was arbi­
trarily chosen, / P / i 2 g P / i - Next suppose (/W/i) P A < 0. This means 
/ i H K O j n K O and, because / 3 g, g P A < 0. Hence (g\Jfl)r\h = 
(g P A) U (/i P A) < 0 and again by definition / U / j D g U / i . 

It follows that if / ^ g, then / P / i ~ g P / i and / U / i ~ g U / i for any 
/i 6 C(5). Thus ~ i s a congruence relation and the proof of the lemma is 
complete. 

LEMMA 2.2. / "D g if and only if3 [x\ f(x) > 0}~ 2 {x \ g(x) > 0}~. 

Proof. First suppose {x \f(x) > 0}~ 3 {x | g(x) > 0}~. Let A G C(5) be 
such that / P A < 0. It will be shown that this implies g P A < 0, so (by 
definition) / D g . 

If Xo G {x ) g(x) > 0}~, then by hypothesis, x0 G {x | / (x) > 0}~. This means 
that if N is a neighbourhood of Xo, there is an x G N with /(x) > 0. Since 
/ P A < 0, it follows that A(x) < 0. Thus x0 G {x | A(x) < 0}~ = {x | A(x) < 0} 
and A(x0) < 0. Consequently (g P A)(x0) < A(x0) < 0. If x0 $ {x | g(x) > 0}~, 
then g(x0) < 0 and ( g P A)(x0) < g(x0) < 0. Hence for all points x0 of 5, 
(g P A)(xo) < 0; that is, g P A < 0. 

Now suppose/ 3 g- Let i f = {x | /(x) > 0} ~c P {x | g(x) > 0}. Clearly, M 
is open. Also if y G M, then/(^) < 0 and g(y) > 0. To show that {x I /(x) > 0}~ 
3 {% I g (#) > 0}~~, it suffices to prove that M is empty, since then {x | /(x) > 0}~ 
Z) {x J g(x) > 0}, and taking closures on both sides gives the desired result. 

Suppose M is not empty. Let Xo G ikT. By complete regularity, AG C(5) 
exists so that A (x0) = 1 and h(y) = 0 for all y $ M. Then (g P A) (x0) = min 
{1, g(x0)} > 0, so g P A non < 0. On the other hand, (/ P A) (y) < /(y) < 0 if 
y e My while (/ P A) (y) < h(y) = 0 if y $ M. T h u s / P A < 0. This contradicts 
/ D g and shows that M is empty. 

Denote by 8(5) the set of equivalence classes under ^ . Then by Lemma 2.1, 
8(5) is partially ordered under 3 and, with this ordering, it is a distributive 
lattice. If / G C(S), let -4/denote the congruence class containing/. 

LEMMA 2.3. 8(5) is isomorphic to the sub-lattice of the Boolean algebra of reg­
ular open sets of S which consists of all sets of the form I({x\ /(x) > 0}~) where 
f e c(S). 

Proof. The mapping Af —> I({x | / (x) > 0}~) is one-to-one by Lemma 2.2. 
Also4 

3For any set NÇ^ S, N~~ will denote the closure of N, Nc the complement of N in S, while 
the interior of N, Nc~c, will be represented by I(N). 

4The lattice operations in the Boolean algebra of regular open sets are given by P/\Q == 
I{[PC\QD = -PP<2, PVQ = I(P-\JÇT) and P ' = P" c . 
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Am,-+ /({* I (/ng)(«) > o}-) = /([{*!/(*) > 0} n {x | g(x) > o}]-) 

4/u,-*/(i*la^f)w>oh-/({* 
= / ({* 

/(*) > 0}-) A I({x | g(x) > 0}-), 
f(x)>0}-U{x\g(x)>0}-) 
f(x)>0}~) V/({*U(*)>0}-). 

The following lemma gives information on the image of 8(5) which will be 
needed later. 

LEMMA 2.4. Let P be a regular open set of S. 
(a) If P 9e 0 (the null set),f £ C(S) exists so that 0 9e I({x 
(b) If P 9e S (the unit set), f £ C(S) exists so that S 9e I ({x 

f(x) > 0}- )CP. 
/(*) > 0 ) - ) D P . 

