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Abstract. Let K be a function field over finite field I, and let A be a ring consisting of elements of
K regular away from a fixed place oo of K. Let ¢ be a Drinfeld A-module defined over an A-field L.
In the case where L is a finite A-field, we study the characteristic polynomial Py(X) of the geo-
metric Frobenius. A formula for the sign of the constant term of Py(X) in terms of ‘leading
coefficient’ of ¢ is given. General formula to determine signs of other coefficients of Py(X) is
also derived. In the case where L is a global A-field of generic characteristic, we apply these
formulae to compute the Dirichlet density of places where the Frobenius traces have the maximal
possible degree permitted by the ‘Riemann hypothesis’..
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1. Introduction

Let C be a smooth, projective, geometrically connected curve over a fixed finite field
[Fy. Fix a closed point oo € C whose residue field is denoted by I, and let A be
the ring of functions on C regular away from oco. In the fundamental paper [2],
Drinfeld introduces the objects now called Drinfeld A-modules. In many ways, these
objects play the role of elliptic curves. In particular, Drinfeld I,[T]-modules over
F,(T) are the analogues of elliptic curves over (Q and Drinfeld IF,[7]-modules over
F,[T]/(P), where P is a monic irreducible polynomial in [F,[7], are the analogues
of elliptic curves over finite prime fields.

Given Drinfeld A-module ¢ over a finite A-field, its most important invariant is
the characteristic polynomial Py(X) of the geometric Frobenius acting on Tate
modules. This polynomial is in A[X], and is an isogeny class invariant. However,
unlike the case of elliptic curves, the sign of Py(0) can vary. More precisely, by fixing
a sign function, the norm of the Frobenius has a sign depending on ¢. We first show
in Section 3 that this sign depends only on the ‘leading coefficients’ of ¢. Moreover,
there is a simple formula for this sign (Theorem 3.2) in terms of a power residue
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symbol. In the case of rank 2 Drinfeld IF,[7]-modules, with this formula at hand, the
computation of Py(X) is almost as fast as computing the zeta function of an elliptic
curve over a finite field.

There is the natural degree function deg: A\ {0} - Z which is given by
deg(a) =qer dimp, A/(a) for any nonzero element a. According to the ‘Riemann
hypothesis’ for Drinfeld A-modules over finite A-field L, the degree of the trace
of Frobenius is always less than or equal to [L : IV;]/rank ¢. This trace of Frobenius
is certainly the most interesting coefficient of Py(X). We want to know when this
coefficient has degree exactly [L : F;]/rank ¢. This is answered in Section 4 and
the answer also depends only on the ‘leading coefficients’ of ¢. Moreover, in the
case where the trace of Frobenius has its degree equal to [L : ;]/rank ¢, the sign
of this trace can be computed from the ‘leading coefficients’ of ¢. For the other
coefficients of Py(X), similar results can be derived just as well. An explanation
for this phenomenon is as follows. In the case where r=rank¢ divides
n=|[L:F,_ ], the ‘leading coefficients’ of ¢ give rise to yet another action of the
Frobenius. This Frobenius action on I, is identified as a scalar multiplication
by 6 ' e ]FZ , with ¢ explicitly given in terms of the ‘leading coefficients’ of ¢. It
turns out that the characteristic polynomial of 67! is essentially the sign of the
characteristic polynomial Py(X) (Theorem 4.6).

Let ¢ be a Drinfeld A-module over a global A-field L of generic characteristic. For
almost all finite places v of L, one has Drinfeld A-module ¢, defined over the finite
residue field L(v), hence the characteristic polynomial Py ,(X) € A[X]. We are
interested in the set of places v for which the polynomials Py ,(X) enjoy certain
property. In Section 5 we begin by deducing that the ‘leading coefficients’ of ¢ deter-
mine what are the possible signs of Py ,(0). All the possible signs of Py ,(0) are equally
distributed as the finite place v varies. In Section 6 we study the set 74 of places v for
which the trace of the Frobenius at v has degree exactly [L(v) : I';]/rank ¢ and more
generally, we also study the set Dy of places v for which all the coefficients of
Py ,(X) attain their maximal degrees allowed by the ‘Riemann Hypothesis’ for
Drinfeld A-modules. We show in particular that 74 always has a positive density
provided that the characteristic of I'; does not divide rank ¢. On the other hand,
in the case where the characteristic of I'; does indeed divide rank ¢, it may happen
that for a given ¢ the degree of the trace of Frobenius never equals
[L(v) : F;]/rank ¢ (Theorem 6.1). Finally, in Theorem 6.2, we show that Dy has posi-
tive density provided the characteristic of I, is greater than rank ¢.

2. Preliminaries and Notations

We first fix some notations that will be used throughout this paper. Let C be a
smooth, projective, geometrically connected curve over a fixed finite field [,. Let
K be its function field over F,. Fix a closed point oo € C and let A be the ring
of elements of K regular outside co. In the sequel, we’ll denote the degree of co
by d. and the normalized valuation on K3 by v, so that we have
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Voo(X) = — deg(x)/dw for all x € K% . The natural degree function on A is extended to
any nonzero ideal a of A by setting deg(a) = dimy, A/a. We shall use notation

la) & 43 to denote the absolute norm of a. Set

¢ (x1— x?) € Endy, (G,)

the Frobenius endomorphism of G, over [F,.

