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NEW METHODS AND CRITICAL ASPECTS IN BAYESIAN MATHEMATICS FOR
14C CALIBRATION

Peter Steier1 • Werner Rom2 • Stephan Puchegger1

ABSTRACT. The probabilistic radiocarbon calibration approach, which largely has replaced the intercept method in 14C dat-
ing, is based on the so-called Bayes’ theorem (Bayes 1763). Besides single-sample calibration, Bayesian mathematics also
supplies tools for combining 14C results of many samples with independent archaeological information such as typology or
stratigraphy (Buck et al. 1996). However, specific assumptions in the “prior probabilities”, used to transform the archaeolog-
ical information into mathematical probability distributions, may bias the results (Steier and Rom 2000). A general technique
for guarding against such a bias is “sensitivity analysis”, in which a range of possible prior probabilities is tested. Only results
that prove robust in this analysis should be used. We demonstrate the impact of this method for an assumed, yet realistic case
of stratigraphically ordered samples from the Hallstatt period, i.e. the Early Iron Age in Central Europe.

INTRODUCTION

From a radiocarbon measurement one can easily get a mathematical probability distribution, i.e. a
completely quantitative result. Regarding the dating of an archaeological sample, this distribution
for every calendar year contains the probability that the sample originated in that individual year. In
many cases the 14C age is not the only available information on archaeological samples. Additional
information may originate from typology, stratigraphy, or dendrochronology. Typology and stratig-
raphy supply information in a qualitative form, i.e. they allow grouping of samples or determining
their relative chronological order. By accounting for this additional information one may expect to
achieve a better-defined date than by using only the information from the 14C measurement.

In the conventional way, these two types of information are combined as follows: the probability
distributions from the 14C measurement are condensed into 95% highest probability density (HPD)
intervals, i.e. intervals on the calendar axis that contain the most probable 95% of the respective
distributions; next, this condensed information is combined with the thereof independent additional
knowledge by archaeological reasoning. However, several insufficiencies of this approach are obvi-
ous: on one hand, information contained in the details of the probability distribution is thrown
away. On the other hand, the region containing the residual 5% that lie outside the 95%-HPD inter-
val will be simply ignored, although this region may become relevant when the 14C age information
is combined with the additional archaeological information.

One may overcome both these insufficiencies by using Bayesian statistics (Bayes 1763; Jeffreys
1961), a method that has been successfully applied in many scientific fields (Malakoff 1999). In
general, Bayesian statistics are a consistent mathematical framework to update prior information or
knowledge with new data from a measurement to arrive at a more accurate posterior knowledge.
This, yet, requires that all information is available as probability distributions. So the Bayesian
approach in 14C dating is different from conventional archaeological reasoning insofar as the quali-
tative archaeological information must be transformed into mathematical probability distributions
for the calendar ages of the samples. For a set of samples A, B,... with calendar ages tA, tB,..., we
identify the additional archaeological information with the prior probability, and the calibrated 14C
probability distributions , ,... with the new data. By applying Bayes’ theorem we
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obtain “updated” probability distributions, the posterior probabilities, and especially the marginal
posterior probability distributions, , , ... for the samples. In the simplest
case of only two samples A and B, by using Bayes’ theorem these marginal posterior probability
distributions can be written as:

. (1)

UA and UB are constants needed to normalize the P posterior to unity.

TRANSFORMING ARCHAEOLOGICAL INFORMATION INTO MATHEMATICAL PROBABILITY
DISTRIBUTIONS

The critical step in the Bayesian approach is the conversion of the additional archaeological infor-
mation into mathematical probability distributions, which then serve as the prior. A complete prior
for N samples requires that a probability Pprior(t1,...,tN) is assigned to every combination of calendar
dates t1,..., tN of the N samples.

