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ITERATING THE COFINALITY-� CONSTRUCTIBLE MODEL

UR YA’AR

Abstract. We investigate iterating the construction of C∗, the L-like inner model constructed using
first order logic augmented with the “cofinality �” quantifier. We first show that (C∗)C

∗
= C∗ �= L is

equiconsistent with ZFC, as well as having finite strictly decreasing sequences of iterated C∗s. We then
show that in models of the form L[U ] we get infinite decreasing sequences of length �, and that an inner
model with a measurable cardinal is required for that.

§1. Introduction. The model C ∗, introduced by Kennedy, Magidor, and
Väänänen in [5], is the model of sets constructible using the logic L(Qcf

� )—first
order logic augmented with the “cofinality�” quantifier. To be precise, for a regular
cardinal κ we define a logic L(Qcf

κ ) where we add to the syntax of first order logic a
quantifier Qcf

κ whose semantics are given by

M � Qcf
κ xyϕ

(
x, y, b̄

)
⇐⇒

{
(c, d ) ∈M 2 | M � ϕ

(
c, d, b̄

)}
is a linear order of cofinality κ.

This logic, first introduced by Shelah [10], is a proper extension of first order logic,
which is fully compact. Using this logic we construct inner models of set theory,
akin to Gödel’s constructible universe L:

Definition 1.1. C ∗
κ , the class ofL(Qcf

κ )-constructible sets, is defined by induction:

L′
0 = ∅,

L′
α+1 = DefL(Qcf

κ ) (L′
α) ,

L′
� =

⋃
α<�

L′
α for limit �,

C ∗
κ =

⋃
α∈Ord

L′
α,

where for any logic L extending first-order logic and a set M,

DefL (M ) :=
{{
a ∈M | (M,∈) �L ϕ

(
a, b̄

)}
| ϕ ∈ L; b̄ ∈M<�

}
.

We focus on the case κ = � and denoteC ∗ := C ∗
� . As shown in [5],C ∗ is a model

of ZFC, and in fact it is the same asL[Ord�] where Ord� = {α ∈ Ord | cf (α) = �}.
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ITERATING THE COFINALITY-� CONSTRUCTIBLE MODEL 1683

Like in the case of L, one can phrase the formula “V = C ∗”, i.e., ∀x∃α(x ∈ L′
α)

whereL′
α is theαth level in the construction ofC ∗. Unlike L, however, it is not always

true that C ∗ � V = C ∗, which is equivalent to the question whether (C ∗)C
∗

= C ∗.
This is clearly the case if V = L, so the interesting question is whether this can hold
with C ∗ �= L. In Section 2 we show that this is consistent relative to the consistency
of ZFC. Next we investigate the possibilities of C ∗ � V = C ∗. In such a case, it
makes sense to define recursively the iterated C ∗s:

C ∗0 = V,

C ∗(α+1) = (C ∗)C
∗α

for any α,

C ∗α =
⋂
�<α

C ∗� for limit α.

This type of construction was first investigated by McAloon [8] regarding HOD, the
class of hereditarily ordinal definable sets, where he showed that it is equiconsistent
with ZFC that there is a strictly decreasing sequence of iterated HODs of length �,
and the intersection of the sequence can be either a model of ZFC or of ZF + ¬AC.
Harrington also showed (in unpublished notes; cf. [14]) that the intersection might
not even be a model of ZF. Jech [4] used forcing with Suslin trees to show that it
is possible to have a strictly decreasing sequence of iterated HODs of any arbitrary
ordinal length, and later Zadrożny [13] improved this to an Ord length sequence.
In [14] Zadrożny generalized McAloon’s method and gave a more flexible framework
for coding sets by forcing, which he used to give another proof of this result. HOD
can be described also as the model constructed using second order logic (as shown
by Myhill and Scott [9]), so it is natural to ask which of the results for HOD apply
to other such models, specifically to C ∗. In Section 3 we show that unlike the case
of HOD, without large cardinals we can only have finite decreasing sequences of
iterated C ∗s, and that the existence of an inner model with a measurable cardinal is
equivalent to the existence of an inner model with a strictly decreasing C ∗ sequence
of length �.

§2. Relative consistency of “V = C ∗ �= L”. In this section we follow the method
of Zadrożny [14] to obtain the following result:

Theorem 2.1. If ZFC is consistent then so is ZFC + V = C ∗ �= L+ 2ℵ0 = ℵ1.

