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Abstract
We classify embeddings of the finite groups A4, S4 and A5 in the Lie group G2(C) up to conjugation.

1. Introduction

Cartan classified inner automorphisms of finite order of simple Lie algebras g over the complex num-
bers, up to conjugation [2]. See Reeder [21] for a modern recollection. Motivated by developments in
the theory of automorphic Lie algebras (see e.g. [19, 20, 15, 16, 17]), we would like to extend this
classification of embeddings of cyclic groups to all finite subgroups of PSL(2, C), which we will call
polyhedral groups, consisting of cyclic groups of order n, dihedral groups of order 2n, the tetrahedral
group, the octahedral group and the icosahedral group, denoted respectively

Cn, Dn, T, O, I.

The groups T, O and I are isomorphic to A4, S4 and A5, respectively.
If g is one of the classical simple Lie algebras, one can find a satisfying classification using character

theory for finite groups. For the exceptional Lie algebras, the full solution to this problem is still out of
reach. The important case of embedding the icosahedral group and its double cover into E8(C) was first
solved by Frey [8]. Recently, Frey and Rudelius [10] completed the classification of homomorphisms of
(binary) polyhedral groups into E8(C) and further refined its connection to 6-dimensional superconfor-
mal field theories. Moreover, they corrected some errors in the physics and mathematics literature on
this topic and thus (almost) reconciled their results.

Throughout, let V be the 7-dimensional faithful representation of g2(C). Its exponents generate a Lie
group G2(C) in SO(V). The centre of G2(C) is trivial, and all automorphisms of g2(C) are inner, which
implies an isomorphism

G2(C) ∼= Aut(g2(C))

given by the adjoint representation. We will use this isomorphism without further mention and refer to
Draper [6] for a comprehensive and accessible discussion of concrete models for groups of type G2.

Finite subgroups of G2(C) have been classified by Cohen and Wales in [4], but the conjugacy classes
of polyhedral groups are not listed in this paper. We are able to obtain this list for the groups T, O
and I with elementary methods because finite subgroups of G2(C) are conjugate if and only if they are
conjugate in GL(V), the latter being decidable by character theory. This powerful theorem was obtained
independently by Larsen in [18] and Griess in [11].

Cohen and Griess [3] initiated a flurry of research into embeddings of simple and quasisimple groups,
such as the icosahedral group I and its double cover, into all exceptional Lie groups. See Frey and Ryba
[7] for a recent overview of the history and current state of the art. The classification of subgroups
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was finished in 2002 by Griess and Ryba [12], who also settled the classification of conjugacy classes of
embeddings in particular cases. They proved that there are precisely four conjugacy classes of monomor-
phisms I ↪→ G2(C) which realise two conjugacy classes of icosahedral subgroups of G2(C) (the latter
fact also obtained by Frey in [9]).

In this paper, we classify monomorphisms from the tetrahedral and octahedral group into G2(C) up to
conjugation and recover this classification for the icosahedral group obtained by Griess and Ryba with
a different proof. The classification of dihedral groups in G2(C) remains open.

2. Cyclic groups in G2(C)

Elements of finite order in the connected Lie group G = Aut(g)0 for a simple complex Lie algebra g are
classified using the geometry of affine Weyl groups. The very short explanation is that any diagonalisable
element of G is conjugate to an element of a Cartan subgroup T , and two elements in a T are conjugate
in G if and only if they are conjugate by the Weyl group NG(T)/T . If an element of G has also finite order,
it is a rational point in a (compact) maximal torus in G. A maximal torus is isomorphic, through the
exponential map, with a real Cartan subalgebra (CSA) up to translations by the co-weight lattice. Thus,
the conjugacy classes of elements of finite order in G are identified with rational linear combinations
of simple co-weights in the CSA, modulo the action of the Weyl group and the co-weight lattice. This
latter group is known as the extended affine Weyl group.

One of the great insights of Cartan was to work modulo the affine Weyl group instead (the semidirect
product of the Weyl group and the co-root lattice, rather than the co-weight lattice), which has a sim-
plex as fundamental domain in the CSA, and handle the remaining symmetry using Dynkin diagrams.
Determining the vertices of this simplex then yields

Theorem 2.1 (Cartan) Let g be a simple complex Lie algebra and {α1, . . . , α�} a base for its root system
with highest root

∑�

i=1 aiαi. Set a0 = 1.
Elements of order n in Aut(g)0, up to conjugation, are in one-to-one correspondence with sequences

of nonnegative relative prime integers {s0, . . . , s�} such that

n =
�∑

i=0

aisi,

up to symmetry of the affine Dynkin diagram. The conjugacy class associated with {s0, . . . , s�} is rep-
resented by the automorphism sending the Chevalley generator Ej of the Lie algebra to ζ sj Ej, where
j = 0, . . . , � and ζ = exp 2π i

n
.

