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Abstract

Bershadsky, Cecotti, Ooguri and Vafa constructed a real-valued invariant for
Calabi–Yau manifolds, which is now called the BCOV invariant. In this paper, we
extend the BCOV invariant to such pairs (X, D), where X is a compact Kähler mani-
fold and D is a pluricanonical divisor on X with simple normal crossing support. We
also study the behavior of the extended BCOV invariant under blow-ups. The results
in this paper lead to a joint work with Fu proving that birational Calabi–Yau manifolds
have the same BCOV invariant.
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Introduction

In this paper, we consider a real-valued invariant for Calabi–Yau manifolds equipped with Ricci
flat metrics, which is now called the BCOV torsion. The BCOV torsion was introduced by
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Bershadsky, Cecotti, Ooguri and Vafa [BCOV93, BCOV94] as the stringy genus-one partition
function of N = 2 superconformal field theory. Their work extended the mirror symmetry con-
jecture of Candelas, de la Ossa, Green and Parkes [COGP91]. Fang and Lu [FL05] used BCOV
torsion to study the moduli space of Calabi–Yau manifolds.

The BCOV torsion is an invariant on the B-side. Its mirror on the A-side is conjecturally the
genus-one Gromov–Witten invariant. Though genus � 2 Gromov–Witten invariants have been
intensively studied recently, there is no rigorously defined genus � 2 invariant on the B-side.

The BCOV invariant is a real-valued invariant for Calabi–Yau manifolds, which could be
viewed as a normalization of the BCOV torsion. Fang, Lu and Yoshikawa [FLY08] constructed
the BCOV invariant for Calabi–Yau threefolds and established the asymptotics of the BCOV
invariant (of Calabi–Yau threefolds) for one-parameter normal crossings degenerations. They also
confirmed the (B-side) genus-one mirror symmetry conjecture of Bershadsky, Cecotti, Ooguri and
Vafa [BCOV93, BCOV94] for quintic threefolds.

Eriksson, Freixas i Montplet and Mourougane [EFM21] constructed the BCOV invariant
for Calabi–Yau manifolds of arbitrary dimension and established the asymptotics of the BCOV
invariant for one-parameter normal crossings degenerations. In another paper [EFM22], they
confirmed the (B-side) genus-one mirror symmetry conjecture of Bershadsky, Cecotti, Ooguri
and Vafa [BCOV93, BCOV94] for Calabi–Yau hypersurfaces of arbitrary dimension, which is
compatible with the results of Zinger [Zin08, Zin09] on the A-side.

For a Calabi–Yau manifold X, we denote by τ(X) the logarithm of the BCOV invariant of
X defined in [EFM21].

Yoshikawa [Yos06, Conjecture 2.1] conjectured that for a pair of birational projective
Calabi–Yau threefolds (X, X ′), we have τ(X ′) = τ(X). Eriksson, Freixas i Montplet and
Mourougane [EFM21, Conjecture B] conjectured the following higher-dimensional analogue.

Conjecture 0.1. For a pair of birational projective Calabi–Yau manifolds (X, X ′), we have

τ(X ′) = τ(X). (0.1)

Let X and X ′ be projective Calabi–Yau threefolds defined over a field L. Let T be a finite
set of embeddings L ↪→ C. For σ ∈ T , we denote by Xσ (respectively, X ′

σ) the base change of
X (respectively, X ′) to C via the embedding σ. We denote by Db(Xσ) (respectively, Db(X ′

σ))
the bounded derived category of coherent sheaves on Xσ (respectively, X ′

σ). Maillot and Rössler
[MR12, Theorem 1.1] showed that if one of the following conditions holds:

(a) there exists σ ∈ T such that Xσ and X ′
σ are birational;

(b) there exists σ ∈ T such that Db(Xσ) and Db(X ′
σ) are equivalent;

then there exist a positive integer n and a non-zero element α ∈ L such that

τ(X ′
σ)− τ(Xσ) =

1
n

log |σ(α)| for all σ ∈ T. (0.2)

Although a result of Bridgeland [Bri02, Theorem 1.1] showed that condition (a) implies condition
(b), Maillot and Rössler gave separate proofs for conditions (a) and (b).

Let X be a Calabi–Yau threefold. Let Z ↪→ X be a (−1,−1)-curve. Let X ′ be the Atiyah
flop of X along Z, which is also a Calabi–Yau threefold. We assume that both X and X ′ are
compact and Kähler. The current author [Zha22, Corollary 0.5] showed that

τ(X ′) = τ(X). (0.3)
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In other words, Conjecture 0.1 holds for three-dimensional Atiyah flops. The proof of (0.3)
consists of two key ingredients:

(i) we extend the BCOV invariant from Calabi–Yau manifolds to certain ‘Calabi–Yau pairs’,
more precisely, we consider manifolds equipped with smooth reduced canonical divisors;

(ii) we study the behavior of the extended BCOV invariant under blow-ups.

To fully confirm Conjecture 0.1 following this strategy, it is necessary to further extend the
BCOV invariant as well as the blow-up formula. This is exactly the purpose of this paper. We
consider pairs consisting of a compact Kähler manifold and a canonical divisor with rational
coefficients on the manifold with simple normal crossing support and without component of
multiplicity � −1. We construct the BCOV invariant of such pairs and establish a blow-up
formula for our BCOV invariant.

In the joint work with Fu [FZ20], we use the results in this paper together with a factorization
theorem of Abramovich, Karu, Matsuki and W�lodarczyk [AKMW02, Theorem 0.3.1] to confirm
Conjecture 0.1 in full generality.