Let E be any global function field over finite fields together with a distinguished
closed point cog. Let Ey denote the completion of £ at the place corresponding
to oog and E(oo) the residue field of E.. Recall the definition of sign function
[9, Section 4] for the pair (E, cog)

DEFINITION 1. A sign function on Ey is a homomorphism sgn : EX — E(c0)"
which is the identity on E(co)*. In addition, sgn is extended to E. by setting
sgn(0) = 0. Let ¢ be an [;-automorphism of E(oco). The composite map ¢ o sgn
is called a twisted sign function of sgn by o.

We shall fix a sign function sgn : Ky, — K(o0) throughout this paper. Then sgn is
defined on K via the canonical embedding K «— K. An element a € K, is said
to be monic if sgn(a) = 1. For any prime ideal p of A and any element ¢ € A\ p
we define the (¢ — 1)th power residue symbol to be the unique element
{a/p} € IF; such that

{E} =aT (mod p).
p

The definition of the power residue symbol is extended in the usual way to {b/a} for
any ideal a of A and any b € A which is relatively prime to a. If a = (@) is principal
we simply write {b/a} instead of {b/a}. We recall the following reciprocity law
for (¢ — 1)th power residues.

THEOREM 2.1 ([12, Chap. IV, Theorem 9.3 and Chap. III, Theorem 5.4]). Suppose
a,b € A are nonzero relatively prime elements. Put o = vyo(a) and = v (D), then we

have
a (b1 B ==D/a=D)
_ off
{3 {a} —Sg“[<‘” a/‘i|

where go = g%~ denotes the cardinality of K(00).

Let L be an A-field, that is, L together with a ring homomorphism:: A — L. Then
the kernel ker(z), called the characteristic of L, is either the zero ideal or a nontrivial
prime ideal p of A. In the former case, L is said to be of generic characteristic and the
latter case, L is of characteristic p. Denote by L{t} the twisted polynomial ring which
is generated by L and 7 as a subalgebra of all L-endomorphism of the additive group
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scheme G, /L. A Drinfeld A-module over L of rank » > 1 is a ring homomorphism

¢ : A — L{z} ¢ End (G,),

ai— ¢,

such that ¢ # 1 together with the following two conditions:

(i) deg ¢, =r-deg(a),
(i) the coefficient of 1° in ¢, is 1(a).

To ease the notations, we’ll simply write a instead of 1(a) to denote the image in L if
there is no danger of confusion.

In the sequel we assume that there exist rank r Drinfeld A-modules defined over L
and fix such a rank r Drinfeld A-module ¢. Then, L contains a subfield I,  which is
isomorphic to K(oo) (see for example, [8, pp. 199, Remark 7.2.13]). Fora € A, ¢,
has the following form

o, :mo+ga,17:+--~+ga,/_111’1 + AT, (1)

where g,; € L, A, € L* and [ = r - deg(a). Let L denotes an algebraic closure of L.
For any x € G,(L) we let ¢,(x) denote the image of x under the morphism ¢,,.
The a-torsion, denoted by ¢[a], is the set of x € G,(L) such that ¢,(x) =0. By
definition, ¢[a] is the set of roots of the polynomial

¢a(X) = Aqul ‘*‘ga,/flA’YqFl + - +ga,1Xq +aX.

Note that the a-torsion forms an [F,-vector space of dimension r-deg(a). Put
¢la] = (N,eq Plal for any ideal a of A which is prime to the characteristic p. For
any prime ideal q which is different from p, the Tate module is defined by

Ty() = lim ¢[q°].
4

The Tate module T,(¢) gives rise to a g-adic representation of the ring End(¢)
consisting of endomorphisms of ¢. In the case that L is a finite A-field, we’ll denote
the degree of L over I, by n and put ne = dson. Moreover, L must be of charac-

teristic p for some nonzero prime ideal p. Assume p is of degree d and L is a finite
extension of degree m of I, of A/p. Denote by Frob; := 1"~ the geometric
Frobenius of G, over L which is certainly in End(¢). Let P4(X) be the characteristic
polynomial associated to Frob; via the g-adic representation. Then Py(X) is a monic
polynomial of degree r with coefficients in A which is independent of q. Writing the

characteristic polynomial as
Py X)=X —a X'+ +(=a, aeA, )

P4(X)is anisogeny class invariant and the constant term Py4(0) has the property that
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(P¢(O)) = p". That is, p” is principal and Py4(0) is a generator of p™ (see [4, Section 3,
Section 5] for details). The goal in the next section is to determine the sign sgn(a,) of
the constant of Py(X).

3. Determining the Sign sgn(a,)

In this section, we consider the case that L = F, , a finite A-field of characteristic p.
We would like to compute the sign of the constant term of the characteristic poly-
nomial Py(X). First we have the following formula connecting sgn(a.) to
non-constant element b € A.

THEOREM 3.1. Let L be an A-field of characteristic p and of degreenover I, . Let ¢
be a rank r Drinfeld A-module over L. Suppose b € A is a non-constant element which
is relatively prime to p then

00 _ . sgn(b
Ni®(sgn(a) "~ = N, ((—1)“*”“*‘4”) —gAi )>

where prq (Nﬁfoo)) is the norm map from L (K(c0), respectively) to IF,.

Proof. Since b is relatively prime to p and the Drinfeld A-module ¢ is of rank r, it
follows that the b-torsion is a free A/(h)-module of rank r. Moreover, ¢ is defined
over L, the action of Frob, commutes with the A-action. Therefore Frob; gives
rise to a A/(b)-linear automorphism of ¢[b]. The characteristic polynomial is just
Py(X)mod (b). Thus the determinant of Frob;, as an A/(b)-linear automorphism
on ¢[b], is a, mod (b).