The sequence {s0, . . . , s�} lists the coordinates for the class of automorphisms. For the full story, we
refer to the original work of Cartan [2] and Kac (who extended the result to all automorphisms of finite
order) [13, 14] and the enlightening treatment of Reeder [21]. See Bourbaki [1] for a thorough study of
(extended) affine Weyl groups.

Example 2.2 The affine Dynkin diagram of Lie type G2 is given by

with weights ai written above the nodes. If we look for automorphisms g of order 3, we find two con-
jugacy classes. With coordinates si written in the diagram,1 they are 0 1 — 1 and 1 0 — 0. The
automorphism g can be presented by extending these coordinates to the root system additively, modulo

1 There is no canonical choice which simple root to call α1 and which to call α2. In the books of Bourbaki [1] and Kac [14] that
are used by many, distinct choices are made. For this reason, we decide to write the coordinates in the Dynkin diagram, so that
the reader can keep their favourite book on the side without needing to translate.
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n = 3, yielding a diagram of the eigenvalues of g at the root spaces of g2(C), cf. Figure 1. The weights of
the representation V correspond to the short roots together with zero. Therefore, one can easily obtain
the trace of g on V from the diagram in Figure 1.

We present all conjugacy classes of automorphisms of order ≤ 5 in Table 1.
Two more lemmas are needed in preparation for the next section.

Lemma 2.3. If PSL(2, C) ↪→ G2(C) is a monomorphism, then the conjugacy class of order 3 elements
in PSL(2, C) is mapped into the conjugacy class of 0 1—1 in G2(C).

Proof. An element g of order 3 in PSL(2, C) is conjugate to ±diag
(
e

2π i
6 , e− 2π i

6
) = ± e

2π i
6 H where H =

diag(1, −1) belongs to the Lie algebra sl(2, C) of PSL(2, C). Suppose g is mapped to the conjugacy class
of 1 0—0 in G2(C). Then, H acts on the simple root spaces with weights 2 0. By linear extension
over the root system, we find all weights of g2(C) as representation of sl(2, C), and see weight 6 has
multiplicity two and weight 4 has multiplicity one. Such a representation of sl(2, C) does not exist.
Hence, g is mapped to the other conjugacy class of order 3 elements in G2(C).

Lemma 2.4. Let g be a diagonalisable element of G2(C) with trace χV(g) and denote the trace of its
action on g2(C) by χg2(C)(g). Then

χg2(C)(g) = χV(g)2 − χV(g2) − 2χV(g)

2
.

Figure 1. Order 3 elements in G2(C) diagonalised by a Cartan Weyl basis. Thick lines indicate simple
roots. The number s at a root indicates an eigenvalue e

2π is
3 at the root space.

Table 1. Elements of G2(C) of order ≤ 5 (with φ± = 1±√
5

2
).

Order Coordinates Trace on V
2 0 1—0 −1
3 0 1—1 1

1 0—0 −2
4 0 1—2 3

1 0—1 −1
5 0 1—3 1 + 2φ+

0 2—1 1 + 2φ−

1 0—2 −φ−

1 1—0 −φ+
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Proof. The Lie group G2(C) is realised as a Lie subgroup of SO(V). This turns so(V) into a 21-
dimensional representation of g2(C), which has g2(C) as 14-dimensional subrepresentation. By complete
reducibility, there must be a 7-dimensional representation U such that so(V) = g2(C) ⊕ U as g2(C) rep-
resentation. It follows from the classification of representations of g2(C) that U is either trivial or U = V .
If U is trivial, then g2(C) is a nontrivial ideal in so(V), contradicting the simplicity of the latter. Hence,
so(V) = g2(C) ⊕ V .

If we consider the trace of g on the left- and right-hand side and observe that the trace of g on so(V)
is related to χV(g) by χso(V)(g) = (χV(g)2 − χV(g2))/2, we obtain the desired result.

3. TOI groups in G2(C)

The TOI groups have presentation
Γ= 〈γa, γb, γc | γ n

a , γ 3
b , γ 2

c , γaγbγc〉.
Taking n = 3, 4 or 5 results in T, O or I, respectively. Their character tables are provided in Table 2.

Table 2. Irreducible characters of T, with ζ = e
2π i
3 , of O and I, with φ± = 1±√

5
2

.

T [1] [γa] [γc] [γb] O [1] [γc] [γb] [γ 2
a ] [γa] I [1] [γb] [γc] [γa] [γ 2

a ]

χ1 1 1 1 1 χ1 1 1 1 1 1 χ1 1 1 1 1 1
χ2 1 ζ 2 1 ζ χ2 1 −1 1 1 −1 χ2 3 0 −1 φ− φ+

χ3 1 ζ 1 ζ 2 χ3 2 0 −1 2 0 χ3 3 0 −1 φ+ φ−

χ4 3 0 −1 0 χ4 3 −1 0 −1 1 χ4 4 1 0 −1 −1
χ5 3 1 0 −1 −1 χ5 5 −1 1 0 0

Lemma 3.1 If Γ is a TOI group and Γ ↪→ G2(C) a monomorphism, then any element γ ∈ Γ of order 3
is mapped to the class of 0 1—1 in G2(C).