The idea1 of Zadrożny’s proofs, which are based on results of McAloon’s [7, 8], is
to add a generic object (to make V �= L), code it using some other generic object,
then code the coding, and so on, iterating until we catch our tail. Our coding tool
will be the modified Namba forcing of [5, Section 6], which adds a countable cofinal
sequence to any element of some countable sequence of regular cardinals> ℵ1 (and
only to them).

Definition 2.2. Suppose S = 〈�n | n < �〉 is a sequence of regular cardinals >
�1 such that every �n occurs infinitely many times in the sequence. Let 〈Bn | n < �〉

1I’d like to thank Kameryn Williams for his exposition of this and related results in his blog—
http://kamerynjw.net/2019/12/04/omegath-hod.html.
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be a partition of � into infinite sets. The modified Namba forcing with respect to S is
defined as follows. Conditions are trees T with� levels, consisting of finite sequences
of ordinals, such that if (α0, ... , αi) ∈ T and i ∈ Bn then:

1. αi < �n.
2. |{� | (α0, ... , αi–1, �) ∈ T}| ∈ {1, �n}.
3. For every m there areαi+1, ... , αk–1 such thatk ∈ Bm and |{� | (α0, ... , αk–1, �) ∈
T}| = �m.

A condition T ′ extends another condition T, T ′ ≤ T , if T ′ ⊆ T .

If 〈Tn | n < �〉 is a generic sequence of conditions, then the stems of the trees Tn
form a sequence 〈αn | n < �〉 such that 〈αi | i ∈ Bn〉 is cofinal in �n. Thus, in the
generic extension cf (�n) = � for all n < �, and KMV show that these are the only
regular cardinals that change their cofinality to �. Furthermore, it is shown that
revised countable support iterations of this forcing preserves �1.

In [5, Theorem 6.7], these tools are used to produce a model of ZFC + V = C ∗ �=
L + 2ℵ0 = ℵ2, but this requires an inaccessible cardinal (as proven there as well).
Here we show that we can get a model of ZFC + V = C ∗ �= L from ZFC alone,
and this model will satisfy 2ℵ0 = ℵ1. These two results covers all possibilities, since
in [5, Corollary to Theorem 5.20], it is shown that the statement V = C ∗ implies
that 2ℵ0 ∈ {ℵ1,ℵ2}, and for any κ > ℵ0 2κ = κ+.

We say that a set X is nice if it is a countable set of ordinals which does not
contain any of its limit points, and such thatL[X ] agrees with L on�1 and on regular
cardinals starting fromℵsupX+2. Note that ifS ∈ L is a countable sequence of regular
L cardinals > ℵ1, and X is generic for the modified Namba forcing corresponding
to S, then X is nice as the size of the forcing is ≤ ℵsupX+1 (we assume GCH, at
least starting from this point). Assume V = L [A0] where A0 is nice. Set P0 = {1},
and inductively we assume that Pn forces the existence of a nice set of ordinals An,
denote �n = supAn and we set Pn+1 = Pn ∗ Q̇n+1 where Q̇n+1 is the modified Namba
forcing to add a Namba sequence Eα to each ℵL�n+α+2 such that α ∈ An (note that
by niceness, ℵL�n+α+2 is still a regular uncountable cardinal in V Pn ). We can require

that Eα ⊆
(
ℵL�n+α+1,ℵL�n+α+2

)
, so that An+1 :=

⋃
{Eα | α ∈ An} does not contain

any of its limit points, and as we noted, it is nice. P� is the full support (which is
in our case also the revised countable support) iteration. Let G ⊆ P� generic, and
denote A =

⋃
n<� An. By the properties of the modified Namba forcing, for any 	,

V [G ] � cf
(
ℵL	+2

)
= � iff 	 = �n + α for α ∈ An.

Remark 2.3. 1. �n+1 = ℵL�n ·2, so inductively depends only A0 and not on the
generics. �� := supA satisfies �� = ℵL�� and is of cofinality �.

2. From otp(A0) and A we can inductively reconstruct each An – A0 is the first
otp(A0) elements of A, and if we know An, then An+1 are the first otp(An) · �
elements of A above supAn.

3. Hence for each n, otp(An) = otp(A0) · �n.
4. If α ∈ An, then Eα = A ∩

(
ℵL�n+α+1,ℵL�n+α+2

)
.

