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Abstract. LetK be a function ¢eld over ¢nite ¢eldFq and letAbe a ring consistingofelements of
K regularaway froma¢xedplace1ofK. LetfbeaDrinfeldA-module de¢nedoveranA-¢eldL.
In the case where L is a ¢niteA-¢eld, we study the characteristic polynomial Pf�X � of the geo-
metric Frobenius. A formula for the sign of the constant term of Pf�X � in terms of `leading
coef¢cient' of f is given. General formula to determine signs of other coef¢cients of Pf�X � is
also derived. In the case where L is a global A-¢eld of generic characteristic, we apply these
formulae to compute the Dirichlet density of places where the Frobenius traces have the maximal
possible degree permitted by the `Riemann hypothesis'..
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1. Introduction

Let C be a smooth, projective, geometrically connected curve over a ¢xed ¢nite ¢eld
Fq: Fix a closed point 1 2 C whose residue ¢eld is denoted by Fq1 and let A be
the ring of functions on C regular away from 1: In the fundamental paper [2],
Drinfeld introduces the objects now called DrinfeldA-modules. In many ways, these
objects play the role of elliptic curves. In particular, Drinfeld Fq�T �-modules over
Fq�T � are the analogues of elliptic curves over Q and Drinfeld Fq�T �-modules over
Fq�T �=�P�, where P is a monic irreducible polynomial in Fq�T �; are the analogues
of elliptic curves over ¢nite prime ¢elds.

Given Drinfeld A-module f over a ¢nite A-¢eld, its most important invariant is
the characteristic polynomial Pf�X � of the geometric Frobenius acting on Tate
modules. This polynomial is in A�X �, and is an isogeny class invariant. However,
unlike the case of elliptic curves, the sign of Pf�0� can vary. More precisely, by ¢xing
a sign function, the norm of the Frobenius has a sign depending on f. We ¢rst show
in Section 3 that this sign depends only on the `leading coef¢cients' of f. Moreover,
there is a simple formula for this sign (Theorem 3.2) in terms of a power residue
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symbol. In the case of rank 2 Drinfeld Fq�T �-modules, with this formula at hand, the
computation of Pf�X � is almost as fast as computing the zeta function of an elliptic
curve over a ¢nite ¢eld.

There is the natural degree function deg:A n f0g ! Z which is given by
deg�a� �def dimFq A=�a� for any nonzero element a. According to the `Riemann
hypothesis' for Drinfeld A-modules over ¢nite A-¢eld L, the degree of the trace
of Frobenius is always less than or equal to �L : Fq�=rankf. This trace of Frobenius
is certainly the most interesting coef¢cient of Pf�X �. We want to know when this
coef¢cient has degree exactly �L : Fq�=rankf. This is answered in Section 4 and
the answer also depends only on the `leading coef¢cients' of f. Moreover, in the
case where the trace of Frobenius has its degree equal to �L : Fq�=rankf, the sign
of this trace can be computed from the `leading coef¢cients' of f. For the other
coef¢cients of Pf�X �, similar results can be derived just as well. An explanation
for this phenomenon is as follows. In the case where r � rankf divides
n � �L : Fq1�, the `leading coef¢cients' of f give rise to yet another action of the
Frobenius. This Frobenius action on Fqr1 is identi¢ed as a scalar multiplication
by dÿ1 2 F�qr1 , with d explicitly given in terms of the `leading coef¢cients' of f. It
turns out that the characteristic polynomial of dÿ1 is essentially the sign of the
characteristic polynomial Pf�X � (Theorem 4.6).

Let f be a DrinfeldA-module over a globalA-¢eld L of generic characteristic. For
almost all ¢nite places v of L, one has Drinfeld A-module fv de¢ned over the ¢nite
residue ¢eld L�v�, hence the characteristic polynomial Pf;v�X � 2 A�X �. We are
interested in the set of places v for which the polynomials Pf;v�X � enjoy certain
property. In Section 5 we begin by deducing that the `leading coef¢cients' off deter-
mine what are the possible signs of Pf;v�0�. All the possible signs of Pf;v�0� are equally
distributed as the ¢nite place v varies. In Section 6 we study the set T f of places v for
which the trace of the Frobenius at v has degree exactly �L�v� : Fq�=rankf and more
generally, we also study the set Df of places v for which all the coef¢cients of
Pf;v�X � attain their maximal degrees allowed by the `Riemann Hypothesis' for
Drinfeld A-modules. We show in particular that T f always has a positive density
provided that the characteristic of Fq does not divide rankf. On the other hand,
in the case where the characteristic of Fq does indeed divide rankf, it may happen
that for a given f the degree of the trace of Frobenius never equals
�L�v� : Fq�=rankf (Theorem 6.1). Finally, in Theorem 6.2, we show thatDf has posi-
tive density provided the characteristic of Fq is greater than rank f.

2. Preliminaries and Notations

We ¢rst ¢x some notations that will be used throughout this paper. Let C be a
smooth, projective, geometrically connected curve over a ¢xed ¢nite ¢eld Fq: Let
K be its function ¢eld over Fq: Fix a closed point 1 2 C and let A be the ring
of elements of K regular outside 1: In the sequel, we'll denote the degree of 1
by d1 and the normalized valuation on K�1 by v1 so that we have
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v1�x� � ÿ deg�x�=d1 for all x 2 K�1. The natural degree function onA is extended to
any nonzero ideal a of A by setting deg�a� � dimFq A=a: We shall use notation
jaj �def qdeg�a� to denote the absolute norm of a: Set

t �def �x 7! xq� 2 EndFq�Ga�

the Frobenius endomorphism of Ga over Fq:

Let E be any global function ¢eld over ¢nite ¢elds together with a distinguished
closed point 1E : Let E1 denote the completion of E at the place corresponding
to 1E and E�1� the residue ¢eld of E1: Recall the de¢nition of sign function
[9, Section 4] for the pair �E;1E�

DEFINITION 1. A sign function on E1 is a homomorphism sgn : E�1 ! E�1��
which is the identity on E�1��: In addition, sgn is extended to E1 by setting
sgn�0� � 0: Let s be an Fq-automorphism of E�1�: The composite map s � sgn

is called a twisted sign function of sgn by s:

We shall ¢x a sign function sgn : K1 ! K�1� throughout this paper. Then sgn is
de¢ned on K via the canonical embedding K ,!K1: An element a 2 K1 is said
to be monic if sgn�a� � 1: For any prime ideal p of A and any element a 2 A n p
we de¢ne the �qÿ 1�th power residue symbol to be the unique element
fa=pg 2 F�q such that

a
p

� �
� a

jpjÿ1
qÿ1 �mod p�:

The de¢nition of the power residue symbol is extended in the usual way to fb=ag for
any ideal a of A and any b 2 A which is relatively prime to a: If a � �a� is principal
we simply write fb=ag instead of fb=ag: We recall the following reciprocity law
for �qÿ 1�th power residues.