We ignore the advantageous cases where there exists a straightforward method to construct the
prior (e.g. tree-ring wiggle matching [Bronk Ramsey 2001] or the individual calibration of 14C
samples, but see Section “A subtlety in single-sample calibration” below) and focus on the case of
stratigraphy. We study the simplest case of two samples A and B, where stratigraphy infers that the
(true) calendar age tA of sample A is higher than the (true) calendar age tB of sample B. We can
express this by the following (generic) probability distribution:

. (2)

is well defined for “forbidden” age combinations which are in contradiction to the
stratigraphic evidence: The probability for these age combinations is 0. Concerning the “allowed”
region, an archaeologist who is also familiar with Bayesian mathematics may supply us with an
educated guess by means of “subjective” prior elicitation methods (Berger 1980). However, the use
of such “subjective” priors is at dispute in the mathematical literature (Malakoff 1999). A constant
probability in any “allowed” region (as used by Bayes and later by Laplace) is the simplest assump-
tion, but in many applications these so-called “uniform” priors perform badly since they bias the
posterior results (Jeffreys 1961; Yang and Berger 1997). Modern Bayesian statistics has therefore
developed a variety of methods for deriving so called “noninformative” priors, which are con-
structed such as to have minimal biasing on the final result (Berger 1980).

Concerning the 14C calibration of two stratigraphically ordered samples, the uniform prior is the
only prior used and studied so far. In Steier and Rom (2000) we demonstrated by means of com-
puter-simulated experiments that this prior tends to increase the age differences of ordered samples
that are not clearly separated by the 14C measurement. One may try now to find a better noninfor-
mative prior, but we adopt a different method to deal with this problem.
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Robust Bayesian Analysis

The basic idea of “robust Bayesian analysis” (see Berger 1994 for an overview) is to test a variety
of priors and by this to check their influence on the answer for a given problem. This method is
especially suited to handle cases where the result depends significantly on the selected prior, i.e.
where the answer is highly uncertain and conclusions therefore cannot be accurate. Only from pos-
terior results which are robust with respect to the varied priors accurate conclusion can be obtained.
We investigate this for the case of two stratigraphically/temporally ordered samples mentioned
above and an assumed, yet realistic case of six ordered samples from the Hallstatt period.

The Two-Sample Case

To simplify matters we assume that there is no difference between the 14C age and the calendar age.
This corresponds to a strictly linear calibration curve. Sample A shall be measured as 1000 ± 100
AD , and B as 1030 ± 100 AD. Both probability distributions are modeled as Gaussian distri-
butions to allow an analytical solution of the integrals involved, and the two distributions represent
our measured data. From the variety of possible priors we focus on “exponential” priors of the form

. (3)

This set of priors fulfills the criteria of a good class of priors for robust Bayesian analysis (as given
by Berger 1994), including easy computational handling and easy interpretation. Figure 1 shows
what happens if various exponential priors are applied. It is clearly visible that the selection of the
prior strongly influences the posterior result.

If ,  is the expectation value for the age difference between the two samples A and B
, i.e. the average value we would obtain for a large number of similar sample pairs.

Choosing a prior is therefore reduced to guessing the parameter , the average of . The limit
forces that the two samples actually stem from the same year (irrespective of their true age

difference) and assigns the weighted average of the two measured ages to both samples.

The uniform prior is the special case where , i.e. this prior implicitly assumes that on the
average the samples will be infinitely far apart. This paradoxical implication is obvious if one con-
siders that this prior assigns the same probability to every age difference, and so an age difference
between 10,000 and 20,000 years is 100 times as likely as an age difference between 0 and 100
years. This explains the tendency of shifting the time span between the two samples A and B
towards larger age differences as shown in Steier and Rom (2000). The two-sample case supports
the general observation that a prior which appears neutral from one point of view (same probability
for every age difference) is often not neutral by other measures (infinite expected age difference).
We ignore the case , since the respective priors favor large age differences even more than the
uniform prior.

Using the whole set of exponential priors (3) we get 95%-HPD intervals for the older sample A
ranging from [876 AD...1154 AD]  to [786 AD...1116 AD] . Here one may argue
that our set of priors also contains distributions that are clearly unreasonable and cause an overesti-
mation of the possible age range. As suggested by Berger (1994), we reduce the sensible range for

, but this is not possible by mathematical means alone. In this point also robust Bayesian analysis
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cannot completely avoid subjectivity. A constraint on  is imposed by our knowledge that both
samples are part of the same stratigraphy. But what is the general expectation value for the time
span between different layers in a stratigraphy? An archaeologist may have a better guess, yet for
our example we confine  to the range between 30 and 1000 years.