Proposition 2.4. (C ∗)V [G ] = L [A] = V [G ].
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Proof. By the properties of the modified Namba forcing, at each stage of the
iteration the only cardinals of L [A0] receiving cofinality � are the ones in An.
The whole iteration will also add new � sequences to supA, but this already had
cofinality � as we noted earlier. So V [G ] � cf (	) = � iff either V � cf (	) = � or
there is n s.t. V � cf (	) = ℵL�n+α+2 for α ∈ An. And on the other hand, if α ∈ A
then V [G ] � cf

(
ℵL�n+α+2

)
= �. So

A =
⋃
n<�

{
α ∈ [�n–1, �n) | V [G ] � cf

(
ℵL�n+α+2

)
= �

}
∈ (C ∗)V [G ]

(where �–1 = 0); hence L [A] ⊆ (C ∗)V [G ].
As we noted, for every α ∈ A, Eα can be reconstructed from A and α, so

〈Eα | α ∈ A〉 is in L [A]. G can be reconstructed from this sequence; hence
V [G ] ⊆ L [A] ⊆ (C ∗)V [G ], so the equality follows. �

To finish the proof of Theorem 2.1, we start with a model ofV = L+ “there is no
inaccessible cardinal,” and take, e.g., A0 = �. Then L[A] will satisfy V = C ∗ �= L,
and 2ℵ0 = ℵ1 will still hold since by [5, Theorem 6.7], violating CH in a model of
V = C ∗ requires an inaccessible cardinal.2

§3. Iterating C ∗.

Theorem 3.1. If ZFC is consistent then so is the existence of a model with a
decreasing C ∗-sequence of any given finite length.

Proof. Going back to the proof of Theorem 2.1, we note that for any n,

(C ∗)
L

[⋃n+1
k=0 Ak

]
= L

[
n⋃
k=0

Ak

]
:

An can be computed fromAn+1 using the cofinality-� quantifier, which gives ⊇, and
on the other hand, from

⋃n
k=0Ak we know exactly which ordinals will have cofinality

� in L
[⋃n+1

k=0Ak

]
, which gives ⊆. So by starting, e.g., from A0 = �, L

[⋃n
k=0Ak

]
has the decreasing C ∗ chain

L

[
n⋃
k=0

Ak

]
= C ∗0 � C ∗1 � ··· � C ∗n = L. �

We now show that without large cardinals this is best possible.

Lemma 3.2. Let E =
{
α < �V2 | cf (α) = �

}
.

1. If 0
 does not exist, then C ∗ = L [E].
2. If there is no inner model with a measurable cardinal, then C ∗ = K [E] where K

is the Dodd–Jensen core model.

Proof. 1. Clearly E ∈ C ∗ so L [E] ⊆ C ∗. Let α ∈ Ord. If cf (α) ≥ �V2 then
also L � cf (α) ≥ �V2 so in particular L � cf (α) > �. If cf (α) < �V2 , let A ⊆ α

2It can in fact be proved that our forcing does not add new reals in general, but as we are looking for
a consistency result this is not required.
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be cofinal, so |A| ≤ ℵ1. By the covering theorem, there is B ∈ L, A ⊆ B ⊆ α s.t.
|B | = ℵ1 + |A| = ℵ1. Let ᾱ = otp(B), so ᾱ < �V2 , and cf (α) = cf (ᾱ), so cf (α) =
� iff ᾱ ∈ E.

To summarize, we get that for every α, in L [E] we can determine whether
cf (α) = � or not, so C ∗ ⊆ L [E].

2. The proof is exactly the same, noting that K ⊆ C ∗ by [5, Theorem 5.5], and
that our assumption implies the covering theorem holds for K. �

Theorem 3.3. If there is no inner model with a measurable cardinal, then there is
k < � such that C ∗k = C ∗(k+1).

Proof. By applying Lemma 3.2 clause 2 inside each C ∗n, for every n we have
C ∗(n+1) = K [En] where

En =
{
α < �C

∗n
2 | C ∗n � cf (α) = �

}
.

The sequence
〈(
�C

∗n
1 , �C

∗n
2

)
| n < �

〉
is non-increasing in both coordinates; hence it

stabilizes. Let k be such that (�C
∗k

1 , �C
∗k

2 ) = (�C
∗(k+1)

1 , �C
∗(k+1)

2 ), and we claim that
C ∗(k+1) = C ∗(k+2). To simplify notation we assume w.l.o.g. k = 0, i.e., �C

∗
i = �Vi

for i = 1, 2 (so we can omit the superscript) and we want to show that (C ∗)C∗ = C ∗.
We have

C ∗ = K [{α < �2 | V � cf (α) = �}] = K [E0] ,

(C ∗)C∗ = K [{α < �2 | C ∗ � cf (α) = �}] = K [E1] .