THEOREM 2.1 ([12, Chap. IV, Theorem 9.3 and Chap. III, Theorem 5.4]). Suppose
a; b 2 A are nonzero relatively prime elements. Put a � v1�a� and b � v1�b�, then we
have

a
b

n o b
a

� �ÿ1
� sgn �ÿ1�ab b

a

ab

� ��q1ÿ1�=�qÿ1�
where q1 � qd1 denotes the cardinality of K�1�.

Let L be anA-¢eld, that is, L together with a ring homomorphism { : A! L. Then
the kernel ker�{�, called the characteristic of L; is either the zero ideal or a nontrivial
prime ideal p ofA: In the former case, L is said to be of generic characteristic and the
latter case, L is of characteristic p:Denote by Lftg the twisted polynomial ring which
is generated by L and t as a subalgebra of all L-endomorphism of the additive group
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scheme Ga=L: A Drinfeld A-module over L of rank rX 1 is a ring homomorphism

f : A! Lftg � EndL�Ga�;

a 7!fa

such that f 6� { together with the following two conditions:

(i) degt fa � r � deg�a�;
(ii) the coe¤cient of t0 in fa is {�a�:

To ease the notations, we'll simply write a instead of {�a� to denote the image in L if
there is no danger of confusion.

In the sequel we assume that there exist rank rDrinfeldA-modules de¢ned over L
and ¢x such a rank rDrinfeldA-module f: Then, L contains a sub¢eld Fq1 which is
isomorphic to K�1� (see for example, [8, pp. 199, Remark 7.2.13]). For a 2 A; fa

has the following form

fa � at0 � ga;1t� � � � � ga;lÿ1tlÿ1 � Datl; �1�
where ga;i 2 L; Da 2 L� and l � r � deg�a�: Let L denotes an algebraic closure of L.
For any x 2 Ga�L� we let fa�x� denote the image of x under the morphism fa:

The a-torsion, denoted by f�a�; is the set of x 2 Ga�L� such that fa�x� � 0: By
de¢nition, f�a� is the set of roots of the polynomial

fa�X � � DaXql � ga;lÿ1Xqlÿ1 � � � � � ga;1Xq � aX :

Note that the a-torsion forms an Fq-vector space of dimension r � deg�a�: Put
f�a� � Ta2a f�a� for any ideal a of A which is prime to the characteristic p: For
any prime ideal q which is different from p, the Tate module is de¢ned by

Tq�f� � lim
`
 ÿ

f�q`�:

The Tate module Tq�f� gives rise to a q-adic representation of the ring End�f�
consisting of endomorphisms of f. In the case that L is a ¢nite A-¢eld, we'll denote
the degree of L over Fq1 by n and put n1 � d1n. Moreover, L must be of charac-
teristic p for some nonzero prime ideal p: Assume p is of degree d and L is a ¢nite
extension of degree m of Fp �def A=p: Denote by FrobL :� tn1 the geometric
Frobenius ofGa over L which is certainly in End�f�. Let Pf�X � be the characteristic
polynomial associated to FrobL via the q-adic representation. Then Pf�X � is a monic
polynomial of degree r with coef¢cients in A which is independent of q. Writing the
characteristic polynomial as

Pf�X � � Xr ÿ a1Xrÿ1 � � � � � �ÿ1�rar; ai 2 A; �2�
Pf�X � is an isogeny class invariant and the constant term Pf�0� has the property that
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Pf�0�
ÿ � � pm: That is, pm is principal and Pf�0� is a generator of pm (see [4, Section 3,
Section 5] for details). The goal in the next section is to determine the sign sgn�ar� of
the constant of Pf�X �.

3. Determining the Sign sgn�ar�
In this section, we consider the case that L � Fqn1 , a ¢nite A-¢eld of characteristic p:
We would like to compute the sign of the constant term of the characteristic poly-
nomial Pf�X �: First we have the following formula connecting sgn�ar� to
non-constant element b 2 A:

THEOREM 3.1.Let L be anA-¢eld of characteristic p and of degree n overFq1 :Letf
be a rank r DrinfeldA-module over L. Suppose b 2 A is a non-constant element which
is relatively prime to p then

NK�1�
Fq
�sgn�ar��ÿv1�b� � NL

Fq
�ÿ1��r�1� deg�b� sgn�b�

Db

� �
where NL

Fq
�NK�1�

Fq
� is the norm map from L �K�1�, respectively) to Fq:

Proof. Since b is relatively prime to p and the Drinfeld A-module f is of rank r; it
follows that the b-torsion is a free A=�b�-module of rank r: Moreover, f is de¢ned
over L; the action of FrobL commutes with the A-action. Therefore FrobL gives
rise to a A=�b�-linear automorphism of f�b�: The characteristic polynomial is just
Pf�X �mod �b�: Thus the determinant of FrobL; as an A=�b�-linear automorphism
on f�b�; is ar mod �b�:

On the other hand, f�b� is a Fq-vector space of dimension r deg�b� and FrobL is also
a Fq-linear automorphism of the Fq-vector space f�b�:Note that the action of FrobL

as a Fq-linear automorphism is compatible with that ofA=�b�-linear action since the
Fq-linear action arises from the canonical embedding Fq ,!A=�b�: The determinant
of FrobL; as Fq-linear automorphism, is therefore N�ar mod �b�� where N��� is the
norm from the Fq-algebra A=�b� down to Fq: We have

N�ar mod �b�� � ar
b

n o
: �3�

To see this, observe that both sides are multiplicative in b by Chinese Remainder
Theorem and the de¢nition of the power residue symbol. One simply needs to check
the case that the algebra is A=qe with prime ideal q 6� p: Put
Vi � qi=qe; 0W iW eÿ 1 which are Fq-vector subspaces of V0 � A=qe: Observe that
the multiplication by ar on Vi gives rise to an Fq-automorphism of Vi: The Fq-vector
space A=qe has the following ¢ltration of subspaces.