Prop/', (a) Let x0 Ç P . By complete regularity, choose / 6 C(S) so that 
/(so) = 1 and f(y) = 0 il y$P. Then x0 € {x | /(x) > 0} C P so x0 6 J({x | 
/(*) > 0}-) C / (P - ) = P . 

(b) P - ^ 5 since otherwise P = / (P") = 7(5) = S. Let x0 Ç P~c. Choose 
/ 6 C(5) so that /(*<,) = - 1 and /(y) = 1 for all y G P" . Then 

P C {x|/(x) > 0 J C / ( { x | / ( x ) > 0 } " ) C { x | / ( x ) > 0 } 9*S. 

It may happen that the image of 2(S) under the mapping of Lemma 2.3 
coincides with the whole Boolean algebra of regular open sets. For this to be the 
case, it is clearly necessary and sufficient that every regular open set P of 5 be 
of the form P = I({x \f(x) > 0}~) for some / 6 C(S). This condition prevails 
in two cases of special importance. The first is that in which S is a metric space. 
For then, if P is a regular open set a n d / G C(S) is defined by f(x) = p(x, P c) , 
p being the metric of 5, P = (x | / (x) > 0} = I({x\f(x) > 0}") and the 
criterion is fulfilled. The second important case is that of an extremal space, that 
is, a space in which the closure of every open set is open. In such a space, the 
regular open sets are evidently just the open and closed sets. Hence the charac­
teristic function <j>P of a regular open set P is continuous and P — {x | <j>P(x) > 0} 
= I({x\ <f)p(x) > 0}~). An important consequence is: 

THEOREM 2.1. The Boolean algebra of regular open sets of a completely regular 
topological space S is isomorphic to the complete Boolean algebra obtained by re­
ducing the normal completion of C(S) modulo the congruence of Definition 2.1. 

Proofs By the theorem of Dilworth [2], the normal completion of C(S) is 
isomorphic to C(@) where © is the Boolean space associated with S (5), the 
Boolean algebra of regular open sets of 5. Then (see Stone [4; 5]) © is extremal 
and its Boolean algebra of open and closed sets is isomorphic to 33(5). This 
means that 5 and © have the same Boolean algebra of regular open sets. The 
theorem then follows from the above remark. 

In spite of the above results, it is not true that, for all completely regular 
spaces 5, the image of S (S) is the whole Boolean algebra of regular open sets. 
This is shown by the following example. 
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Let 5 be the set W, consisting of all ordinal numbers < ft (the least ordinal 
of the third class), together with the real interval J = [0, 1], where ft is identified 
with 0. Simply order 5 by defining a < x for all a G W and x G / , and by re­
taining the usual order in îFand / . Impose the interval topology (see [1]) on 5. 
It is easily seen that 5 is completely regular. Now the interval P = {a G S \ a < 
ft} is a regular open set of 5. Suppose/ G C(S) exists with P = I({a\ f(a) >0}~). 
Then f(a) < 0 holds for all a > 0 = ft. Let an = sup {a \ f(a) > 1/n}. For all 
ny an < ft since {a € S \ f(a) < 1/n} is open and contains I. Thus an is an ordinal 
of the second class, a — sup an, as the limit of a sequence of ordinals of the 
second class, is itself an ordinal of the second class. Hence a < 12. Because 

{a \f(a) > 0} = U {a \f(a) > 1/n} Ç U {a \ a < an} Q {a | a < a}, 
n n 

it follows that I({a \f(a) > 0}~) C {a | a < a} ^ P . This is a contradiction, 
showing that no such / Ç C(5) can exist. 

The preceding example indicates the need for a topological characterization 
of 8(5). For the important case where 5 is a normal space, the following theorem 
answers this need. 

THEOREM 2.2. Let S be a normal topological space. In the mapping M —> I(M~) 
of the lattice of open sets onto the Boolean algebra 33 (S), ? (S) is the image of the 
sub-lattice of all open sets which are the countable unions of closed sets (that is, 
open Fa sets). 

Proof. 2(S) consists of all sets of the form P — I({x \f(x) > 0}~) where 

fec(s). But 
{*!/(*) > 0 } = 0{x\f(x)>l/n] 

is an open Fa set. Thus every P G 2 (S) is the image of an open Fa set. 
On the other hand, suppose P = I(M~) where M is open and 

M= [}Fn 

is the countable union of the closed sets Fn. By Urysohn's lemma, for each «, it 
is possible to select fn G C(S) so that/„(x) = 1 for all x £ Fny fn(x) = 0 for all 
x e Mc and 0 < /„ < 1. Define 

/ = É(2-n)/n. 