Let us now give more detail about the matter of this paper.

BCOV torsion. We use the notation in (0.23) and (0.24). Let X be an n-dimensional compact
Kähler manifold. Let H•

dR(X) be the de Rham cohomology of X. Let Hk
dR(X) =

⊕
p+q=k Hp,q(X)

be the Hodge decomposition. Set

λp(X) = det Hp,•(X) =
n⊗

q=0

(
det Hp,q(X)

)(−1)q

for p = 0, . . . , n,

λtot(X) =
2n⊗

k=1

(
det Hk

dR(X)
)(−1)kk =

n⊗
p=1

(
λp(X)⊗ λp(X)

)(−1)pp
.

(0.4)

Let H•
Sing(X, C) be the singular cohomology of X with coefficients in C. We identify Hk

dR(X)
with Hk

Sing(X, C) (see (1.121)). For k = 0, . . . , 2n, let

σk,1, . . . , σk,bk
∈ Im

(
Hk

Sing(X, Z)→ Hk
Sing(X, R)

) ⊆ Hk
dR(X) (0.5)

be a basis of the lattice. Set

σX =
2n⊗

k=1

(σk,1 ∧ · · · ∧ σk,bk
)(−1)kk ∈ λtot(X), (0.6)

which is well-defined up to ±1.
Let ω be a Kähler form on X. Let ‖·‖λp(X),ω be the Quillen metric (see § 1.4) on λp(X)

associated with ω. Let ‖·‖λtot(X),ω be the metric on λtot(X) induced by ‖·‖λp(X),ω via (0.4). Set

τBCOV(X, ω) = log‖σX‖λtot(X),ω, (0.7)

which we call the unnormalized BCOV invariant of (X, ω).

BCOV invariant. For a compact complex manifold X and a divisor D on X, we denote

D =
l∑

j=1

mjDj , (0.8)

where mj ∈ Z\{0}, D1, . . . , Dl ⊆ X are mutually distinct and irreducible. We call D a divisor
with simple normal crossing support if D1, . . . , Dl are smooth and transversally intersect. Let d

782

https://doi.org/10.1112/S0010437X23007042 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007042


BCOV invariant and blow-up

be a non-zero integer. We assume that D is of simple normal crossing support and mj �= −d for
j = 1, . . . , l. For J ⊆ {1, . . . , l}, we denote

wJ
d =

∏
j∈J

−mj

mj + d
, DJ = X ∩

⋂
j∈J

DJ ,

w∅
d = 1, D∅ = X.

(0.9)

See [FZ20, § 4] for an interpretation of this construction.
Now let X be a compact Kähler manifold. Let KX be the canonical line bundle over X. Let

Kd
X be the dth tensor power of KX . Let γ ∈M (X, Kd

X) be an invertible element.

Definition 0.2. We call (X, γ) a d-Calabi–Yau pair if:

(i) div(γ) =
∑l

j=1 mjDj is of simple normal crossing support;
(ii) mj �= −d for j = 1, . . . , l.

Here are some examples of d-Calabi–Yau pairs.

(a) If X is a compact Kähler Calabi–Yau manifold and 0 �= γ ∈ H0(X, Kd
X), then (X, γ) is a

d-Calabi–Yau pair.
(b) If (X, γ) is a d-Calabi–Yau pair with d > 0 and Y ⊆ X transversally intersects with div(γ) in

the sense of Definition 1.1, then (BlY X, f∗γ) is a d-Calabi–Yau pair, where f : BlY X → X
is the blow-up along Y .

Now we assume that (X, γ) is a d-Calabi–Yau pair. Let wJ
d and DJ be as in (0.9). Let ω be

a Kähler form on X. Recall that τBCOV(·, ·) was constructed in (0.7). The BCOV invariant of
(X, γ) is defined as

τd(X, γ) =
∑

J⊆{1,...,l}
wJ

d τBCOV(DJ , ω|DJ
) + correction terms, (0.10)

where the correction terms are Bott–Chern-type integrations (see Definition 3.2 and (3.10)). We
construct τd(X, γ) and show that it is independent of ω.

We can further extend our construction to canonical divisors with rational coefficients. We
consider a pair (X, D), where X is an n-dimensional compact Kähler manifold, D is a canonical
divisor with rational coefficients on X such that:

(i) D is of simple normal crossing support;
(ii) each component of D is of multiplicity > −1.

Definition 0.3. Let d be a positive integer such that dD is a divisor with integer coefficients.
Let γ be a meromorphic section of Kd

X such that div(γ) = dD. We define

τ(X, D) = τd(X, γ) +
χd(X, dD)

12
log

(
(2π)−n

∫
X\|D|

|γγ̄|1/d

)
, (0.11)

where χd(·, ·) is defined in Definition 1.3, |D| is defined in (0.25), |γγ̄|1/d is the unique positive
volume form on X\|D| whose dth tensor power equals in

2dγγ̄. By Propositions 3.3, 3.4, the
BCOV invariant τ(X, D) is well-defined, i.e. independent of d and γ.

Our BCOV invariant differs from the one defined in [EFM21] by a topological invariant.
More precisely, if X is a Calabi–Yau manifold, the logarithm of the BCOV invariant of X
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defined in [EFM21] is equal to

τ(X, ∅) +
log(2π)

2

2n∑
k=0

(−1)kk(n− k)bk(X), (0.12)

where bk(X) is the kth Betti number of X. The sum of Betti numbers in (0.12) comes from
our choice of the L2-metric (see (1.70)) and the identification between singular cohomology and
de Rham cohomology (see (1.121)).