A=qe � V0 � V1 � � � � � Veÿ1:

Note that (3) is true for the case e � 1 and Vi=Vi�1 is of rank one as an A=q-module
for 0W iW eÿ 1: Now (3) follows by induction on e:
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To obtain the result, we compute det�FrobL� in another way. First, as fb 2 Lftg is
given by (1), we may write

fb � Db tl � gb;lÿ1
Db

tlÿ1 � � � � � gb;1
Db

t� b
Db

t0
� �

; l � r � deg�b�:

By [8, Proposition 1.3.5], the polynomial Dÿ1b fb has a decomposition into product of
linear factors in Lftg: That is, there exist ul; ulÿ1; � � � ; u1 2 L such that

fb � Db�tÿ ul t0� � � � �tÿ u1 t0�
with ul ulÿ1 � � � u1 � �ÿ1�lb=Db:The Fq-vector space f�b� is, by de¢nition, ker�Dÿ1b fb�:
We choose a basis fw1;w2; � � � ;wlg to be solutions of the following system of
equations:

�tÿ ui t0�wi � wi�1 if 1W iW l ÿ 1;

�tÿ ul t0�wl � 0:
�4�

Set A to be the column vector �w1;w2; � � � ;wl �t: Then the above equation can be
expressed as tA �MA where M is a l � l matrix with entries in L: In fact,

M �

u1 1 0 0
0 u2 1 0
..
. . .

. . .
. ..

.

0 0 . . . ulÿ1 1
0 0 . . . . . . ul

0BBBBB@

1CCCCCA:

Since FrobL � tn; by iterating the relations, we have

FrobLA �M�nÿ1�M�nÿ2� � � �M�1�MA

where M�i� means to raise the entries of M to the qith power. Thus, as a Fq-linear
transformation, FrobL is given by the matrix M�nÿ1�M�nÿ2� � � �M�1�M: Now,

det�M� � ul ulÿ1 � � � u1 � �ÿ1�l b
Db
:

As a result

det�FrobL� � �ÿ1�l b
Db

� �q�nÿ1������q�1
� NL

Fq
�ÿ1�l b

Db

� �
:

Since b 2 Fp and L is of degree m over Fp; we have that NL
Fq
�b� � fb=pgm: Also,

pm � �ar� by [4, Thm. 5.1 (ii)] and by the de¢nition of power residue symbol,
fb=pgm � fb=arg: Consequently,

det�FrobL� � b
ar

� �
NL

Fq
��ÿ1�lDb�ÿ1:
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Combining with identity (3), we obtain the following

ar
b

n o
� b

ar

� �
NL

Fq
��ÿ1�lDb�ÿ1: �5�

It follows by the reciprocity law of power residueÿTheorem 2.1 that,

NL
Fq
��ÿ1�lDb�ÿ1 � ar

b

n o b
ar

� �ÿ1

� sgn �ÿ1�v1�ar�v1�b� b
v1�ar�

av1�b�r

� ��q1ÿ1�=�qÿ1�

� �ÿ1�deg�ar� deg�b�NK�1�
Fq
�sgn�ar��ÿv1�b�NK�1�

Fq
�sgn�b��v1�ar�:

Note that l � r � deg�b� and ÿv1�ar� � n � �L : K�1��. Simplifying the formulae
above, we obtain

NK�1�
Fq
�sgn�ar��ÿv1�b� � NL

Fq
�ÿ1��r�1�deg�b� sgn�b�

Db

� �
:

This completes the proof. &

Remark 1. Note that by Riemann^Roch Theorem, for suf¢ciently large integerN,
there exist elements b; b0 2 A which are prime to p such that v1�b� � ÿN and
v1�b0� � ÿN ÿ 1: We choose b; b0 so that b=b0 � p1 is a uniformizer of K1 such
that sgn�p1� � 1. Set D� � Dÿ1b � Db0 , then

NK�1�
Fq
�sgn�ar�� � NL

Fq
��ÿ1��r�1�d1D��ÿ1: �6�

In most applications, the closed point1 is rational over Fq. In this case, we have
d1 � 1, then Theorem 3.1 and (6) have simpler forms.

THEOREM 3.2. Assume that 1 is a rational closed point of C.

(1) We have sgn�ar�deg�b� � NL
Fq
�ÿ1��r�1� deg�b�Db
ÿ �ÿ1

for every nonconstant monic
element b 2 A.

(2) Let b; b0 2 A be monic elements such that are prime to p and �deg�b�; deg�b0� � 1:
Let i; i0 2 Z be integers such that i deg�b� � i0 deg�b0� � 1: Put D� � Di

b � Di0
b0 then

sgn�ar� � NL
Fq
��ÿ1�r�1 D��ÿ1:

Remark 2. In Theorem 3.2, since �deg�b�; deg�b0�� � 1, we have �jbjr ÿ 1; jb0jr ÿ 1�
� qr ÿ 1: Let j; j0 be integers such that j�jbjr ÿ 1� � j0�jb0jr ÿ 1� � qr ÿ 1: Put
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D � Dj
bD

j0
b0 then the following formula holds also.

sgn�ar� � NL
Fq
��ÿ1�r�1 D�ÿ1 �7�

EXAMPLE 1. We apply Theorem 3.2 to the case that A � Fq�T � and
L � FP � Fq�T �=�P� where P is a degree d monic irreducible polynomial in
Fq�T �: Assume that the Drinfeld A-module f is de¢ned over K which is given by

fT � Tt0 � g1t� � � � � grÿ1trÿ1 � Dtr

with T ; g1; � � � ;D 2 A and suppose that D 2 A n �P�: Let f denote the reduction of f
modulo P so that

fT � Tt0 � g1t� � � � � grÿ1t
rÿ1 � Dtr

where the bar denotes the reduction modulo P: Consider the characteristic polyno-
mial of the geometric Frobenius associated to f as a Drinfeld A-module over L:
We may assume that P 6� T . In this case, letting a � T and a0 � 1 in
Theorem 3.2 we have the following very simple formula

sgn�ar;f� � �ÿ1�d�r�1� D
P
� �ÿ1

: �8�

Remark 3. Suppose f is a rank 2 Drinfeld Fq�T �-module de¢ned over the prime
A-¢eld FP as in the above example (see [4, Section 5]). Then the characteristic poly-
nomial of f can be shown easily to be

Pf�X � � X2 ÿ �ÿ1�degP D
P
� �ÿ1

H�f� X � �ÿ1�degP D
P
� �ÿ1

P;

where H�f� is the Hasse invariant of the Drinfeld module f, identi¢ed as a poly-
nomial in Fq�T� with degree less than degP. Recall that H�f� is actually the
coef¢cient of tdegP in fP . It follows that the invariants Pf�X � (hence also the
Euler^Poincarë characteristic of the ¢nite Fq�T �-module f�FP�) can be ef¢ciently
computed.