Clearly E1 ⊆ E0. On the other hand, if α ∈ �2\E1, this means that C ∗ � cf (α) =
�1, and since �C

∗
1 = �1, we get that also V � cf (α) = �1, so α ∈ �2\E0, thus

E1 = E0, and our claim is proved. �
Our next goal is to show that this is precisely the consistency strength of a

decreasing sequence:

Theorem 3.4. If there is an inner model with a measurable cardinal, then there is
an inner model in which the sequence 〈C ∗n | n < �〉 is strictly decreasing.

We work in L[U ] where U is a normal ultrafilter on κ, and denote byMα the αth
iterate of L[U ] by U, jα,� :Mα →M� the elementary embedding, κα = j0,α(κ) and
U (α) = j0,α(U ).

In [5, Theorem 5.16] the authors show that if V = L[U ] then C ∗ =M�2 [E]
where E = {κ�·n | n < �}. We improve this by showing that C ∗ is unchanged after
adding a Prikry sequence to κ, and then investigate the C ∗-chain of L[U ]. First we
prove two useful lemmas.

Lemma 3.5. E = {κ�·n | n < �} is generic overM�2 for the Prikry forcing on κ�2

defined from the ultrafilter U (�2) ∈M�2 .

Proof. We use Mathias’s characterization of Prikry forcing:

Fact 3.6 (Mathias, cf. [6]). Let M be a transitive model of ZFC, U a normal
ultrafilter on κ, then S ⊆ κ of order type � is generic over M for the Prikry forcing
defined from U iff for any X ∈ U , S\X is finite.
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So we need to show that for any X ∈ U (�2), E\X is finite. The ultrafilter U (�2) is
defined by X ∈ U (�2) iff ∃α < �2

{
κ� | α ≤ � < �2

}
⊆ X . For X ∈ U (�2), choose

some α < �2 such that
{
κ� | α ≤ � < �2

}
⊆ X , then E\α = {κ�·n | � · n < α},

and since κ�2 = sup {κ�·n | n < �}, this set is finite. Hence E = {κ�·n | n < �}
satisfies the characterization. �

Lemma 3.7. For any � < κ and any α,M� � cf (α) = κ iff V � cf (α) = κ.

Proof. κ is regular in V ; thus it is regular in everyM� which is an inner model
of V. If M� � cf (α) = κ, then there is a cofinal κ-sequence in α (in both M�
and V), and since κ is regular we get V � cf (α) = κ. If V � cf (α) = κ, then
the same argument rules out M� � cf (α) < κ. So the only case left to rule out is
V � cf (α) = κ ∧ M� � cf (α) > κ. If � = 	 + 1, thenM� is contained inM	 and
closed under κ-sequences in it, so they agree on cofinality κ, and by induction we
get that they agree with V as well. So assume � is limit and let 〈α� | � < κ〉 be a
cofinal sequence in α. By definition of the limit ultrapower, each α� is of the form
j�̄,�(ᾱ�) for some �̄ < � . We can also assume that each such �̄ is large enough so

that α ∈ Range(j�̄,�). Since � < κ, there is some �̄ fitting κ many α�s, so without

loss of generality we can assume �̄ fits all of them. We can assume �̄ > 0 so κ is a

fixed point of j�̄,� . If ᾱ = sup {ᾱ� | � < κ}3 then, since α = sup
{
j�̄,�(ᾱ�) | � < κ

}
and α ∈ Range(j�̄,�), we must have that α = j�̄,�(ᾱ). ᾱ is of cofinality κ in V, so by
the induction hypothesis also inM�̄ , hence by elementarityM� � cf (α) = κ. �

Proposition 3.8. If V = L[U ] where U is a measure on κ, G is generic for Prikry
forcing on κ, then (C ∗)V [G ] = (C ∗)V .

Proof. After forcing with Prikry forcing, the only change of cofinalities is that
κ becomes of cofinality �. So V [G ] � cf (α) = � iff V � cf (α) ∈ {�, κ}. We now
follow the proof of [5, Theorem 5.16].