Curvature formula. Let π : X → S be a holomorphic submersion. We assume that π is locally
Kähler in the sense of [BGS88b, Definition 1.25], i.e. for any s ∈ S, there exists an open subset
s ∈ U ⊆ S such that π−1(U) is Kähler. For s ∈ S, we denote Xs = π−1(s). Let(

γs ∈M (Xs, K
d
Xs

)
)
s∈S

(0.13)

be a holomorphic family. We assume that (Xs, γs) is a d-Calabi–Yau pair for any s ∈ S. We
assume that there exist l ∈ N, m1, . . . , ml ∈ Z\{0,−d} and (Dj,s ⊆ Xs)j∈{1,...,l},s∈S such that

div(γs) =
l∑

j=1

mjDj,s for s ∈ S. (0.14)

For J ⊆ {1, . . . , l} and s ∈ S, let DJ,s ⊆ Xs be as in (0.9) with X replaced by Xs and Dj replaced
by Dj,s. We assume that (DJ,s)s∈S is a smooth holomorphic family for each J .

Let τd(X, γ) be the function s �→ τd(Xs, γs) on S. Let wJ
d be as in (0.9). Let H•(DJ) be the

variation of Hodge structure associated with (DJ,s)s∈S . Let ωH•(DJ ) ∈ Ω1,1(S) be its Hodge form
(see [Zha22, § 1.2]).

Theorem 0.4. The following identity holds:

∂̄∂

2πi
τd(X, γ) =

∑
J⊆{1,...,l}

wJ
d ωH•(DJ ). (0.15)

Blow-up formula. Let (X, γ) be a d-Calabi–Yau pair in the sense of Definition 0.2 with d > 0.
Let Y ⊆ X be a connected complex submanifold such that Y, D1, . . . , Dl transversally inter-

sect (in the sense of Definition 1.1). We assume that mj > 0 for j satisfying Y ⊆ Dj . Let r be the
codimension of Y ⊆ X. Let q be the number of Dj containing Y . Then we have q � r. Without
loss of generality, we assume that

Y ⊆ Dj for j = 1, . . . , q; Y � Dj for j = q + 1, . . . , l. (0.16)

Let f : X ′ → X be the blow-up along Y . Let D′
j ⊆ X ′ be the strict transformation of Dj ⊆ X.

Set E = f−1(Y ). Let f∗γ ∈M (X ′, KX′) be the pull-back of γ. We denote D′ = div(f∗γ). We
denote

m0 = m1 + · · ·+ mq + rd− d. (0.17)

We have (cf. [MM07, Proposition 2.1.11])

D′ = m0E +
l∑

j=1

mjD
′
j . (0.18)

Hence, (X ′, f∗γ) is a d-Calabi–Yau pair.
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Set

DY =
l∑

j=q+1

mj(Dj ∩ Y ), DE =
l∑

j=1

mj(D′
j ∩ E). (0.19)

Then DY (respectively, DE) is a divisor on Y (respectively, E) with simple normal crossing
support.

We identify CPr with Cr ∪ CPr−1. Let (z1, . . . , zr) ∈ Cr be the coordinates. Let γr,m1,...,mq ∈
M (CPr, Kd

CPr) be such that

γr,m1,...,mq |Cr = (dz1 ∧ · · · ∧ dzr)d
q∏

j=1

z
mj

j . (0.20)

Let Hk ⊆ CPr be the closure of {zk = 0} ⊆ Cr. Let H∞ = CPr−1 ⊆ CPr. We have

div(γr,m1,...,mq) = −(m1 + · · ·+ mq + rd + d)H∞ +
q∑

j=1

mjHj . (0.21)

Thus, (CPr, γr,m1,...,mq) is a d-Calabi–Yau pair.

Theorem 0.5. The following identities hold:

χd(X ′, f∗γ)− χd(X, γ) = 0,

τd(X ′, f∗γ)− τd(X, γ) = χd(E, DE)τd(CP1, γ1,m0)

− χd(Y, DY )τd(CPr, γr,m1,...,mq),

(0.22)

where χd(·, ·) is given by Definition 1.3.

The proof of Theorem 0.5 is based on:

(i) the deformation to the normal cone introduced by Baum, Fulton and MacPherson [BFM75,
§ 1.5];

(ii) the immersion formula for Quillen metrics due to Bismut and Lebeau [BL91];
(iii) the submersion formula for Quillen metrics due to Berthomieu and Bismut [BB94];
(iv) the blow-up formula for Quillen metrics due to Bismut [Bis97];
(v) the relation between the holomorphic torsion and the de Rham torsion established by

Bismut [Bis04].

We remark that the Quillen metric can be extended to orbifolds, and the immersion formula and
the submersion formula still hold (see [Ma05, Ma21]).

Notation. For a complex vector space V , we denote

det V = Λdim V V, (0.23)

which is a complex line. For a complex line λ, we denote by λ−1 the dual of λ. For a graded
complex vector space V • =

⊕m
k=0 V k, we denote

det V • =
m⊗

k=0

(det V k)(−1)k
. (0.24)

For a complex manifold X and a divisor D = m1D1 + · · ·+ mlDl on X, where m1, . . . , ml ∈
Z\{0}, D1, . . . , Dl are mutually distinct and irreducible, we denote

|D| = D1 ∪ · · · ∪Dl ⊆ X, (0.25)

which we call the support of D.
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For a complex manifold X, we denote by Ωp,q(X) the vector space of (p, q)-forms on X.
We denote by OX the analytic coherent sheaf of holomorphic functions on X. We denote by
Ωp

X the analytic coherent sheaf of holomorphic p-forms on X. For a complex vector bundle E
over X, we denote by Ωp,q(X, E) the vector space of (p, q)-forms on X with values in E. We
denote by M (X, E) the vector space of meromorphic sections of E. We denote by OX(E) the
analytic coherent sheaf of holomorphic sections of E. For an analytic coherent sheaf F on X,
we denote by Hq(X, F ) the qth cohomology of F . We denote Hq(X, E) = Hq(X, OX(E)). We
denote Hp,q(X) = Hq(X, Ωp

X). We denote by Hk
dR(X) the kth de Rham cohomology of X with

coefficients in C. If X is a compact Kähler manifold, we identify Hp,q(X) with a vector subspace
of Hp+q

dR (X) via the Hodge decomposition.