4. Sign of the Trace

We retain assumptions and notations from Section 3. Let L�t� be the division ring of
fractions of Lftg: The DrinfeldA-module f : A! Lftg is regarded as an embedding
so that f extends to an embedding of K into L�t�:We identify K with its image as a
sub¢eld contained in L�t�: In the following, the notation degt�a� denotes the degree
in t for a 2 A: The identity degt�a� � r � deg�a� holds. Let K�F � be the extension
of K generated by F :� FrobL:Note that FrobL commutes withA-action. It follows
that K�F �=K is a ¢eld extension. Recall the following basic facts about K�F � and
EndL�f� from [3, 4, 13]:
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THEOREM 4.1. (1) EndL�f� 
A K is a central division algebra over K�F � and
dimK�F � EndL�f� 
A K � �r0�2 where r0 � r=�K�F � : K � is an integer.

(2) There is only one place10 of K�F � that is above1 corresponding to the pole of
F : Let K�F �1 denote the completion of K�F � at the place 10: Then
K�F �1 � K�F � 
 K1 and �K�F � : K � � �K�F �1 : K1� � ef where e; f are the
rami¢cation index and residue degree of K�F �1=K1 respectively.

(3) Let Mf�X � be the minimal polynomial of F over K then the characteristic poly-
nomial Pf of F acting on Tate modules is related to Mf�X � by the identity
Pf�X � �Mf�X �r0 :

(4)The valuation v1 at the in¢nite place has an extension which we still use the same
notation v1 : K�F �� ! Q so that v1�F � � ÿn=r:Moreover, all roots of Pf�X � have
the same valuation ÿn=r:

Write

Pf�X � � Xr ÿ a1Xrÿ1 � � � � � �ÿ1�rar; ai 2 A:

It follows from Theorem 4.1 (4) that the coef¢cients ai of Pf�X � have valuation
v1�ai�X ÿ in=r: De¢ne the function

o�ai� �
sgn�ai� if v1�ai� � ÿi n=r;

0 otherwise. _

(
�9�

Note o�ai� is necessarily 0 if i � n is not divisible by r:
Let E be a maximal commutative ¢eld in EndL�f� 
A K containing K�F �: Then, E

is of degree r0�K�F � : K � � r over K : It follows from the proof of [13, Theorem 1] that
assertions (2), (3) and (4) of Theorem 4.1 remain valid with K�F � replaced by E:We'll
denote by1E the unique place of E that lies above1 and E1 the completion of E at
the place1E :We ¢x an extension of v1 to E� and denote this extension by v1 again
so that v1�F � � ÿn=r:Note that in this case, we have ef � r: In the remainder of this
section, e; f are reserved to denote the rami¢cation index and the residue degree of
E1 over K1. Therefore, the residue ¢eld E�1� ' Fq f

1
: We use the notation

jBj � qÿv1�B�1 to denote the absolute value of B 2 E1: Put AE � E \ EndL�f�: Since
E � EndL�f� 
A K; for any B 2 E there exists an a 2 A such that
aB 2 EndL�f�: It follows that E is the quotient ¢eld of AE :

Let E�1 act on �L� in the following way

x � x � xjxj
r
; for x 2 L

� and x 2 E�1:

If jxjr < 1; then xjxj
r
means the unique element l 2 �L� such that l1=jxj

r � x: For any
nonzero element x 2 AE � Lftg; let Dx 2 L� be the leading coef¢cient of x in t:
The leading coef¢cient map mf : AE n f0g ! L� de¢ned by mf�x� � Dx; satis¢es
the following relation

mf�x y� � mf�x�mf�y�jxj
r � �x � mf�y��mf�x�:
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It is clear that mf is a cocycle on the monoid AE n f0g: Let z � y=x 2 E� be any
non-zero element with x; y 2 AE . We extend the leading coef¢cient map mf to
E� by setting

mf�z� �def mf�zx�mf�x�ÿjzj
r � mf�y�mf�x�ÿjzj

r
:

Note that for any nonzero x0 2 AE ,

mf�zxx0�mf�xx0�ÿjzj
r � mf�zx�mf�x0�jzxj

r
mf�x�ÿjzj

r
mf�x0�ÿjzxj

r

� mf�zx�mf�x�ÿjzj
r
:

Let z � y0=x0 be another representative of z. We have

mf�zx�mf�x�ÿjzj
r � mf�zxx0�mf�xx0�ÿjzj

r � mf�zx0�mf�x0�ÿjzj
r

since x; x0 commute. Thus the de¢nition is independent of representatives of z. Note
that mf also extends to a cocycle on E�. Denote by U1 the principal unit group
in E�1.

LEMMA 4.2. For any u 2 E� \U1; we have mf�u� � 1:
Proof. Let u � y=x 2 E� be any 1-unit. By de¢nition, we have

mf�u� � mf�y�mf�x�ÿ1:
As u is a 1-unit, v1��yÿ x�=x� � v1�uÿ 1� > 0: Consequently, mf�x� � mf�y� and
hence mf�u� � 1. &

As shown by Lemma 4.2, mf is continuous with respect to 1E-adic topology on
E�. It has a unique extension to E�1 which we still denote by mf. Put mf�0� � 0.

LEMMA 4.3. The restriction of mf on E�1� gives an Fq-embedding of ¢elds
E�1� ! �L.