On the other hand, ¢[b] is a IF;-vector space of dimension r deg(h) and Froby, is also
a [F;-linear automorphism of the IF;-vector space ¢[b]. Note that the action of Frob,,
as a I'y-linear automorphism is compatible with that of A/(b)-linear action since the
FF,-linear action arises from the canonical embedding ', — A/(b). The determinant
of Frob;, as F,-linear automorphism, is therefore N[a, mod (b)] where N(:) is the
norm from the IV -algebra A/(b) down to IF,. We have

N[a, mod (b)] = {%} 3)
To see this, observe that both sides are multiplicative in b by Chinese Remainder
Theorem and the definition of the power residue symbol. One simply needs to check
the case that the algebra is A/q° with prime ideal q#p. Put
Vi=1q'/q° 0 <i<e—1whichare I,-vector subspaces of ¥y = A/q°. Observe that
the multiplication by @, on V; gives rise to an [F;-automorphism of V;. The I,-vector
space A/q¢ has the following filtration of subspaces.

A/q": Voo ViD---DVe.

Note that (3) is true for the case e = 1 and V;/V;,1 is of rank one as an A/g-module
for 0 <i<e—1. Now (3) follows by induction on e.
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To obtain the result, we compute det(Frobz) in another way. First, as ¢, € L{t} is
given by (1), we may write

_ b
¢y = Ab{r/ +g2—/blrl’l + .- +gAb—’;r +A—bro}, [ =r-deg(b).
By [8, Proposition 1.3.5], the polynomial A; ' ¢, has a decomposition into product of
linear factors in L{t}. That is, there exist u;, u;_;, - --, u; € L such that

qbb:Ab(r—u;rO)'n(r—u] )

with wyus_y - - -uy = (—=1)'b/Ay. The F,-vector space ¢[b] is, by definition, ker(A;1 dp).
We choose a basis {wy, wy,---,w;} to be solutions of the following system of
equations:

(t—u)wi=wiy f1<i<l—1,
“)

(t—u®)w, =0.

Set A to be the column vector [wy, wa, - - -, w;]". Then the above equation can be
expressed as 14 = M A where M is a [ x [ matrix with entries in L. In fact,

w 10 0
0 w 1 0
M=|:
0 0 Lo U 1
0 0 uj

Since Froby = 7", by iterating the relations, we have
Frob,4 = M" D M= ... M M4

where M means to raise the entries of M to the ¢'th power. Thus, as a F,-linear
transformation, Frob; is given by the matrix M”~D =2 ... pr() M. Now,

b
det(M) = wyuj_y - -uy = (—1)' —.
Ay
As a result
b ¢ D4t t1 b
det(Froby) = [ (=1) — =NE((=1)=).
Ab 1 Ab

Since b € I, and L is of degree m over I,, we have that Nﬁ(b) = {b/p}". Also,
p" = (a,) by [4, Thm. 5.1 (ii)] and by the definition of power residue symbol,
{b/p}" = {b/a,}. Consequently,

det(Frob;) = { b }Nﬁq((—l)’Ab)‘l.

ay
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Combining with identity (3), we obtain the following

, b B
[%= {a}Nﬁ«—l)’Ah) g 5

It follows by the reciprocity law of power residue—Theorem 2.1 that,

a,

L IA -1 ar| | b -
N0 = ()

(@) @ —D/@=1)
)b¥ a, ]

00 (@r)Voo (D
:sgn[(—l)v (o) —
a,”

=(- l)deg(ur) deg(b) Nﬁ(oo)(sgn(ar))—voo(b)N{él(oo) (sgn(h))" ()

Note that / =r-deg(h) and —vy(a,) =n =[L: K(co0)]. Simplifying the formulae
above, we obtain
Ay

sgn(b)
N;*(sgn(a,) "> = N, ((—1)“*““8@ )

This completes the proof. ]

Remark 1. Note that by Riemann—Roch Theorem, for sufficiently large integer N,
there exist elements b, ' € A which are prime to p such that vy (b)) = —N and
Voo(b') = —N — 1. We choose b, b’ so that b/b’ = 1., is a uniformizer of K., such
that sgn(n.) = 1. Set A* = A;' - Ay, then

Ni(sgn(a,)) = Nf (=DA%, ©

In most applications, the closed point oo is rational over F,. In this case, we have
dy = 1, then Theorem 3.1 and (6) have simpler forms.

THEOREM 3.2. Assume that oo is a rational closed point of C.

(1) We have sgn(a,)¥®? = N%q ((—1)("+1)deg(b)Ab)_1 for every nonconstant monic
element b € A.

(2) Let b, b € A be monic elements such that are prime to p and (deg(b), deg(b’) = 1.
Let i,1 € 7 be integers such that i deg(b) + i deg(b’) = 1. Put A* = A;, . AZ then
sen(a) = NE (1 A7),

Remark 2. In Theorem 3.2, since (deg(b), deg(b’)) = 1, we have (|b]" — 1, |&'|" — 1)
=q"—1. Let j,j/ be integers such that j(|b|"—1)+;j(b'|"—1)=¢"—1. Put
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A= AJI;A’;, then the following formula holds also.
sgn(a,) = Nf (1)1 A)~! (7)