1. Preliminaries

1.1 Divisor with simple normal crossing support
For I ⊆ {1, . . . , n}, we denote

Cn
I = {(z1, . . . , zn) ∈ Cn : zi = 0 for i ∈ I} ⊆ Cn. (1.1)

Let X be an n-dimensional complex manifold.

Definition 1.1. For closed complex submanifolds Y1, . . . , Yl ⊆ X, we say that Y1, . . . , Yl

transversally intersect if for any x ∈ X, there exists a holomorphic local chart Cn ⊇ U
ϕ−→ X

such that:

(i) 0 ∈ U and ϕ(0) = x;
(ii) for each k, either ϕ−1(Yk) = ∅ or ϕ−1(Yk) = U ∩ Cn

Ik
for certain Ik ⊆ {1, . . . , n}.

Let D be a divisor on X. We denote

D =
l∑

j=1

mjDj , (1.2)

where mj ∈ Z\{0}, D1, . . . , Dl ⊆ X are mutually distinct and irreducible.

Definition 1.2. We call D a divisor with simple normal crossing support if D1, . . . , Dl are
smooth and transversally intersect.

For J ⊆ {1, . . . , l}, let wJ
d and DJ be as in (0.9), let χ(DJ) be the topological Euler

characteristic of DJ .

Definition 1.3. If D is a divisor with simple normal crossing support, we define

χd(X, D) =
∑

J⊆{1,...,l}
wJ

d χ(DJ). (1.3)

Moreover, if there is a meromorphic section γ of a holomorphic line bundle over X such that
div(γ) = D, we define

χd(X, γ) = χd(X, D). (1.4)

Now we assume that D is a divisor with simple normal crossing support. Let L be a
holomorphic line bundle over X together with γ ∈M (X, L) such that

div(γ) = D. (1.5)

Let γ−1 ∈M (X, L−1) be the inverse of γ.
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We denote by (T ∗X ⊕ T ∗X)⊗k the kth tensor power of T ∗X ⊕ T ∗X. We denote

E±
k = (T ∗X ⊕ T ∗X)⊗k ⊗ L±1. (1.6)

In particular, we have E±
0 = L±1. Let ∇E±

k be a connection on E±
k .

Let Lj be the normal line bundle of Dj ↪→ X.

Definition 1.4. We define ResDj (γ) ∈M (Dj , L⊗ L
−mj

j ) as follows:

ResDj (γ) =

⎧⎪⎪⎨
⎪⎪⎩

1
mj !

(
∇E+

mj−1 · · ·∇E+
0 γ

)∣∣∣
Dj

if mj > 0,

1
|mj |!

((
∇E−

|mj |−1 · · · ∇E−
0 γ−1

)∣∣∣
Dj

)−1
if mj < 0.

(1.7)

Here ResDj (γ) is independent of (∇E±
k )k∈N.

For j ∈ {1, . . . , l}, we have

div
(
ResDj (γ)

)
=

∑
k∈{1,...,l}\{j}

mk(Dj ∩Dk). (1.8)

For distinct j, k ∈ {1, . . . , l}, we have

ResDj∩Dk

(
ResDj (γ)

)
= ResDj∩Dk

(
ResDk

(γ)
)

∈M (Dj ∩Dk, L⊗ L
−mj

j ⊗ L−mk
k ). (1.9)

1.2 Some characteristic classes
For an (m×m)-matrix A, we define

ch(A) = Tr[eA], Td(A) = det
(

A

Id−e−A

)
, c(A) = det(Id +A). (1.10)

We have

c(tA) = 1 +
m∑

k=1

tkck(A), (1.11)

where ck(A) is the kth elementary symmetric polynomial of the eigenvalues of A.
Let V be an m-dimensional complex vector space. Let R ∈ End(V ). Let V ∗ be the dual

of V . Let R∗ ∈ End(V ∗) be the dual of R. For r = 1, . . . , m, we construct Rr ∈ End(ΛrV ∗) by
induction,

R1 = −R∗, Rr = R1 ∧ IdΛr−1V ∗ + IdV ∗ ∧Rr−1. (1.12)

We use the convention Λ0V ∗ = C and R0 = 0.
Let λ1, . . . , λm be the eigenvalues of R. For p ∈ N and F a polynomial of λ1, . . . , λm, we

denote by {F}[p] the component of F of degree p.
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Proposition 1.5. The following identities hold:

Td(R)
( m∑

r=0

(−1)rch(Rr)
)

= cm(R),

{
Td(R)

( m∑
r=1

(−1)rrch(Rr)
)}[�m]

= −cm−1(R) +
m

2
cm(R),

{
Td(R)

( m∑
r=2

(−1)rr(r − 1)ch(Rr)
)}[m]

=
1
6

(c1cm−1)(R) +
m(3m− 5)

12
cm(R).