Consider M�2 , the �2 iterate of V, and let E = {κ�·n | n < �}. As we noted
above, by [5, Theorem 5.16] we know that (C ∗)V =M�2 [E], so it is enough to
show that also (C ∗)V [G ] =M�2 [E].

Fix an ordinal α. As in the proof of [5, Theorem 5.16], V � cf (α) = � iff
M�2 [E] � cf (α) ∈ {�} ∪ E ∪ {supE}. Regarding cofinalityκ–by Lemma 3.7,V �
cf (α) = κ iff M�2 � cf (α) = κ. As we noted, M�2 = L[u′] where u′ is a measure
on κ�2 and by Lemma 3.5, E is Prikry generic over it; hence, since cofinality κ is
unaffected by Prikry forcing on κ�2 , we getV � cf (α) = κ iffM�2 [E] � cf (α) = κ.
Putting these facts together, inM�2 [E] we can detect whether V � cf (α) ∈ {�, κ},
so we know whether V [G ] � cf (α) = �; hence we can construct (C ∗)V [G ] inside
M�2 [E].

The other direction of the proof is almost the same as in [5, Theorem 5.16]: E
is the set of ordinals in the interval (κ, κ�2 ) which have cofinality � in V [G ] and
are regular in the core model,4 which is contained in any C ∗, so E ∈ (C ∗)V [G ], and
from E one can defineM�2 , soM�2 [E] ⊆ (C ∗)V [G ]. �

3Note that we can’t assume this sequence is inM�̄.
4Note that here we had to avoid κ which also satisfies this.
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Now we can analyze the C ∗-chain of V = L[U ]. We stick to the notation C ∗α ,
starting from C ∗0 = L[U ] =M0, with Mα being the αth iterate of L[U ] and κα
the αth image of the measurable cardinal. So by [5, Theorem 5.16] we have C ∗1 =
M�2 [E1] for E1 = {κ�·n | n < �}. As we noted earlier M�2 is also of the form
L[U ′] for the measurable κ�2 , and by Lemma 3.5, E1 is Prikry generic over it, so by
Proposition 3.8,

C ∗2 = (C ∗)M�2 [E1] = (C ∗)M�2 ,

which is again the �2th iterate of M�2 , i.e., M�2+�2 , plus the corresponding
sequence–E2 =

{
κ�2+�·n | n < �

}
. So C ∗2 =M�2·2 [E2]. We can continue induc-

tively, and get the following:

Theorem 3.9. If V = L[U ] then for every 1 ≤ m < � C ∗m =M�2·m [Em] where
Mα is the αth iterate of V, κα the αth image of the measurable cardinal, and Em ={
κ�2·(m–1)+�·n | n < �

}
.

To see that this gives us a strictly decreasing sequence of models, consider the
following. For every m, κ�2·m is the single measurable inM�2·m, by which we iterate,
so it remains regular in all subsequent models, in particular in M�2·(m+1). Since
Em+1 is Prikry generic for κ�2·(m+1) which is larger than κ�2·m, the latter remains
regular inM�2·(m+1)[Em+1], while inM�2·m[Em] it is singular, so indeed

C ∗m =M�2·m [Em] �=M�2·(m+1) [Em+1] = C ∗(m+1).

This concludes the proof of Theorem 3.4.
To analyze (C ∗�)L[U ], we will use the following theorem, due to Bukovský [1, 2]

and Dehornoy [3]:

Fact 3.10. If κ is measurable, Mα is the αth iterate of V by a normal ultrafilter
on κ, and κα is the αth image of κ, then for any limit ordinal � exactly one of the
following holds:

1. If ∃α < � s.t.Mα � cf (�) > � then
⋂
α<� Mα =M�.

2. If � = α + � for some α, then 〈κα+n | n < �〉 is Prikry generic over M� and⋂
α<� Mα =M� [〈κα+n | n < �〉] .

3. Otherwise,
⋂
α<� Mα is a quasi-generic extension ofM�, hence satisfies ZF, but

doesn’t satisfy AC.

Corollary 3.11. If V = L[U ] then C ∗� =
⋂
α<�3Mα and it satisfies ZF but

not AC.

Proof. By definition and our previous calculation,

C ∗� =
⋂
m<�

C ∗m =
⋂

1≤m<�
M�2·m [Em]

and for each m ≥ 1, Em /∈M�2·(m+1)[Em+1] so⋂
1≤m<�

M�2·m [Em] =
⋂
m<�

M�2·m =
⋂
α<�3

Mα.