Proof. In Table 1, we see that G2(C) only has one class of involutions, which has trace −1, and two
classes of elements of order 3, with traces 1 (at the class of 0 1—1) and −2. The claim follows by
observing that the TOI groups do not have a seven dimensional character with values −1 and −2 at the
elements of order 2 and 3, respectively.

In Table 3, we list all 7-dimensional characters of TOI groups with value −1 and 1 at elements of
order 2 and 3, respectively, and irrational value at elements of order 5. Due to Lemma 3.1 and Table 1,
we know that these conditions are necessary for the character of a monomorphism of a TOI group into
G2(C).

Table 3. Characters of TOI groups in G2(C).

T O I
χ1 + 2χ4 χ1 + 2χ4 χ1 + 2χ2

χ2 + χ4 + χ5 χ1 + 2χ3

χ2 + χ4

χ3 + χ4

One way to construct embeddings of polyhedral groups is through a composition
Γ ↪→ PSL(2, C) ↪→ G2(C).
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There is one embedding T ↪→ PSL(2, C), two embeddings O ↪→ PSL(2, C) and also two embeddings
I ↪→ PSL(2, C), up to conjugation. Moreover, there are precisely two embeddings PSL(2, C) ↪→ G2(C)
up to conjugation [5]. They are represented by the weighted Dynkin diagrams 2 2 and 2 0. The
linear extension of these weights to the root system yields the weights of g2(C) as a representation of
sl(2, C).

The characters of the various compositions realise all options from Table 3. From character theory,
we know that this classifies the embeddings in G2(C) up to conjugation in GL(V). Thanks to the work of
Larsen and Griess [18, 11], we can conclude that these conjugation classes correspond to the conjugation
classes in G2(C). Thus we arrive at our main results.

Theorem 3.2 The conjugation classes of monomorphisms of T, O and I into G2(C) are classified by the
characters in Table 3.

The part of this theorem concerning the icosahedral group can also be found in [12, Section 4] where
a different proof is given.

There is an automorphism of I sending γa to γ 2
a . The conjugacy classes of monomorphisms I ↪→ G2(C)

with the first two and last two icosahedral characters of Table 3 are interchanged when precomposed with
this automorphism. Thus, we see that there are only two conjugacy classes of images of monomorphisms
I ↪→ G2(C), and recover [9, Theorem 4.11].

Theorem 3.3 Each monomorphism of T, O and I into G2(C) factors through PSL(2, C).

This result provides a practical construction, since monomorphisms Γ ↪→ PSL(2, C) and
PSL(2, C) ↪→ G2(C) can be found in the literature.

Theorem 3.4 If Γ is a TOI group embedded in Aut(g2(C)), then the only element in g2(C) fixed by all
γ ∈ Γ is 0.

Proof. Using Lemma 2.4 and Theorem 3.2, we can compute all characters of Γ-actions on g2(C) and
observe that none of them has a trivial component.

We have not classified embeddings of the dihedral groups in G2(C). The following example shows
why this task cannot be completed with the same approach.

Example 3.5 We construct a monomorphism D3 ↪→ G2(C) which shows that Lemma 3.1, Theorems
3.3 and 3.4 all fail for dihedral groups. We do so with a concrete model L of g2(C) in gl(7, C). Let
x = (x1, x2, x3)t and let

L =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 −√
2yt −√

2xt

√
2x a ly√
2y lx −at

⎞
⎟⎟⎠ | a ∈ sl(3, C), x, y ∈C

3

⎫⎪⎪⎬
⎪⎪⎭

, lx =
⎛
⎜⎝

0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎟⎠ .

See [6] for a proof that (a conjugate of) L is indeed a simple Lie subalgebra of gl(7, C) of type G2, so
that we can identify L with g2(C) and Aut(L) with G2(C).

Conjugation with the diagonal matrix diag(1, ζ , ζ , ζ , ζ 2, ζ 2, ζ 2), ζ = e
2π i
3 , defines an automorphism

of gl(7, C) which preserves L. Let r be its restriction to L. Then, r is an order 3 automorphism of L. The
elements of L fixed by r form a Lie subalgebra isomorphic to sl(3, C); hence, r belongs to the conjugacy
class of 1 0—0 in G2(C) (cf. Figure 1).

The map M �→ −Mt also defines an automorphism of gl(7, C) which preserves L. Let s be its restric-
tion to L, an automorphism of order 2. Then, rs = sr−1; hence, r and s generate a dihedral group of order
6 in G2(C).
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Contrary to the case of the TOI groups, the map D3 ↪→ G2(C) we have constructed does not factor
through PSL(2, C) because of Lemma 2.3 and the fact that its image has nontrivial intersection with the
conjugacy class of 1 0—0. Moreover, we compute that the elements fixed by D3 form a subalgebra of
g2(C) isomorphic to sl(2, C).
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