EXAMPLE 1. We apply Theorem 3.2 to the case that A =1IF,[T] and
L=Fp=TF,[T]/(P) where P is a degree d monic irreducible polynomial in
F,[T]. Assume that the Drinfeld A-module ¢ is defined over K which is given by

pr=T " +git+ - +g 7 + A

with 7, gy, ---, A € A and suppose that A € A \ (P). Let ¢ denote the reduction of ¢
modulo P so that

br=T+51+ - +5_ 7+ A

where the bar denotes the reduction modulo P. Consider the characteristic polyno-
mial of the geometric Frobenius associated to ¢ as a Drinfeld A-module over L.
We may assume that P # 7. In this case, letting a=7 and 4 =1 in
Theorem 3.2 we have the following very simple formula

~1
sen(ag) = (—1>f’“+’>{é} _ ®)

P

Remark 3. Suppose ¢ is a rank 2 Drinfeld IF,[7]-module defined over the prime
A-field Fp as in the above example (see [4, Section 5]). Then the characteristic poly-
nomial of ¢ can be shown casily to be

-1 -1

P =2 = e b ) a2
P P
where H(¢) is the Hasse invariant of the Drinfeld module ¢, identified as a poly-
nomial in [Fy[T] with degree less than deg®. Recall that H(¢) is actually the
coefficient of 197 in ¢,. It follows that the invariants Py(X) (hence also the
Euler—Poincaré characteristic of the finite IFy[7]-module ¢(IFp)) can be efficiently
computed.

4. Sign of the Trace

We retain assumptions and notations from Section 3. Let L(7) be the division ring of
fractions of L{r}. The Drinfeld A-module ¢ : A — L{r}isregarded as an embedding
so that ¢ extends to an embedding of K into L(z). We identify K with its image as a
subfield contained in L(7). In the following, the notation deg_(a) denotes the degree
in 7 for a € A. The identity deg.(a) = r - deg(a) holds. Let K(F) be the extension
of K generated by F := Frob;. Note that Frob; commutes with A-action. It follows
that K(F)/K is a field extension. Recall the following basic facts about K(F) and
End;(¢) from [3, 4, 13]:
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THEOREM 4.1. (1) End (¢) ®a K is a central division algebra over K(F) and
dimgr) Endz(¢) @4 K = (¥)? where ¥ = r/[K(F) : K] is an integer.

(2) There is only one place oo’ of K(F) that is above co corresponding to the pole of
F. Let K(F), denote the completion of K(F) at the place oo'. Then
K(F)y =K(F)® Koo and [K(F):K]=[K(F)y : K] =ef where e,f are the
ramification index and residue degree of K(F). /Ko respectively.

(3) Let M y(X) be the minimal polynomial of F over K then the characteristic poly-
nomial Py of F acting on Tate modules is related to My(X) by the identity
Py(X) = My(X)'.

(4) The valuation vy, at the infinite place has an extension which we still use the same
notation v, : K(F)* — Q so that voo(F) = —n/r. Moreover, all roots of Py(X) have
the same valuation —n/r.

Write
PiX)=X—a X'+ - +(-Da, aecA.

It follows from Theorem 4.1 (4) that the coefficients a; of Py(X) have valuation
veola;) = — in/r. Define the function

o) = sgn(a,) if voo(ay) .: —i.n/r, )
otherwise.
Note w(a;) is necessarily 0 if i - n is not divisible by r.

Let E be a maximal commutative field in Endz(¢) ® o K containing K(F). Then, E
is of degree r'[K(F) : K] = r over K. It follows from the proof of [13, Theorem 1] that
assertions (2), (3) and (4) of Theorem 4.1 remain valid with K(F) replaced by E. We’ll
denote by cog the unique place of E that lies above oo and E, the completion of E at
the place cog. We fix an extension of v, to £* and denote this extension by v,, again
so that vo(F) = —n/r. Note that in this case, we have ef = r. In the remainder of this
section, e, f are reserved to denote the ramification index and the residue degree of
E,, over K. Therefore, the residue field E(oco) ~ ]F - We use the notation
|B| = g’~® to denote the absolute value of B € Ex, Put Ag = ENEnd;(¢). Since
E C Endy(¢p)®s K, for any Be E there exists an ae€ A such that
a B € Endy(¢). It follows that E is the quotient field of Ag.

Let EZ act on L* in the following way

x-E=¢M foré el and x € EX.

If |x|” < 1, then ™ means the unique element 4 € L* such that A/ = ¢ For any
nonzero element x € Ag C L{t}, let A, € L* be the leading coefficient of x in .
The leading coefficient map py : Ag\ {0} — L* defined by u,(x) = A,, satisfies
the following relation

1y (xy) = (g™ = (x - g (Mg ().
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It is clear that u, is a cocycle on the monoid Ag\ {0}. Let z = y/x € E* be any
non-zero element with x,y € Ag. We extend the leading coefficient map yu,; to
E* by setting

:u(/;(Z) def 'u(p(zx)'ud)(x)—lz\’ _ 'ud)(y)'ud)(x)—lzl"

Note that for any nonzero x' € Ap,

(23 (XY = (200 (0 g () 1y ()

= py(z2)pg ()

Let z = )'/x’ be another representative of z. We have

qu(zx)ll(p(x)_lzlr = qu(Zxx/)ﬂqs(xx/)_lz‘r = ﬂqs(Zx/)M(/)(x/)_‘z‘r

since x, X’ commute. Thus the definition is independent of representatives of z. Note
that u, also extends to a cocycle on E*. Denote by U, the principal unit group
in EX..