Since �3 is of cofinality � but not of the form α + �, the conclusion follows from
Fact 3.10 clause 3. �
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§4. Conclusion and open questions. We summarize what is now known in terms
of equiconsistency:

1. ZFC is equiconsistent with V = C ∗ �= L + 2ℵ0 = ℵ1.
2. Existence of an inaccessible cardinal is equiconsistent withV = C ∗+ 2ℵ0 = ℵ2.
3. Existence of a measurable cardinal is equiconsistent with ∀n < �(C ∗n �
C ∗(n+1)) and C ∗� � ZF + ¬AC.

Compared to the results regarding HOD, the following questions remain open:

Question 4.1. 1. Is it possible, under any large cardinal hypothesis, that ∀n < �
C ∗n � C ∗(n+1) and C ∗� � ZFC? More generally, for which ordinals α can we
get a decreasing C ∗ sequence of length α?

2. Is it possible, under any large cardinal hypothesis, that ∀n < � C ∗n � C ∗(n+1)

and C ∗� � ZF?

A natural first attempt towards answering the first question would be to try and
work in a model with more measurable cardinals. However, it seems that it would
require at least measurably many measurables: in a forthcoming paper [12], we
generalize [5, Theorem 5.16] and our Proposition 3.8 and show the following:

Theorem 4.2. Assume V = L [U ] where U = 〈U	 | 	 < �〉 is a sequence of
measures on the increasing measurables 〈κ	 | 	 < �〉where� < κ0. Iterate V according
to U where each measurable is iterated�2 many times, to obtain

〈
M	α | 	 < �, α ≤ �2

〉
,

with iteration points
〈
κ	α | 	 < �, α ≤ �2

〉
, and set M� as the directed limit of this

iteration. Let G be generic over V for the forcing adding a Prikry sequence to every
κ	 . Set for every 	 < � E	 =

〈
κ	�·n | 1 ≤ n < �

〉
and Ê	 =

〈
κ	�·n | 0 ≤ n < �

〉
then

(C ∗)V =M� [〈E	 | 	 < �〉] ,
(C ∗)V [G ] =M� [〈Ê	 | 	 < �〉].

So, if V = L [U ] as above, C ∗ is of the form L [U1] [G1] for some sequence of
measures and a sequence of Prikry sequences on its measures, and so C ∗2 is again
of that form, where we iterated the measures in U �2 · 2 many times and add Prikry
sequences. So again, as we’ve done here, we’ll get that C ∗� is the intersection of
the models M�

�2·n where we iterated each measure �2 · n times. This is due to the
facts that changing the order of iteration between the measures doesn’t change the
final result, and that the Prikry sequences “fall out” during the intersection. Now,
we don’t have a complete analysis of intersections of iterations by more than one
measure, but Dehornoy proves the following more general fact:

Fact 4.3 [3, Section 5.3, Proposition 3]. For every α letNα be the αth iteration of
V by some measure. Assume � is such that for every α < �, Nα � cf(�) = � but there
is no 
 such that � = 
 + �. Then if M is a transitive inner model of ZFC containing⋂
α<� Nα , then there is some α < � such that Nα ⊆M .

So, if we take Nα to be the iteration of V by the first measure in U , we get that
C ∗� contains

⋂
α<�3 Nα , but doesn’t contain any Nα for α < �3, so C ∗� cannot

satisfy AC.
Furthermore, a recent result by Welch [11] shows that under the assumption

that Ok (O-kukri) doesn’t exist, i.e., there is no elementary embedding of an inner
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model with a proper class of measurables to itself (and in particular no measurable
limit of measurables), the characterization (C ∗)V =M� [〈E	 | 	 < �〉] holds for
any � ≤ Ord, and it seems likely that the analysis of the iterated C ∗ will be the same
as well. Hence a different approach, or larger cardinals, would be required to answer
this question.

A different line of inquiry stems from the following fact:

Fact 4.4 [5]. If there is a proper class of Woodin cardinals then the theory of C ∗

is unchanged by forcing.

So the question whether C ∗ � V = C ∗ cannot be changed under forcing in the
presence of class many Woodin cardinals. If the sequence ofC ∗α is definable (perhaps
up to some ordinal) then this will also be in the theory of C ∗ (note that on the face
of it even the sequence up to � may not be definable).

Question 4.5. What can be deduced on the sequence of iterated C ∗ from a proper
class of Woodin cardinals?
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