Proof. (Following [9, Prop. 4.5].)
It suf¢ces to show mf�1ÿ a� � 1ÿ mf�a� for all a 2 E�1�. Clearly, we only need to
check the identity for a 6� 0; 1: By continuity, we may choose unit z � y=x 2 E with
x; y 2 AE so that mf�z� � mf�a� and mf�1ÿ z� � mf�1ÿ a�: Note that z 62 U1; there-
fore v1�xÿ y� � v1�x� � v1�y� which implies mf�xÿ y� � mf�x� ÿ mf�y�: Thus,
mf�1ÿ z� � 1ÿ mf�z�. &

We summarize the two properties proved in Lemma 4.2 and 4.3 as follows:

(i) mf is a continuous cocycle on E�1; i.e. mf�xy� � mf�x� mf�y�jxj
r
for all x; y 2 E�1

([8, Prop. 7.2.12.2]),
(ii) the restriction of mf to E�1�� is a restriction of an Fq-embedding of ¢elds

E�1� ! �L; [8, Remark 7.2.13].
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By de¢nition, a coboundry d�x� is determined by element x 2 �L� such that

d�x�x � �x � x�xÿ1 � xjxj
rÿ1

for all x 2 E�1: It follows directly from the de¢nition that cocycles which are
cohomologous to mf enjoy the same properties as mf does.

Let p1 be a uniformizer of K1 such that sgn�p1� � 1. Put D � mf�pÿ11 � and let us
¢x any �qr1 ÿ 1�-root of D, denoted by xD. Set cD � mf=d�xD�. Then cD is a cocycle
on E�1 which is cohomologous to mf; furthermore, cD satis¢es properties (i) and (ii)
above.

PROPOSITION 4.4. cD takes values in F�qr1 .
Proof. Fix a uniformizer pE of E1. For any x 2 E�1, there exist a Ex 2 E�1� and a

wx 2 U1 such that x � Exwxp
e v1�x�
E . By the cocycle relation,

cD�x� � cD�Ex� cD�pe v1�x�E �

� cD�Ex�cD�pE��jxj
rÿ1�=�jpE jrÿ1�

Since cD is an embedding of E�1� it follows that cD�Ex� 2 E�1� ' Fq f
1
. Also, note

that jpE jr ÿ 1 divides jxjr ÿ 1. It suf¢ces to prove the proposition for x � pÿ1E .
We have pÿeE � Ewpÿ11 for some E 2 E�1� and w 2 U1. Then,

cD�pÿ1E �
ÿ ��jpÿ1E jerÿ1�=�jpÿ1E jrÿ1�� cD�pÿeE �

� cD�E�cD�pÿ11 �

� cD�E�:
Note that ef � r and jpÿ1E je � q1, we have the identity

cD�pÿ1E �
ÿ ��qr1ÿ1�=�qf1ÿ1�� cD�E�:

Since cD�E� 2 E�1� ' Fq f
1
,

cD�pÿ1E �
ÿ �qr1ÿ1� 1:

The proposition now follows. &

COROLLARY 4.5. The restriction cDjK�1 of the cocycle cD to K�1 is equal to a twisted
sign function of sgn:

Proof. It follows from the fact that cD�x� is an integer for all x 2 K�1 and the
cocycle relation, we have cD�x y� � cD�x� cD�y� for all x; y 2 K�1. Moreover, cD gives
rise to an Fq-automorphism of K�1�. As a consequence, cD and g � sgn are identical
on the unit group of K�1 for some g 2 Gal�K�1�=Fq�. Therefore, cD=g � sgn factors
through v1 : K�1 ! Z: There exists a l 2 F�qr1 such that cD�x� � g � sgn�x�lv1�x�
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for all x 2 K�1: Let x � pÿ11 , then lÿ1 � cD�pÿ11 � � 1: Hence, cD and g � sgn agree on
K�1 and this proves the Corollary. &

We shall ¢x any such cocycle and we denote it by gsgn: By Theorem 4.5,gsgnjK1 � g � sgn for some g 2 Gal�K�1�=Fq�. We now prove the main result of this
section.

THEOREM 4.6. Assume r j n and put d � D�q
n
1ÿ1�=�qr1ÿ1� 2 F�qr1 : Let ~o � g � o. Then,

the characteristic polynomial of the scalar multiplication bygsgn�F � � dÿ1 on Fqr1 over
Fq1 is

~o�Pf�X �� :� Xr ÿ ~o�a1�Xrÿ1 � � � � � �ÿ1�rÿ1 ~o�arÿ1�X � �ÿ1�r ~o�ar�:

In particular, we have

~o�a1� � Tr�dÿ1�; ~o�ar� � g � sgn�ar� � N�dÿ1�

where Tr : Fqr1 ! Fq1 and N : F�qr1 ! F�q1 are the trace and norm respectively.
Proof. Let K 01 denote the maximal unrami¢ed sub¢eld of E1 over K1: It follows

that E1 over K 01 is a totally rami¢ed extension of degree e: As the extension
K 01=K1 is unrami¢ed, it is Galois and is the constant ¢eld extension. The Galois
group Gal�K 01=K1� is thus generated by s which restricts to the Frobenius
automorphism of Fq f

1
over Fq1 : Choose an automorphism of K1 lifting s and

denoted this lifting by s again. Let tj : E1 ! K1 be K 01-embeddings of E1 with
1W jW e: Here, each embedding tj is occurred with multiplicity equal to the
inseparable degree of E1 over K 01: Over K1; we then have

Pf�X � �
Yfÿ1
i�0

Ye
j�1
�X ÿ sitjF �:

Since r j n; we may express the Frobenius element F as follows

F � rw pÿn=r1

where r 2 Fq f
1

and w 2 U1 is a 1-unit. Applying gsgn on both sides, it followsgsgn�r� �gsgn�F � � 1=d: Note that gsgn is an Fq-embedding of E�1� into �Fq and
its restriction on Fq1 is equal to g, gsgnjE�1� is actually an extension of g.