LEMMA 4.2. For any u € E* N Uy, we have ju;(u) = 1.
Proof. Let u=y/x € E* be any 1-unit. By definition, we have

tp(u) = py(») M¢(X)_1 :

As u is a 1-unit, veo((y — X)/X) = voo(u — 1) > 0. Consequently, u4(x) = py(y) and
hence py(u) = 1. L]

As shown by Lemma 4.2, p1 is continuous with respect to cog-adic topology on
E*. 1t has a unique extension to EY, which we still denote by 4. Put 114(0) = 0.

LEMMA 4.3. The restriction of u, on E(co) gives an I -embedding of fields
E(c0) > L.
Proof. (Following [9, Prop. 4.5].)

It suffices to show py(1 —a) =1 — u,(a) for all o € E(c0). Clearly, we only need to
check the identity for o # 0, 1. By continuity, we may choose unit z = y/x € E with
X,y € Ag so that u,(2) = py(e) and p4(l — z) = pe(1 — o). Note that z ¢ Uy, there-
fore voo(x — ) = veo(X) = veo(y) which implies p(x — ) = py(x) — py(y). Thus,
pe(1 —2) =1 — py(2). ]

We summarize the two properties proved in Lemma 4.2 and 4.3 as follows:
()  u, is a continuous cocycle on EX, i.e. piy(xy) = piy(x) ,u(f)(y)‘x‘r for all x, y € EZ%,
([8, Prop. 7.2.12.2]),

(ii) the restriction of pg to E(co)” is a restriction of an Fy-embedding of fields
E(o0) — L, [8, Remark 7.2.13].
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By definition, a coboundry (¢) is determined by element ¢ € L* such that

3&)y = (x- e =t

for all x € EX . It follows directly from the definition that cocycles which are
cohomologous to p, enjoy the same properties as g does.

Let 7o be a uniformizer of K, such that sgn(n,,) = 1. Put A = ,u,b(ngol) and let us
fix any (¢5, — 1)-root of A, denoted by ¢a. Set ca = ,/3(Sa). Then ¢y is a cocycle
on E7, which is cohomologous to u,; furthermore, c, satisfies properties (i) and (ii)
above.

PROPOSITION 4.4. ¢ takes values in FZ .

Proof. Fix a uniformizer ng of E. For aaroly x € EZ, there exist a ¢, € E(oco) and a

wy € U; such that x = exwxn?“(x) . By the cocycle relation,

ea(x) = ealey) ea(mly>")

— CA(EX)CA(TCE)(IX‘ =D/(Imel"=1)

Since ¢, is an embedding of E(oo) it follows that ca(ey) € E(00) =~ qu . Also, note

that |zg|” — 1 divides |x|" — 1. It suffices to prove the proposition for x = ngl.

We have ng¢ = ewny! for some ¢ € E(co) and w € Uj. Then,

_1\ (g =D /(g =1 -
(CA(”E])) 3 : = ca(mg)

= ca(@ca(ny)

= CA(E).

Note that ef = r and |n;'|° = goo, we have the identity

(ca (ngl))w;fl)/(q;fl): ca©).
Since ca(€) € E(00) =~ Fq/ ,
(eamgh)™ "= 1.

The proposition now follows. O

COROLLARY 4.5. The restriction cal k. of the cocycle ca to K3, is equal to a twisted
sign function of sgn.

Proof. 1t follows from the fact that ca(x) is an integer for all x € K and the
cocycle relation, we have ca(xy) = ca(x) ca(y) for all x, y € KX . Moreover, ca gives
rise to an [F,-automorphism of K(oc). As a consequence, ca and y o sgn are identical
on the unit group of K7, for some y € Gal(K(oc0)/F,). Therefore, ca/y o sgn factors
through v, : KX — 7Z. There exists a 4 € FZ& such that cx(x) =7y o sgn(x)A"=™
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for all x € K* . Let x = 1}, then 17" = ca(n!) = 1. Hence, ¢, and 7 o sgn agree on
K’ and this proves the Corollary. O

We shall fix any such cocycle and we denote it by sgn. By Theorem 4.5,
sgn|g_ =y osgn for some y € Gal(K(c0)/F,). We now prove the main result of this
section.

THEOREM 4.6. Assume r | n and put § = A¥=~D/@==D ¢ IF‘* Let & = y ow. Then,
the characteristic polynomial of the scalar multiplication by sgn(F) =o6"'on Ey over
F,. is

D(Py(X)) = X" — (@) X'~ + -+ (=1)"'d(ar1) X + (=1)d(a,).
In particular, we have
(@) =Tr(6™"), @) =yosgn(a) =N

where Tr : Fyy — T, and N : F* — ]F* are the trace and norm respectively.

Proof. Let K’ denote the max1mal unramlﬁed subfield of E., over K. It follows
that E,, over K/ is a totally ramified extension of degree e. As the extension
K /K. is unramified, it is Galois and is the constant field extension. The Galois
group Gal(K/ /Ky) is thus generated by ¢ which restricts to the Frobenius
automorphism of Fq/ over F, . Choose an automorphism of K lifting ¢ and
denoted this lifting by ¢ again. Let 7, : Ex, — Ko be K/ -embeddings of E., with
1 <j<e. Here, each embedding t7; is occurred with multiplicity equal to the
inseparable degree of E,, over K . Over K, we then have

Py(X) = H H(X — o'y;F).

i=0 j=
Since r | n, we may express the Frobenius element F as follows

F = pwn_”/ g
where p € ', and we U, is a l-unit. Applying sgn on both sides, it follows
sgn(p) = sgn(F) = 1/5. Note that sgn is an [ ,-embedding of E(oco) into F, and
its restriction on I, is equal to y, sgn| E(o) 18 actually an extension of y.