Then / Ç C(S) and /(*) = 0 if x 6 ikfc. If x G itf, then x G Fn for some », 
whence 

/(x) > 2-w/»(*) = 2 " n > 0 . 

Consequently M = {x | / (x) > 0} a n d P = I(M~) = 7({x | / (x) > 0}~) G 8(5) 
Thus the image of any open Fa is in 8(5) and the proof is complete. 

https://doi.org/10.4153/CJM-1953-011-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-011-0


BOOLEAN ALGEBRA OF OPEN SETS 99 

3. Completion. Having constructed the homomorphic image of C(S), it will 
now be shown that the normal completion of 2(S) is isomorphic to the Boolean 
algebra of regular open sets. 

Let it be recalled that the normal completion of a lattice 2 consists of the 
normal subsets (or closed ideals) of 2 ordered by inclusion, that is, those subsets 
which contain all lower bounds to the set of their upper bounds. The mapping 
A —> {B G £ | £ Ç ^4} imbeds ? as a sub-lattice of its normal completion (for 
proofs, see Birkhoff [1]). 

LEMMA 3.1.6 Let 2 be a sub-lattice of the complete Boolean algebra S3. Suppose, 
moreover, that the following dual conditions are satisfied: If X £ S3 and X ^ Z 
{zero of 33), then A Ç 2 exists with Z ^ A Ç I If X G S3 and X ^ I (unit of 
S3), then A (E 2 exists with I 9^ A 2 X. Then the normal completion of 2 is 
isomorphic to S3. 

Proof. For X 6 S3, let 3lx = {A G 2 \ A C X}. The first task is to show 
that %lx is a normal subset of 2. 

First note that, if A 2 B holds for some A € 2 and all B £ 9tx, then i D I 
For otherwise i ' H I ^ Z and, by hypothesis, B Ç 8 exists with i ' H I S 
B T£ Z. This means 4̂ non 2 5 while 5 Ç Z which contradicts the assumption 
on A. Thus the upper bounds in 2 of all B Ç 9^Y are precisely those A satisfying 
A 2 X. As a result, the preceding argument can be dualized to show that a 
lower bound, A, of the set of all upper bounds of yix satisfies A Ç X. Consequent­
ly yix is normal. 

Next, every normal subset of 2 is of the form 3lx for some X Ç S3. In fact, if 
9ft is normal, let X = U 9ft (sup in S3). Then if ^ Ç 9ft, ^ C X, so 9ft C 
9tx. On the other hand, by the definition of X, if C 2 B holds for all B 6 9ft, 
C 2 X- Thus 4̂ 6 9?x (that is, A Q X) implies A C C for all upper bounds 
of 9ft. Since 9ft is normal, this means A G 9ft, so 3lx € 9ft. 

The above argument shows X —» 9lx is a mapping from S3 onto the normal 
completion of 2. The mapping obviously preserves order: Xi C X2 implies 
%lXl Q 9ïxa- To complete the proof, it is sufficient to show that this mapping 
is one-to-one. 

Suppose Xi non Ç X2. Then Z ?± X\C\ X2\ so A Ç 2 exists with Z ^ i C 
Xi H X2 '. It follows that A G 5RXl and A i 9?x„ that is, 9îXl non C 9tx,. 

COROLLARY. If S\ and S2 are two completely regular topological spaces such that 
2 (Si) is isomorphic to 8(^2), then Si and S2 have isomorphic Boolean algebras 
of regular open sets. 

According to Lemma 2.4 the above principle is applicable to the image of 
8(5) in the complete Boolean algebra of regular open sets. The result of this 
application is: 

6This lemma, in essence, was presented by Professor Dilworth during his 1950-51 seminar 
at C.I.T. 
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THEOREM 3.1. The Boolean algebra of regular open sets of a completely regular 
topological space S is isomorphic to the normal completion of the lattice obtained by 
reducing C(S) modulo the congruence of Definition 2.1. 
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