Let's rewrite Pf�X � as follows

Pf�X � �
Yfÿ1
i�0

Ye
j�1
�X ÿ �sir�w�j�i pÿn=r1 � where w�j�i � sitj w;

� pÿn1
Ye
j�1

Yfÿ1
i�0
�pn=r1 X ÿ �si r�w�j�i �
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Consider the polynomial

h�X � � pn1Pf�pÿn=r1 X � �
Ye
j�1

Yfÿ1
i�0
�X ÿ �si r�w�j�i � �10�

� Xr ÿ a01 X
rÿ1 � � � � � �ÿ1�ra0r �11�

Note that a0i � pin=r1 ai and v1�a0i�X 0: By reducing h�X � modulo p1; we put

�h�X � :� Xr ÿ �a01 X
rÿ1 � � � � � �ÿ1�r �a0r

where �a0i denote the unique element in K�1� which is congruent to the reduction
a0i �mod p1�: Observe that, by de¢nition, �a0i � o�ai�. On the other hand, note that
w�j�i are all 1-unit. We also have

�h�X � �
Ye
j�1

Yfÿ1
i�0
�X ÿ si r� �

Yfÿ1
i�0
�X ÿ si r�

( )e

�12�

by (10). As r �gsgn
ÿ1�1=d� over Fq and Gal�E�1�=Fq� is abelian, (12) implies thatgsgn��h�X �� is the characteristic polynomial of 1=d over Fq1 as the scalar multiplication

on Fqr1 : The theorem now follows by observing that gsgn��h�X �� � ~o�Pf�X ��: &

Remark 4. (1) In fact, using the same arguments as in Corollary 4.5, the restriction
of the cocycle sgn to K 01 can be shown to be a twisted sign function on K 01:

(2) Taking norm down to Fq, we have that

NK�1�
Fq
�sgn�ar�� � NK�1�

Fq
�gsgn�ar�� � NL

Fq

1
D

� �
:

(3) With a little more effort, we can show that gsgn�ar� � �ÿ1�n�e�1�NL
Fq1
�D�ÿ1

without assuming r j n: By the congruence n e � n r �mod 2�, this leads to another
proof of Theorem 3.2 (see also Remark 1).

5. Distribution of the Signs

Although our arguments can be extended to general cases, for the sake of simplicity
and practical purpose, we'll assume the closed point 1 of C is rational over Fq

in the remaining of this paper. We restate Theorem 4.6 in this case as follows.

THEOREM 5.1.Assume r j n and put d � D�q
nÿ1�=�qrÿ1� 2 F�qr :Then, the characteristic

polynomial of the scalar multiplication by sgn�F � � dÿ1 on Fqr is

o�Pf�X �� :� Xr ÿ o�a1�Xrÿ1 � � � � � �ÿ1�rÿ1o�arÿ1�X � �ÿ1�ro�ar�:
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In particular, we have

o�a1� � TrFqr

Fq
�dÿ1�;

o�ar� � sgn�ar� � NFqr

Fq
�dÿ1�

where TrFqr

Fq
: Fqr ! Fq and NFqr

Fq
: F�qr ! F�q are the trace and norm respectively.

Let L be a global function ¢eld over ¢nite ¢eld and we assume that L is an A-¢eld
of generic characteristic. Fix f to be a ¢xed rank rDrinfeld A-module over L: Then
there is a ¢nite set of places, denoted by S; of L so that f has good reduction outside
S [2]. Let OL be the integral closure of A in L: Extending S; if necessary, we may
assume that S contains places of L which are above 1 and that f is de¢ned over
S-integers of L:

NOTATIONS.

p : the characteristic of A = the characteristic of Fq;

ML : the set of places of L,
L�v� : the residue ¢eld at the place v 2ML;

nv : the degree of L�v� over Fq;

Frobv :� tnv the geometric Frobenius endomorphism of Ga over L�v�:

Consider any place v=2S and by choice, f has good reduction at v:We thus have a
well de¢ned characteristic polynomial Pf;v�X � associated with Frobv at v: The poly-
nomial Pf;v�X � 2 A�X � has the form as given in (2). To indicate the dependence
on v, we change the notation as follows:

Pf;v�X � � Xr ÿ a1;vXrÿ1 � � � � � �ÿ1�rar;v: �13�

Set Pv to be the monic element of A such that ar;v � EvPv: In this section, we will be
interested in the distribution of the signs Ev as v varies.

Given

fa � at0 � g1t� � � � � Datr deg�a�

with gi 2 L; Da 2 L�; for a 2 A n Fq: If a does not vanish at place v; then we have

Edeg�a�
v � NL�v�

Fq
��ÿ1��r�1� deg�a�Da�ÿ1

by Theorem 3.1. For any b 2 OL nonvanishing at v; the �qÿ 1�th power residue
symbol for b at v is by de¢nition, the unique element

�
b
v

	
in F�q such that�

b
v

	 � b�jvjÿ1�=�qÿ1��mod v�: Here jvj denotes the cardinality of the ¢nite ¢eld L�v�:
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We may rewrite Theorem 3.1 in terms of �qÿ 1�-th power residue symbol

Edeg a
v � �ÿ1��r�1� deg aDa

v

( )ÿ1
: �14�

Let a; a0 2 A be two monic elements such that �deg�a�; deg�a0�� � 1: Enlarge S if
necessary, we assume that S contains places where a; a0 vanish. Let j; j0 be two
integers such that j�jajr ÿ 1� � j0�ja0jr ÿ 1� � qr ÿ 1: Put D � Dj

aD
j0
a0 then, as in

Remark 2, we have

Ev � �ÿ1�r�1D
v

( )ÿ1
: �15�

De¢ne the subset NZ of M0
L as follows :

NZ � fv 2ML n S : Ev � Zg; for Z 2 Fq:

We are interested in determining the Dirichlet density of NZ:

THEOREM 5.2. Let ` be the smallest non-negative integer such that ��ÿ1�r�1D�` is in
�L��qÿ1. Then

(1) Ev 2 �F�q��qÿ1�=` for all v=2S;
(2) given any Z 2 �F�q��qÿ1�=` the Dirichlet density for NZ is equal to 1=`:

Proof. The assertion (1) follows from the de¢nition of ` and the multiplicativity of

power residue symbol. We proceed to prove (2). Let L0 � L
ÿ �������������������
�ÿ1�r�1Dqÿ1

q �
be the

extension by adjoining any �qÿ 1�th root of �ÿ1�r�1D: As L contains �qÿ 1�th roots
of unity and ��ÿ1�r�1D�` 2 �L��qÿ1 the extension L0=L is a Kummer extension
and is cyclic of degree `: It follows [12, III. 5.1],