Let’s rewrite Py(X) as follows

-1 e . . ,
Py(X) = l_[ l_[(X — (Gip)ng)ngo”/r) where w?) =a'tw,
i=0 j=1
e /-1 o
=2 [ ] X = & pw?)
j=1i=0
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Consider the polynomial

e f-1

h(X) =2 Py(n " X) = [[[](X = (&' p)w) (10)
j=1 i=0

=X —ad, X"+ (=1)d (11)

Note that @} = n"/"a; and ve(a}) > 0. By reducing 4(X) modulo 7., we put
WX):=X —ad X' +...+(=1)a

where a; denote the unique element in K(co) which is congruent to the reduction
a;(mod .,). Observe that, by definition, a; = w(g;). On the other hand, note that

w? are all 1-unit. We also have
_ e f—1 ' /-1 . ¢
h(X)=1‘[1‘[(X—o’p)=i]‘[(X—alp)} (12)
j=1i=0 i=0

by (10). As p = @171(1/5) over [, and Gal(E(o0)/IF,) is abelian, (12) implies that
sgn((X)) is the characteristic polynomial of 1/6 over F,__ as the scalar multiplication
on [, . The theorem now follows by observing that sgn(h(X)) = @(Py(X)). O

Remark 4. (1) In fact, using the same arguments as in Corollary 4.5, the restriction
of the cocycle sgn to K/ can be shown to be a twisted sign function on K/ _.
(2) Taking norm down to IF,, we have that

~ 1
NE®)(sgn(a,)) = NE(§gih(a,) = NE (K>

(3) With a little more effort, we can show that $gn(a,) = (—1)”(8“)NHL;M A~
without assuming r | n. By the congruence ne = nr(mod2), this leads to another
proof of Theorem 3.2 (see also Remark 1).

5. Distribution of the Signs

Although our arguments can be extended to general cases, for the sake of simplicity
and practical purpose, we’ll assume the closed point oo of C is rational over I,
in the remaining of this paper. We restate Theorem 4.6 in this case as follows.

THEOREM 5.1. Assume r | nand put 6 = A9 ~D/@=1 ¢ }FZ,.. Then, the characteristic
polynomial of the scalar multiplication by sgn(F) =6~ on Fy is

o(Py(X)) = X" —(a) X'+ + (=) o(@1) X + (=D o(a,).
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In particular, we have

o(a) =Try! (67),

For e—1
w(ay) = sgn(a,) = N]F‘Z (07)
Fy Fy .
where Try! - ¥y — Iy and Ny - ¥, — I are the trace and norm respectively.

Let L be a global function field over finite field and we assume that L is an A-field
of generic characteristic. Fix ¢ to be a fixed rank r Drinfeld A-module over L. Then
there is a finite set of places, denoted by S, of L so that ¢ has good reduction outside
S [2]. Let O, be the integral closure of A in L. Extending S, if necessary, we may
assume that S contains places of L which are above co and that ¢ is defined over
S-integers of L.

NOTATIONS.

p : the characteristic of A = the characteristic of I,

M, : the set of places of L,

L(v) : the residue field at the place v € M,

n, : the degree of L(v) over Iy,

Frob, := ™ the geometric Frobenius endomorphism of G, over L(v).

Consider any place v¢.S and by choice, ¢ has good reduction at v. We thus have a
well defined characteristic polynomial Py ,(X) associated with Frob, at v. The poly-
nomial Py ,(X) € A[X] has the form as given in (2). To indicate the dependence
on v, we change the notation as follows:

Py(X) =X —ai , X"+ +(=1)a,,. (13)

Set P, to be the monic element of A such that a, , = ¢,P,. In this section, we will be
interested in the distribution of the signs ¢, as v varies.
Given

¢a = afo +git+---+ Aa_crdeg(a)
with gi € L, A, € L*, for a € A\ IF,. If a does not vanish at place v, then we have

Eiieg(u) — Néflv)((_1)(,A+1)deg(a)Aa)fl

by Theorem 3.1. For any b € O nonvanishing at v, the (¢ — 1)th power residue
symbol for b at v is by definition, the unique element {%} in I} such that

{2} = p=D/@"D(mod v). Here |v| denotes the cardinality of the finite field L(v).
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We may rewrite Theorem 3.1 in terms of (¢ — 1)-th power residue symbol

-1
—1 (r+1)deg aAa
ez {—( ) . (14)

v

Let a,d’ € A be two monic elements such that (deg(a), deg(a’)) = 1. Enlarge S if
necessary, we assume that S contains places where «, ¢’ vanish. Let j,j be two
integers such that j(la|"—1)+j(ld|"—1)=¢" —1. Put A= A]aAQ then, as in
Remark 2, we have

r+1 -1
o — {M} , (15)

14

Define the subset N, of MY as follows :
Ny={veM\S:¢,=1n}, fornel,
We are interested in determining the Dirichlet density of N,.

THEOREM 5.2. Let ¢ be the smallest non-negative integer such that ((=1) 7' A)¢ is in
(L4, Then

(1) ¢, € (EN™V for all v¢S,
(2) given any n € (F:;)(q_l)/‘Z the Dirichlet density for N, is equal to 1/¢€.