(1.13)

Proof. Note that the eigenvalues of Rr are given by ((−1)rλj1 · · ·λjr)1�j1<···<jr�m, we have

Td(R) =
m∏

j=1

λj

1− e−λj
,

m∑
r=0

(−1)rtrch(Rr) =
m∏

j=1

(1− te−λj ). (1.14)

Taking t = 1 in (1.14), we obtain the first identity in (1.13).
Taking the derivative of the second identity in (1.14) at t = 1, we obtain

m∑
r=0

(−1)rrch(Rr) = −
( m∑

j=1

e−λj

1− e−λj

) m∏
j=1

(1− e−λj ). (1.15)

From the first identity in (1.14), (1.15) and the identity

e−λj

1− e−λj
= λ−1

j −
1
2

+
1
12

λj + · · · , (1.16)

we obtain the second identity in (1.13).
Taking the second derivative of the second identity in (1.14) at t = 1, we obtain

m∑
r=0

(−1)rr(r − 1)ch(Rr) =
(( m∑

j=1

e−λj

1− e−λj

)2

−
m∑

j=1

(
e−λj

1− e−λj

)2) m∏
j=1

(1− e−λj ). (1.17)

From the first identity in (1.14), (1.16) and (1.17), we obtain the third identity in (1.13). This
completes the proof. �

For an (m×m)-matrix A, we define

Td′(A) =
∂

∂t
Td(A + t Id)

∣∣∣∣
t=0

. (1.18)

Proposition 1.6. We have{
Td′(R)

( m∑
r=0

(−1)rch(Rr)
)}[m]

=
m

2
cm(R),

{
Td′(R)

( m∑
r=0

(−1)rrch(Rr)
)}[m]

=
1
12

(c1cm−1)(R) +
m2

4
cm(R).

(1.19)

Proof. Let c′k be as in (1.18) with Td replaced by ck. We have

c′1(R) = m, c′2(R) = (m− 1)c1(R). (1.20)

On the other hand, we have{
Td(R)

}[�2] = 1 + 1
2c1(R) + 1

12

(
c2
1(R) + c2(R)

)
. (1.21)
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By (1.20) and (1.21), we have {
Td′(R)
Td(R)

}[�1]

=
m

2
− 1

12
c1(R). (1.22)

From (1.13) and (1.22), we obtain (1.19). This completes the proof. �

1.3 Chern form and Bott–Chern form
Let S be a compact Kähler manifold. We denote

QS =
dim S⊕
p=0

Ωp,p(S),

QS,0 =
dim S⊕
p=1

(
∂Ωp−1,p(S) + ∂̄Ωp,p−1(S)

) ⊆ QS .

(1.23)

Let E be a holomorphic vector bundle over S. Let gE be a Hermitian metric on E. Let RE ∈
Ω1,1(S, End(E)) be the curvature of the Chern connection on (E, gE). Recall that c(·) was defined
in (1.10). The total Chern form of (E, gE) is defined by

c(E, gE) = c

(
− RE

2πi

)
∈ QS . (1.24)

The total Chern class of E is defined by

c(E) =
[
c(E, gE)

] ∈ Heven
dR (S), (1.25)

which is independent of gE .
Let E′ ⊆ E be a holomorphic subbundle. Let E′′ = E/E′. We have a short exact sequence

of holomorphic vector bundles over S,

0→ E′ α−→ E
β−→ E′′ → 0, (1.26)

where α (respectively, β) is the canonical embedding (respectively, projection). We have

c(E) = c(E′)c(E′′). (1.27)

Let gE′
be a Hermitian metric on E′. Let gE′′

be a Hermitian metric on E′′. The Bott–Chern
form [BGS88a, § 1f)]

c̃(gE′
, gE , gE′′

) ∈ QS/QS,0 (1.28)

is such that
∂̄∂

2πi
c̃(gE′

, gE , gE′′
) = c(E, gE)− c(E′ ⊕ E′′, gE′ ⊕ gE′′

)

= c(E, gE)− c(E′, gE′
)c(E′′, gE′′

). (1.29)

Let α∗gE be the Hermitian metric on E′ induced by gE via the embedding α : E′ → E. Let β∗gE

be the quotient Hermitian metric on E′′ induced by gE via the surjection β : E → E′′. We denote

c̃(E′, E, gE) = c̃(α∗gE , gE , β∗gE). (1.30)

Let β∗gE′′
be the Hermitian pseudometric on E induced by gE′′

via the surjection β : E → E′′.
For ε > 0, set

gE
ε = gE +

1
ε
β∗gE′′

. (1.31)
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We equip QS ⊆ Ω•,•(S) with the compact-open topology. We equip QS/QS,0 with the
quotient topology.

Proposition 1.7. As ε→ 0,

c(E, gE
ε )→ c(E′, α∗gE)c(E′′, gE′′

), c̃(E′, E, gE
ε )→ 0. (1.32)

Proof. We follow the proof of [BGS88a, Theorem 1.29].
Let pr : S × C→ S be the canonical projection. Let

α̃ : pr∗E′ → pr∗E (1.33)

be the pull-back of α : E′ → E. Let (s, z) ∈ S × C be coordinates. Let σ ∈ H0(S × C, C) be the
holomorphic function σ(s, z) = z. Let

σ̃ : pr∗E′ → pr∗E′ (1.34)

be the multiplication by σ. Set

E ′ = pr∗E′, E = Coker(α̃⊕ σ̃ : pr∗E′ → pr∗E ⊕ pr∗E′). (1.35)