We join all the resulting posterior 95%-HPD intervals for the confined range and obtain
[788 AD...1144 AD] as the robust posterior 95%-HPD interval for sample A. If we compare this
with the initial 95%-HPD interval for sample A [804 AD...1196 AD] where the stratigraphic infor-
mation is not used, the robust posterior result appears plausible: both prior knowledge and measure-
ment suggest that sample A is older than sample B, so we cannot learn much from sample B
regarding the beginning of the 95%-HPD interval of A. On the other hand, the closest possible dis-
tance between the samples A and B is 0 years. In this case we can assign the mean age 1015 AD to
both distributions, and the respective uncertainty is reduced by a factor of i.e. we obtain the pos-
terior interval for the exponential prior with (see above). It is easy to prove that no prior of
type (2) yields a later end of the 95%-HPD interval for A. As a matter of course, our result is only
valid if the set of priors we tried (exponential priors with 30 years ≤ τ ≤ 1000 years) forms a repre-
sentative subset of the infinite number of possible priors.

Figure 1 Marginal posterior probability distributions of a stratigraphically/temporally ordered pair of
samples obtained for exponential priors with different values for the parameter τ (see text) assuming a
strictly linear calibration curve. The probability distribution of the individually calibrated samples is
assumed Gaussian with centers at 1000 AD and 1030 AD and a standard deviation of 100 years.
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The Hallstatt Case

In this example we now increase the number of samples N and use the “real” INTCAL98 calibration
curve (Stuiver et al. 1998) to study the influence of the respective wiggles. For a larger number N of
temporally ordered samples, the prior Pprior(t1,..., tN) of the (true) calendar ages t1,..., tN is a multi-
dimensional function with N arguments. The uniform prior

(4)

shows a strong bias towards a larger total time span tN – t1 of the whole sequence (Bronk Ramsey
1999; Steier and Rom 2000). Please, note that there is a difference regarding the definition of the
span between our papers (Steier and Rom 2000, and this paper) and Bronk Ramsey (1999).

In Steier and Rom (2000), we discussed a simulated set of six stratigraphically/temporally ordered
samples from the Hallstatt period, i.e. the Early Iron Age in central Europe (750–400 BC), all
samples having assumed true ages from the beginning of that period (see Figure 2). Due to the
flatness of the calibration curve there, a simulated measurement yields almost identical 14C ages for
all six samples, and all 95%-HPD intervals obtained by individual calibration cover nearly the
whole period. However, using the uniform prior we obtain posterior 95%-HPD intervals that
disagree with the assumed true ages for the latest three samples, i.e. with one half of the whole
sample set. In the present paper we now investigate whether robust Bayesian analysis is capable of
solving the problem.

Any realistic calibration curve is a “numerical” table, and the present case—as any other realistic
case—cannot be treated analytically. Unfortunately, currently available calibration programs,
which perform the integrations numerically, do not allow using freely defined prior probabilities.
As a workaround, we explored only the existing possibilities supplied by OxCal to vary the prior
(Bronk Ramsey 2000a): the “span-correcting prior” option was switched on and off, and “bound-
ary” statements were added at various positions in the temporally ordered set of samples. We

Figure 2 Robust Bayesian analy-
sis applied to the simulated case of
six ordered samples also discussed
in Steier and Rom 2000. All true
ages are assumed close to the
beginning of the Hallstatt period
(750–400 BC). Shown are the pos-
terior 95%-HPD intervals of the
individual calibrations (frames),
Bayesian analysis with the uni-
form prior (see text, dark gray
bars), and “robust Bayesian analy-
sis” (see text, light gray bars).
Small gaps in the 95%-HPDs were
neglected for clarity.
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emphasize that we did not use this statement in the way intended by Bronk Ramsey, but we simply
exploited its ability to modify the prior by placing the boundary statement in any position allowed
by the program syntax. The priors involved in this workaround can be looked up in Bronk Ramsey
(2000c). All resulting 95%-HPD intervals for each sample were then joined.