Proof. The assertion (1) follows from the definition of ¢ and the multiplicativity of

power residue symbol. We proceed to prove (2). Let L' = L(“y/(=1Y"'A) be the
extension by adjoining any (¢ — 1)th root of (—1)"™'A. As L contains (¢ — 1)th roots
of unity and ((—1)*'A)* € (L*)?"! the extension L'/L is a Kummer extension
and is cyclic of degree £. It follows [12, III. 5.1],

r+1

where (v, L'/L) is the Artin symbol. Now assertion (2) follows from Cebotarev den-
sity theorem. O

Remark 5. The integer ¢ appeared in Theorem 5.2 is an invariant which is inde-
pendent of the choice of a, a’ with (deg(a), deg(a)) = 1.

EXAMPLE 2. We consider the special case that A = [F,[T] and L = K =T(T)
which is the most interesting case in practice. Let ¢ be a F,[T]-modules over L
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of rank r. Then ¢ is given by
br=T1" +g11+ - +g_ 17" + AT,

where g1, ---,g,-1 € Land A € L*. Let S be the set of prime ideals of A such that
g1, -+, A are S-integers. Let p¢S be a prime ideal and P be its monic generator.
By taking a = (T) in Theorem 3.1 and applying Theorem 5.2, we conclude that:

(1) ¢ = {7“1)7‘;““}71 and

(2) the Dirichlet density for N, is equal to 1/£ for any given y € (]F;)("_l)/ ¢ where £ is

as defined in Theorem 5.2.

EXAMPLE 3. Consider the rank 2 Drinfeld Fs[T]-module ¢, = Tt° + 1+ T1?
defined over Fs(T). Then ¢ = 4 for this particular module. Computation gives

degv #of ¢, =1 #ofe, =2 #Hof¢,=3 #of¢, =4

1 1 1 1 1
2 2 3 3 2
3 10 10 10 10
4 36 39 39 36

6. Distribution of the Degrees of Traces

Let assumptions be the same as those in Section 5. The coefficient a; , of the charac-
teristic polynomial Py ,(X) has degree at most n,/r. It is natural to ask how often the
Frobenius trace has degree equal to n,/r as v varies. We are interested in the
following set of places

Ty = {v € My \S : deg(ay,) =%]

Let [F; denote the constant field of L. Moreover let s be the smallest positive integer
such that A® € (L*)? ~!. Our main theorem in this section is the following.

THEOREM 6.1. (1) Let Hy = (IF, YOV and let u be the cardinality of the set
HyN ker(Trk" ). Then the Dir lchlel density of T y is equal to (s — u)/(s[Fy : Fr]).
(2) Assume that ris relatively prime to p. Let {pi, - - -, p;} be the set of prime factors of s.
Set t=0 if s=1. Then the Dirichlet density of the set Ty is greater than
2t + 1)/(s[[Fyr : Fr]) if s is odd and greater than 2t/(s[Fy : Fr]) if's is even. In par-
ticular, the Dirichlet density for Ty is always positive.

(3) Assume that r is divisible by p then the following statements are equivalent.

(i) T4 is empty,
(ii) the Dirichlet density for T y is zero,
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(i) [Fy : Fo(Hy)] is divisible by p.

Proof. Let L, be the extension of L by adjoining (¢" — 1)-th roots of unity and let
La = L.(““/A). We have Gal(L,/L) ~ Gal(Fy/IFr) and Gal(La/L,) ~ H,. Let G
denote the Galois group of Lp/L. Then the Galois group G is an extension of
the group Gal(F,/IF;) by H, and the cardinality of G is equal to s[[F, : IF]. Note
that by fixing a (¢° — 1)-th root “~/A of A, the isomorphism Gal(Lx/L,) >~ H is
given by yi—{, such that y( "YA) = g, VA for some {, € H;. Moreover
Gal(F, /1) acts on Gal(La/L,) and the action is given by

@+ )("VA) = a((,) VA (16)

for y € Gal(La/L,) and ¢ € Gal(F,/I;). This action corresponds to conjugation in
G. Namely, for any lifting 6 € G of ¢ we have 676~ ! =0 *y. For places
ve MY\ S, we note that w(a;,,) = 0 unless n, is divisible by r. Thus we only need
to consider places v such that the degrees n, are multiples of r. Let w denote
any place of Ln which lies above v and let [w, Lp/L] denote the Frobenius
automorphism attached to w. Then the conjugacy class of [w, La/L] is the Artin
symbol (v, Lp/L). Since the degree of v is a multiple of , the place v splits completely
in L, and the restriction of [w, La/L] to L, is the identity automorphism of L,. Hence
[w, La/L]lies in Gal(La/L,), denoted by y,,. Let{, € H,denote the image of y,, under
the isomorphism Gal(Lx/L,) >~ Hy. By (16), the conjugacy class (v, La/L) is the set of
Galois conjugates of {, regarded as elements over I,. We have

ng = A" =D/@=D) (modp,) (17)

for somey,, € (v, Lao/L). Therefore, by Theorem 5.1, we see that w(a; ,) is equal to the
trace of (- 1 from I, to I,. By assumption, there are u elements of H, which are of
zero trace and note that H, has cardinality s. As the set 7,4 corresponds to
o(a; ) #0, (1) follows from Cebotarev density theorem [11, Chap. 5].

For (2), we observe that H is the group of s-th roots of unity. It contains p;-th
roots of unity for any prime p; that divides s. Let {, denote any primitive p;-th root
of unity. We have elther {p € F* or all C’ , 1 <j<pi—1, are not in F,.