We get a short exact sequence of holomorphic vector bundles over S × C,

0→ E ′ → E → E ′′ → 0, (1.36)

where E ′ → E is induced by the embedding 0⊕ Idpr∗E′ : pr∗E′ ↪→ pr∗E ⊕ pr∗E′, and E → E ′′ :=
Coker(E ′ → E) is the canonical projection. For z ∈ C, let

0→ E ′z → Ez → E ′′z → 0 (1.37)

be the restriction of (1.36) to S × {z}. For z �= 0, let

φz : E → Ez = Coker(α⊕ z IdE′ : E′ → E ⊕ E′) (1.38)

be the isomorphism induced by the embedding IdE ⊕0 : E ↪→ E ⊕ E′. We obtain a commutative
diagram

0 �� E′ ��

��

E ��

��

E′′ ��

��

0

0 �� E ′z �� Ez �� E ′′z �� 0

(1.39)

where the vertical maps are induced by φz. Let

φ0 : E′ ⊕ E′′ → E0 = Coker(α⊕ 0 : E′ → E ⊕ E′) = E′′ ⊕ E′ (1.40)

be the obvious isomorphism. We obtain a commutative diagram

0 �� E′ ��

��

E′ ⊕ E′′ ��

��

E′′ ��

��

0

0 �� E ′0 �� E0 �� E ′′0 �� 0

(1.41)

where the vertical maps are induced by φ0.
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We can construct a Hermitian metric gE on E such that

φ∗
zg

E = |z|2gE + β∗gE′′
for z �= 0, φ∗

0g
E = α∗gE ⊕ gE′′

. (1.42)

To show that gE is a smooth metric, we consider the metric gpr∗E⊕pr∗E′
on pr∗E ⊕ pr∗E′

defined by
gpr∗E⊕pr∗E′ |S×{z} = (1 + |z|2)(gE ⊕ α∗gE). (1.43)

We can directly verify that gE is the quotient metric induced by gpr∗E⊕pr∗E′
via the canonical

projection pr∗E ⊕ pr∗E′ → E .
By (1.39) and (1.42), for ε = |z|2 > 0, we have

c(Ez, gEz) = c(E, gE
ε ), c̃(E ′z, Ez, gEz) = c̃(E′, E, gE

ε ). (1.44)

By [BGS88a, Theorem 1.29 iii)], (1.41) and (1.42), we have

c(E0, gE0) = c(E′, α∗gE)c(E′′, gE′′
), c̃(E ′0, E0, gE0) = 0. (1.45)

On the other hand, by [BGS88a, Theorem 1.29 ii)], we have

lim
z→0

c(Ez, gEz) = c(E0, gE0), lim
z→0

c̃(E ′z, Ez, gEz) = c̃(E ′0, E0, gE0). (1.46)

From (1.44)–(1.46), we obtain (1.32). This completes the proof. �
Remark 1.8. We can also prove Proposition 1.7 by applying the arguments in [BB94,
(4.67)–(4.70) and (4.75)–(4.81)], which show that the connection of E converges to a triangular
2× 2 matrix with diagonal elements given by the connections of E′ and E′′ as ε→ 0. Though
[BB94, (4.67)–(4.70) and (4.75)–(4.81)] work with tangent bundles, the argument equally holds
in our case (because the connections under consideration are Chern connections).

Let F ⊆ E be a holomorphic subbundle. Set F ′ = α−1(F ) ⊆ E′, F ′′ = β(F ) ⊆ E′′.

Proposition 1.9. If F ′ = E′, as ε→ 0,

c̃(F, E, gE
ε )→ c(E′, α∗gE)c̃(F ′′, E′′, gE′′

). (1.47)

If F ′′ = E′′, as ε→ 0,

c̃(F, E, gE
ε )→ c(E′′, gE′′

)c̃(F ′, E′, α∗gE). (1.48)

Proof. We use the notation from the proof of Proposition 1.7. Set

F = Coker(α̃⊕ σ̃|pr∗F ′ : pr∗F ′ → pr∗F ⊕ pr∗F ′) ⊆ E . (1.49)

For z ∈ C, let Fz be the restriction of F to S × {z}.
For z �= 0, we have φz(F ) = Fz ⊆ Ez. By (1.42), for ε = |z|2 > 0, we have

c̃(Fz, Ez, gEz) = c̃(F, E, gE
ε ). (1.50)

We have φ0(F ) = F ′ ⊕ F ′′ ⊆ E′ ⊕ E′′ = E0. By (1.42), we have

c̃(F0, E0, gE0) = c̃(F ′ ⊕ F ′′, E′ ⊕ E′′, α∗gE ⊕ gE′′
). (1.51)

By [BGS88a, Theorem 1.29], we have

c̃(F ′ ⊕ F ′′, E′ ⊕ E′′, α∗gE ⊕ gE′′
) = c(E′, α∗gE)c̃(F ′′, E′′, gE′′

) if F ′ = E′,

c̃(F ′ ⊕ F ′′, E′ ⊕ E′′, α∗gE ⊕ gE′′
) = c(E′′, gE′′

)c̃(F ′, E′, α∗gE) if F ′′ = E′′.
(1.52)

On the other hand, by [BGS88a, Theorem 1.29 ii)], we have

lim
z→0

c̃(Fz, Ez, gEz) = c̃(F0, E0, gE0). (1.53)

From (1.50)–(1.53), we obtain (1.47) and (1.48). This completes the proof. �
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Recall that Td(·) was defined in (1.10). The Bott–Chern form [BGS88a, § 1f)]

T̃d(gE′
, gE , gE′′

) ∈ QS/QS,0 (1.54)

is such that
∂̄∂

2πi
T̃d(gE′

, gE , gE′′
) = Td(E, gE)− Td(E′, gE′

)Td(E′′, gE′′
). (1.55)