�v;L0=L�ÿ �������������������
�ÿ1�r�1Dqÿ1

q � � �ÿ1�r�1D
v

( ) �������������������
�ÿ1�r�1Dqÿ1

q
� Eÿ1v

�������������������
�ÿ1�r�1Dqÿ1

q
;

where �v;L0=L� is the Artin symbol. Now assertion (2) follows from Cí ebotarev den-
sity theorem. &

Remark 5. The integer ` appeared in Theorem 5.2 is an invariant which is inde-
pendent of the choice of a; a0 with �deg�a�; deg�a0�� � 1:

EXAMPLE 2. We consider the special case that A � Fq�T � and L � K � Fq�T �
which is the most interesting case in practice. Let f be a Fq�T �-modules over L
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of rank r: Then f is given by

fT � Tt0 � g1t� � � � � grÿ1trÿ1 � Dtr;

where g1; � � � ; grÿ1 2 L and D 2 L�: Let S be the set of prime ideals of A such that
g1; � � � ;D are S-integers. Let p=2S be a prime ideal and P be its monic generator.
By taking a � �T � in Theorem 3.1 and applying Theorem 5.2, we conclude that:

(1) Ep � �ÿ1��r�1�D
P

n oÿ1
and

(2) the Dirichlet density forNZ is equal to 1=` for any given Z 2 �F�q��qÿ1�=` where ` is
as de¢ned in Theorem 5.2.

EXAMPLE 3. Consider the rank 2 Drinfeld F5�T �-module fT � Tt0 � t� Tt2

de¢ned over F5�T �. Then ` � 4 for this particular module. Computation gives

deg v # of Ev � 1 # of Ev � 2 # of Ev � 3 # of Ev � 4
1 1 1 1 1
2 2 3 3 2
3 10 10 10 10
4 36 39 39 36

6. Distribution of the Degrees of Traces

Let assumptions be the same as those in Section 5. The coef¢cient a1;v of the charac-
teristic polynomial Pf;v�X � has degree at most nv=r: It is natural to ask how often the
Frobenius trace has degree equal to nv=r as v varies. We are interested in the
following set of places

T f � v 2ML n S : deg�a1;v� � nv
r

n o
:

Let FL denote the constant ¢eld of L:Moreover let s be the smallest positive integer
such that Ds 2 �L��qrÿ1: Our main theorem in this section is the following.

THEOREM 6.1. (1) Let Hs � �F�qr ��q
rÿ1�=s; and let u be the cardinality of the set

Hs \ ker�TrFqr

Fq
�: Then the Dirichlet density of T f is equal to �sÿ u�=�s�Fqr : FL��:

(2)Assume that r is relatively prime to p:Let fp1; � � � ; ptg be the set of prime factors of s:
Set t � 0 if s � 1: Then the Dirichlet density of the set T f is greater than
�2t� 1�=�s�Fqr : FL�� if s is odd and greater than 2t=�s�Fqr : FL�� if s is even. In par-
ticular, the Dirichlet density for T f is always positive.
(3) Assume that r is divisible by p then the following statements are equivalent.

(i) T f is empty,
(ii) the Dirichlet density for T f is zero,
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(iii) �Fqr : Fq�Hs�� is divisible by p:

Proof. Let Lr be the extension of L by adjoining �qr ÿ 1�-th roots of unity and let
LD � Lr�

����
Dqrÿ1p �: We have Gal�Lr=L� ' Gal�Fqr=FL� and Gal�LD=Lr� ' Hs: Let G

denote the Galois group of LD=L: Then the Galois group G is an extension of
the group Gal�Fqr=FL� by Hs and the cardinality of G is equal to s�Fqr : FL�: Note
that by ¢xing a �qr ÿ 1�-th root

����
Dqrÿ1p of D; the isomorphism Gal�LD=Lr� ' Hs is

given by g 7! zg such that g� ����
Dqrÿ1p � � zg

����
Dqrÿ1p for some zg 2 Hs: Moreover

Gal�Fqr=FL� acts on Gal�LD=Lr� and the action is given by

�s � g��
����
Dqrÿ1p � � s�zg�

����
Dqrÿ1p �16�

for g 2 Gal�LD=Lr� and s 2 Gal�Fqr=FL�: This action corresponds to conjugation in
G: Namely, for any lifting ~s 2 G of s we have ~sg ~sÿ1 � s � g: For places
v 2M0

L n S; we note that o�a1;v� � 0 unless nv is divisible by r: Thus we only need
to consider places v such that the degrees nv are multiples of r: Let w denote
any place of LD which lies above v and let �w;LD=L� denote the Frobenius
automorphism attached to w: Then the conjugacy class of �w;LD=L� is the Artin
symbol �v;LD=L�: Since the degree of v is a multiple of r; the place v splits completely
in Lr and the restriction of �w;LD=L� to Lr is the identity automorphism of Lr:Hence
�w;LD=L� lies in Gal�LD=Lr�, denoted by gw. Let zgw 2 Hs denote the image of gw under
the isomorphism Gal�LD=Lr� ' Hs. By (16), the conjugacy class �v;LD=L� is the set of
Galois conjugates of zgw regarded as elements over Fq: We have

zgw � D�q
nvÿ1�=�qrÿ1� �mod pv� �17�

for some gw 2 �v;LD=L�:Therefore, by Theorem 5.1, we see thato�a1;v� is equal to the
trace of zÿ1gw

from Fqr to Fq: By assumption, there are u elements of Hs which are of
zero trace and note that Hs has cardinality s: As the set T f corresponds to
o�a1;v� 6� 0; (1) follows from Cí ebotarev density theorem [11, Chap. 5].