It is obvious that the set of priors that can be tested with this method is small and probably biased.
However, even with these limitations, the joined posterior 95%-HPD intervals of the Hallstatt
example after sensitivity testing are almost identical to the results of the single-sample calibration
and cover the whole period. In our opinion, this is a plausible result: for a period where the calibra-
tion curve is flat, the 14C measurement yields no useful information, and the ordering of the sam-
ples alone provides no means to assign the samples to a certain part of that period. We emphasize
that none of the single priors by itself is capable of yielding this result (including the prior obtained
by following the instructions in the latest versions of the OxCal program, which performs much
better than the uniform prior).

A Subtlety in Single-Sample Calibration

In 14C calibration by means of Bayesian mathematics there exists a subtlety in the definition of the
95%-HPD intervals. These intervals are designed such as to contain the correct (true) age for 95%
of all calibrated samples if their (true) age distribution matches the prior distribution used for the
calibration. In the case of single sample 14C calibration this implies that one cannot expect to obtain
the correct result for 95% of all the samples originating in a particular year (since generally a uni-
form prior is used, which regards each true age equally likely). The yield of correct results will vary
from year to year, and only on the average of all the years that are covered by the calibration curve
one will get 95% (Bronk Ramsey 2000b). We studied this subtlety by computer-simulated measure-
ments using the uniform prior Pprior(tA)=const. (see Figure 3). From this, samples originally distrib-
uted uniformly with regard to their true ages show an uneven distribution of the respective single-

Figure 3 Samples originally distributed uniformly with regard to their true ages
show uneven distributions of the respective single-calibrated ages. 1000 samples
were simulated for every year, assuming a measurement uncertainty of 50 years.
The portion of samples that lie inside their 95%-HPD interval (solid curve) and the
sum probabilities of all samples (dashed curve) are shown. These structures,
induced by the wiggles in the calibration curve, are an artifact of the method and are
of no archaeological significance. The dotted horizontal line is the 95% level.

https://doi.org/10.1017/S0033822200038236 Published online by Cambridge University Press

https://doi.org/10.1017/S0033822200038236


Bayesian Mathematics for Calibration 379

calibrated ages. These structures, induced by the wiggles in the calibration curve, are an artifact of
the method and are of no archaeological significance.

For an assumed large set of samples originating from a stable culture, which covers the centuries
around the beginning of the Hallstatt period (750 BC), Figure 3 shows that the years around 800 BC
will be included in exceptionally few single-calibrated 95%-HPD intervals. However, a large num-
ber of samples is required to produce a significant effect in a data set, so that a possible misinterpre-
tation seems unlikely. Much more distinct minimums show up in the so-called sum probability,
which is obtained by averaging the single-calibrated probability distributions. Besides other pecu-
liarities (see Bronk Ramsey 2000c), this is another reason to be cautious in the interpretation of sum
calibrations. Such a structure may be erroneously interpreted as a hint for a true discontinuity in a
culture.

SUMMARY AND CONCLUSIONS

A critical point in Bayesian statistics is the conversion of qualitative archaeological information
into mathematical prior probabilities. Since in many cases assumptions/guesses are needed to con-
struct these probability functions, it is important to assure that these assumptions/guesses do not
bias the results. By varying these assumptions (to reflect uncertain and incomplete prior informa-
tion or knowledge) and subsequently using only results that are robust under these changes this can
be achieved.

Obviously, our method to perform this “sensitivity testing” by exploiting OxCal’s “boundary” state-
ment in a way that was not intended by the programmer does not allow testing an adequate set of
priors. The actual application of robust Bayesian analysis for real archaeological problems would
require a computer code that allows defining the prior freely but which so far is not commonly
available.

However, even with these limitations, the following preliminary conclusions are possible: the
increase in precision (i.e. smaller 95%-HPD intervals) that can be achieved with Bayesian statistics
is much smaller than promised by the uniform prior, which was commonly used in archaeology
before 1999. Despite the difficulty to find one general-purpose prior, testing a range of priors will
yield a joined result which is probably not more precise, but which is more accurate than the 14C
intervals obtained from using any individual prior (i.e. a smaller part of the true sample ages will lie
outside the quoted 95%-HPD intervals).
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