Proposition 1.10. Propositions 1.7 and 1.9 hold with c(·) replaced by Td(·).
Recall that ch(·) was defined in (1.10). The Bott–Chern form [BGS88a, § 1f)]

c̃h(gE′
, gE , gE′′

) ∈ QS/QS,0 (1.56)

is such that
∂̄∂

2πi
c̃h(gE′

, gE , gE′′
) = ch(E′, gE′

)− ch(E, gE) + ch(E′′, gE′′
). (1.57)

For another Hermitian metric ĝE on E, let

c̃h(ĝE , gE) ∈ QS/QS,0 (1.58)

be the Bott–Chern form [BGS88a, § 1f)] such that

∂̄∂

2πi
c̃h(ĝE , gE) = ch(E, ĝE)− ch(E, gE). (1.59)

The following proposition is a direct consequence of the construction of the Bott–Chern form
[BGS88a, § 1f)].

Proposition 1.11. For another Hermitian metric ĝE (respectively, ĝE′
, ĝE′′

) on E (respectively,
E′, E′′), we have

c̃h(ĝE′
, ĝE , ĝE′′

) = c̃h(gE′
, gE , gE′′

) + c̃h(ĝE′
, gE′

)− c̃h(ĝE , gE) + c̃h(ĝE′′
, gE′′

). (1.60)

For a, b > 0, we have

c̃h(agE , bgE) = ch(E, gE)(log b− log a). (1.61)

For (gE
t )t∈R a smooth family of Hermitian metrics on E, the map t �→ c̃h(gE

t , gE
0 ) is continuous.

In particular, we have

c̃h(gE
t , gE

0 )→ 0 as t→ 0. (1.62)

Let E∗ be the dual of E. Following [BB94, § 1a)], for p = 0, . . . , dim E and s = 0, . . . , p− 1,
set

Ip
s =

{
u ∈ ΛpE∗ : u(v1, . . . , vp) = 0 for any v1, . . . , vs+1 ∈ E′, vs+2, . . . , vp ∈ E

}
. (1.63)

For convenience, we denote Ip
p = ΛpE∗ and Ip

−1 = 0. We obtain a filtration

ΛpE∗ = Ip
p ←↩ Ip

p−1 ←↩ · · · ←↩ Ip
−1 = 0. (1.64)

For r = 0, . . . , dim E′′ and s = 0, . . . , dim E′, we denote Er,s = ΛsE′∗ ⊗ ΛrE′′∗. We have a short
exact sequence of holomorphic vector bundles over S,

0→ Ir+s
s−1 → Ir+s

s → Er,s → 0. (1.65)

Recall that gE
ε was defined in (1.31). Let gΛpE∗

ε be the Hermitian metric on ΛpE∗ induced
by gE

ε . Let gIr+s
s

ε be the restriction of gΛpE∗
ε to Ir+s

s . Let g
Er,s
ε be the quotient metric on Er,s

induced by gIr+s
s

ε via the surjection Ir+s
s → Er,s.

Similarly to Proposition 1.7, we have the following proposition.
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Proposition 1.12. As ε→ 0,

c̃h
(
g

Ir+s
s−1

ε , gIr+s
s

ε , g
Er,s
ε

)
→ 0. (1.66)

Proof. Let 0→ E ′ → E → E ′′ → 0 be as in (1.36). Let Ip
s ⊆ ΛpE∗ be as in (1.63) with E replaced

by E and E′ replaced by E ′. We denote Er,s = ΛsE ′∗ ⊗ ΛrE ′′∗. We have a short exact sequence of
holomorphic vector bundles over S × C,

0→ Ir+s
s−1 → Ir+s

s → Er,s → 0. (1.67)

Proceeding in the same way as in the proof of Proposition 1.7 with (1.36) replaced by (1.67), we
obtain (1.66). This completes the proof. �

1.4 Quillen metric
Let X be an n-dimensional compact Kähler manifold. Let E be a holomorphic vector bundle
over X. Let ∂̄E be the Dolbeault operator on

Ω0,•(X, E) = C∞(
X, Λ•(T ∗X)⊗ E

)
. (1.68)

For q = 0, . . . , n, we have Hq(X, E) = Hq(Ω0,•(X, E), ∂̄E). Set

λ(E) = det H•(X, E) :=
n⊗

q=0

(
det Hq(X, E)

)(−1)q

. (1.69)

Let gTX be a Kähler metric on TX. Let gE be a Hermitian metric on E. Let 〈·, ·〉Λ•(T ∗X)⊗E

be the Hermitian product on Λ•(T ∗X)⊗ E induced by gTX and gE . Let dvX be the Riemannian
volume form on X induced by gTX . For s1, s2 ∈ Ω0,•(X, E), set

〈s1, s2〉 = (2π)−n

∫
X
〈s1, s2〉Λ•(T ∗X)⊗E dvX , (1.70)

which we call the L2-product.
Let ∂̄E,∗ be the formal adjoint of ∂̄E with respect to the Hermitian product (1.70). The

Kodaira Laplacian on Ω0,•(X, E) is defined by

�E = ∂̄E ∂̄E,∗ + ∂̄E,∗∂̄E . (1.71)

Let �E
q be the restriction of �E to Ω0,q(X, E).