If {, e ]F* then Tr]r (&) = GC which is not zero since r is prime to p. The
cardinality of such {, is at least 2 unless p; =2 in which case the cardinality is
1. On the other hand, if {, ¢, then the set {{, ,C P Cp’_l} is decomposed into
disjoint union of Galois orbits over If,. We note that Zj’ i Cf = —1. As the total

sum is nonzero there must exist one Galois orbit over I, whose sum is not zero.
Since {, ¢, this orbit contams at least two elements. Let &, be a representative
of this orbit. Then TrHJ’ &)= T:(g)(&j,) # 0 for some w; | r. Take the unity 1
of H, into account. Thus, the number of elements in H; whose trace over I, is

nonzero is at least (2¢+ 1) for s odd and at least 27 for s even. Therefore we have

Q).
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We begin to prove (3). As (i) implying (ii) is clear we show that (iii) follows from
(ii). Assume that dy = [IF,- : I',(H,)] is prime to p. Since r is a multiple of p, the exten-
sion IF,(H,)/T, must be nontrivial. On the other hand, H; is generated by any primi-
tive s-th roots of unity. It follows that IV, ({,) = IF,(H,) where {; € H, is any primitive
s-th roots of unity. Then the extension Fo()/Fyhas {1, ¢, ---, Cg"/dr)_l} as a basis. As

F,(,)/ I, is separable, {Ci : i < (r/dy) — 1} cannot be all of zero trace from I, ()
to ]F Let { be an element of nonzero trace from [, ({,) to F, among
(e < (r/dy) — 1}. Since TrT"' ) =d,Tr q(g‘)(C) and d, is prime to p, it follows

Trr" (g) is nonzero. We have exhibited an element in H; which has nonzero trace
from F, to T,. By (1), the Dirichlet density of 7 4 is positive and therefore (ii) implies
(iii).

Assume that d; is divisible by p. Because Trpl' & =d TrF (g)(f) for any ¢ e Iy (H,)
and d; is a multiple of p we see that TrF‘" (&) =0 for all f € Fy(Hj). In particular,
all elements of Hj are of zero trace from F to F,. Now, by Theorem 5.1, for places
ve MY\ S such that r | n, w(a,) = Trr‘" (c_“, ") where p,, € (p,, La/L) and {, € H;
is given by the (¢" — 1)-th power residue symbol of A at the prime p,. Thus T o does
not contain any place ve MY\ S with r|n,. As for places such that r/n,,
deg(a,,) is less than n,/r already. Therefore, 7, is empty and the proof of (3) is
completed. O

EXAMPLE 4. We consider the case that A = IF,[T] and that L = [F,(T). Let ¢ be a
rank r Drinfeld A-module over L given by

br = T +git+ -+ g+ AT

Assume that s = ¢" — 1 for A, that is, A is of order ¢" — 1 in L*/(L*)? ~'. In this case,
H; is the full group F,. There are exactly ¢! — 1 elements of trace zero over
F, in F Hence the number of elements with nonzero trace over F, is ¢" — ¢!
Also FL =F, by Theorem 6.1 (1), the Dirichlet density for 74 is
¢ g —1)/(r(g" = 1). In particular if ¢ = T1° 41+ T7*> and g = 3, the density
of T 4 for this particular Drinfeld module is 3/8. The proportion of places v of fixed
even degree d in 7 should go to 3/4 as d goes to infinity. One checks that among
those places of degree 2, the proportionin 7 4 is 2/3, those of degree 4, the proportion
is 7/9, and those of degree 6, the proportion is 3/4.

EXAMPLES. Let A, ¢, Lbe as given in Example 4. Assume that s = 1, thatis A is of
(¢" — 1)-th power in L*. By passing to isomorphism class over L we may assume that
A = 1.If ris prime to p then 1 is of nonzero trace; if r is a multiple of p then the trace
from s to ¥, of 1 is zero. It follows that the Dirichlet density of 7 ¢ is 1 /[IF,- : Fz]if r
is prime to p and the Dirichlet density is zero if r is divisible by p.

As alast application of Theorem 5.1, we study the more general question that how
often all the coefficients of the characteristic polynomial attain their maximal
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degrees (i.e. dega; = (in,)/r). We define the following set

iny

Dy ={ve ML\S : degla,) ===, I <i<r).

It’s clear that if rt{n, then v & Dy. Following the method used in the proof of
Theorem 6.1, we have the following

THEOREM 6.2. Assume that p is greater than r then the Dirichlet Density for Dy is
always positive.

Proof. Following the notations of the proof of Theorem 6.1, we let L, be the exten-
sion of L by adjoining (¢ — 1)-th roots of unity and Ly = L,( “v/A ). Let G and H, be
defined as in the proof of Theorem 6.1. As remarked above, we only need to consider
places v such that v € S and r | n,. In this case, let w be any place lying above v. It
follows the Frobenius automorphism [w, La/L] attached to w lies in Gal(La/L,),
denoted by y,. Let {, be the image of the isomorphism Gal(La/L,) >~ H; (see
the first part of the proof of Theorem 6.1). We have the congruence relation (17),

Ly, = AVEED (mod p,)
for an appropriate (¢° — 1)-th root of A"~V By Theorem 5.1, the characteristic
polynomial of ! viewed as scalar multiplication on I, is

a(Py (X)) := X" — (@ )X+ + (=1 (ar,)

and dega; = (in,)/r if and only if w(a;) # 0. We consider the places v such that
{,, = 1 € H,. The characteristic polynomial of I as scalar multiplication on I is just

o(Py (X)) = (X = 1)".

Since p > r all the coefficients of w(Py (X)) are non-zero and since H, always con-
tains 1, it follows Dy has Dirichlet density greater than or equal to
1/(s[Fy - F'r]). Now the conclusion follows. O
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