For (2), we observe that Hs is the group of s-th roots of unity. It contains pi-th
roots of unity for any prime pi that divides s: Let zpi denote any primitive pi-th root
of unity. We have either zpi 2 F�q or all zjpi ; 1W jW pi ÿ 1; are not in Fq:

If zpi 2 F�q then TrFqr

Fq
�zpi � � r zpi which is not zero since r is prime to p: The

cardinality of such zpi is at least 2 unless pi � 2 in which case the cardinality is
1. On the other hand, if zpi=2Fq then the set fzpi ; z2pi ; � � � ; zpiÿ1pi g is decomposed into
disjoint union of Galois orbits over Fq: We note that

Ppiÿ1
j�1 zjpi � ÿ1: As the total

sum is nonzero there must exist one Galois orbit over Fq whose sum is not zero.
Since zpi=2Fq this orbit contains at least two elements. Let xi be a representative
of this orbit. Then TrFqr

Fq
�xi� � wiTr

Fq�xi�
Fq
�xi� 6� 0 for some wi j r: Take the unity 1

of Hs into account. Thus, the number of elements in Hs whose trace over Fq is
nonzero is at least �2t� 1� for s odd and at least 2t for s even. Therefore we have
(2).
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We begin to prove (3). As (i) implying (ii) is clear we show that (iii) follows from
(ii). Assume that ds � �Fqr : Fq�Hs�� is prime to p: Since r is a multiple of p; the exten-
sion Fq�Hs�=Fq must be nontrivial. On the other hand, Hs is generated by any primi-
tive s-th roots of unity. It follows that Fq�zs� � Fq�Hs� where zs 2 Hs is any primitive
s-th roots of unity. Then the extension Fq�zs�=Fq has f1; zs; � � � ; z�r=ds�ÿ1s g as a basis. As
Fq�zs�=Fq is separable, fzis : 0W iW �r=ds� ÿ 1g cannot be all of zero trace from Fq�zs�
to Fq: Let z be an element of nonzero trace from Fq�zs� to Fq among
fzis : 0W iW �r=ds� ÿ 1g: Since TrFqr

Fq
�z� � dsTr

Fq�zs�
Fq
�z� and ds is prime to p; it follows

TrFqr

Fq
�z� is nonzero. We have exhibited an element in Hs which has nonzero trace

from Fqr to Fq: By (1), the Dirichlet density of T f is positive and therefore (ii) implies
(iii).

Assume that ds is divisible by p: Because TrFqr

Fq
�x� � dsTr

Fq�x�
Fq
�x� for any x 2 Fq�Hs�

and ds is a multiple of p we see that TrFqr

Fq
�x� � 0 for all x 2 Fq�Hs�: In particular,

all elements of Hs are of zero trace from Fqr to Fq: Now, by Theorem 5.1, for places
v 2M0

L n S such that r j nv o�a1;v� � TrFqr

Fq
�zÿ1gw
� where gw 2 �pv;LD=L� and zgw 2 Hs

is given by the �qr ÿ 1�-th power residue symbol of D at the prime pv: Thus T f does
not contain any place v 2M0

L n S with r j nv: As for places such that r j= nv;
deg�a1;v� is less than nv=r already. Therefore, T f is empty and the proof of (3) is
completed. &

EXAMPLE 4. We consider the case that A � Fq�T � and that L � Fq�T �. Let f be a
rank r Drinfeld A-module over L given by

fT � Tt0 � g1t� � � � � grÿ1trÿ1 � Dtr:

Assume that s � qr ÿ 1 for D; that is, D is of order qr ÿ 1 in L�=�L��qrÿ1: In this case,
Hs is the full group F�qr : There are exactly qrÿ1 ÿ 1 elements of trace zero over
Fq in F�qr : Hence the number of elements with nonzero trace over Fq is qr ÿ qrÿ1:
Also, FL � Fq; by Theorem 6.1 (1), the Dirichlet density for T f is
qrÿ1�qÿ 1�=�r�qr ÿ 1�: In particular if fT � Tt0 � t� Tt2 and q � 3, the density
of T f for this particular Drinfeld module is 3=8. The proportion of places v of ¢xed
even degree d in T f should go to 3=4 as d goes to in¢nity. One checks that among
those places of degree 2, the proportion in T f is 2=3, those of degree 4, the proportion
is 7=9, and those of degree 6, the proportion is 3=4.

EXAMPLE 5. LetA; f;L be as given in Example 4. Assume that s � 1; that is D is of
�qr ÿ 1�-th power in L�: By passing to isomorphism class over L we may assume that
D � 1: If r is prime to p then 1 is of nonzero trace; if r is a multiple of p then the trace
from Fqr to Fq of 1 is zero. It follows that the Dirichlet density of T f is 1=�Fqr : FL� if r
is prime to p and the Dirichlet density is zero if r is divisible by p:

As a last application of Theorem 5.1, we study the more general question that how
often all the coef¢cients of the characteristic polynomial attain their maximal
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degrees (i.e. deg ai � �i nv�=r). We de¢ne the following set

Df � fv 2ML n S : deg�ai;v� � i nv
r
; 1W iW rg:

It's clear that if r nv then v 62 Df. Following the method used in the proof of
Theorem 6.1, we have the following

THEOREM 6.2. Assume that p is greater than r then the Dirichlet Density for Df is
always positive.

Proof. Following the notations of the proof of Theorem 6.1, we let Lr be the exten-
sion of L by adjoining �qr ÿ 1�-th roots of unity and LD � Lr�

����
Dqrÿ1p �: LetG andHs be

de¢ned as in the proof of Theorem 6.1. As remarked above, we only need to consider
places v such that v 62 S and r j nv: In this case, let w be any place lying above v. It
follows the Frobenius automorphism �w;LD=L� attached to w lies in Gal�LD=Lr�,
denoted by gw. Let zgw be the image of the isomorphism Gal�LD=Lr� ' Hs (see
the ¢rst part of the proof of Theorem 6.1). We have the congruence relation (17),

zgw � D�q
nvÿ1�=�qrÿ1� �mod pv�

for an appropriate �qr ÿ 1�-th root of D�q
nvÿ1�. By Theorem 5.1, the characteristic

polynomial of zÿ1gw
viewed as scalar multiplication on Fqr is

o�Pf;v�X �� :� Xr ÿ o�a1;v�Xrÿ1 � � � � � �ÿ1�ro�ar;v�
and deg ai � �i nv�=r if and only if o�ai� 6� 0. We consider the places v such that
zgv � 1 2 Hs. The characteristic polynomial of 1 as scalar multiplication on Fqr is just

o�Pf;v�X �� � �X ÿ 1�r:
Since p > r all the coef¢cients of o�Pf;v�X �� are non-zero and since Hs always con-
tains 1, it follows Df has Dirichlet density greater than or equal to
1=�s�Fqr : FL��. Now the conclusion follows. &
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