By the Hodge theorem, we have

Ker(�E
q ) = {s ∈ Ω0,q(X, E) : ∂̄Es = 0, ∂̄E,∗s = 0}. (1.72)

Still by the Hodge theorem, the following map is bijective:

Ker(�E
q )→ Hq(X, E)

s �→ [s].
(1.73)

Let | · |λ(E) be the L2-metric on λ(E) induced by the metric (1.70) via (1.69) and (1.73).
Let Sp(�E

q ) be the spectrum of �E
q , which is a multiset.1 For z ∈ C with Re(z) > n,

set

θ(z) =
n∑

q=1

(−1)q+1q
∑

λ∈Sp(�E
q ),λ �=0

λ−z. (1.74)

1 A multiset allows for multiple instances for each of its elements.
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By [See67], the function θ(z) extends to a meromorphic function of z ∈ C, which is holomorphic
at z = 0.

The following definition is due to Quillen [Qui85] and Bismut, Gillet and Soulé [BGS88b,
§ 1d)].

Definition 1.13. The Quillen metric on λ(E) is defined by

‖·‖λ(E) = exp
(

1
2θ′(0)

)| · |λ(E). (1.75)

Remark 1.14. Denote χ(X, E) =
∑n

q=0(−1)q dim Hq(X, E). For a > 0, if we replace gE by agE ,
then ‖·‖λ(E) is replaced by aχ(X,E)/2‖·‖λ(E).

1.5 Analytic torsion form
Let π : X → Y be a holomorphic submersion between Kähler manifolds with compact fiber Z.

Let E be a holomorphic vector bundle over X. Let R•π∗E be the derived direct image of E,
which is a graded analytic coherent sheaf on Y . We assume that R•π∗E is a graded holomorphic
vector bundle. Let H•(Z, E) be the fiberwise cohomology. More precisely, its fiber at y ∈ Y
is given by H•(Zy, E|Zy). We have a canonical identification R•π∗E = H•(Z, E). We have the
Grothendieck–Riemann–Roch formula,

ch(H•(Z, E)) :=
∑

j

(−1)jch(Hj(Z, E)) =
∫

Z
Td(TZ)ch(E) ∈ Heven

dR (Y ). (1.76)

Let ω ∈ Ω1,1(X) be a Kähler form. Let gTZ be the Hermitian metric on TZ associated with
ω. Let gE be a Hermitian metric on E. Let gH•(Z,E) be the L2-metric on H•(Z, E) associated
with gTZ and gE via (1.73).

We use the notation in (1.23). Let ch(H•(Z, E), gH•(Z,E)) ∈ QY be the Chern character form
of (H•(Z, E), gH•(Z,E)). We introduce Td(TZ, gTZ) ∈ QX and ch(E, gE) ∈ QX in the same way.

Bismut and Köhler [BK92, Definition 3.8] defined the analytic torsion forms. The analytic
torsion form associated with (π : X → Y, ω, E, gE) is a differential form on Y , which we denote
by T (ω, gE). Moreover, we have

T (ω, gE) ∈ QY . (1.77)

We sometimes view T (ω, gE) as an element in QY /QY,0. By [BK92, Theorem 3.9], we have

∂̄∂

2πi
T (ω, gE) = ch

(
H•(Z, E), gH•(Z,E)

)− ∫
Z

Td(TZ, gTZ)ch(E, gE). (1.78)

The identity (1.78) is a refinement of the Grothendieck–Riemann–Roch formula (1.76).
For y ∈ Y , let θy(z) be as in (1.74) with (X, gTX , E, gE) replaced by (Zy, g

TZy , E|Zy , g
E |Zy).

Let θ′(0) be the function y �→ θ′y(0) on Y . By the construction of the analytic torsion forms, we
have {

T (ω, gE)
}(0,0) = θ′(0) ∈ C∞(Y ), (1.79)

where {·}(0,0) means the component of degree (0, 0).
Let F be a holomorphic vector bundle over Y . Let π∗F be its pull-back via π, which is a

holomorphic vector bundle over X. Let gF be a Hermitian metric on F . Let gE⊗π∗F be the
Hermitian metric on E ⊗ π∗F induced by gE and gF . Let

T (ω, gE⊗π∗F ) ∈ QY (1.80)

be the analytic torsion form associated with (π : X → Y, ω, E ⊗ π∗F, gE⊗π∗F ).
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The following proposition is a direct consequence of the construction of the analytic torsion
forms.

Proposition 1.15. The following identity holds in QY /QY,0:

T (ω, gE⊗π∗F ) = ch(F, gF )T (ω, gE). (1.81)

For p = 0, . . . , dim Z, let gΛp(T ∗Z) be the metric on Λp(T ∗Z) induced by gTZ . Let

T (ω, gΛp(T ∗Z)) ∈ QY (1.82)

be the analytic torsion form associated with (π : X → Y, ω, Λp(T ∗Z), gΛp(T ∗Z)).

Theorem 1.16 (Bismut [Bis04, Theorem 4.15]). The following identity holds in QY /QY,0,

dim Z∑
p=0

(−1)pT (ω, gΛp(T ∗Z)) = 0. (1.83)

1.6 Properties of the Quillen metric
In this subsection, we state several results describing the behavior of the Quillen metric under
submersion, resolution, immersion and blow-up.

Submersion. Let π : X → Y , Z, E and H•(Z, E) be as in § 1.5. We assume that X and Y are
compact. We further assume that the Leray spectral sequence for E and π degenerates at E2,
i.e.

Hq(X, E) �
⊕

j+k=q

Hj(Y, Hk(Z, E)) for q = 0, . . . , dim X. (1.84)

We denote

det H•(Y, H•(Z, E)) =
dim Z⊗
k=0

(
det H•(Y, Hk(Z, E)

))(−1)k

=
dim Y⊗
j=0

dim Z⊗
k=0

(
det Hj

(
Y, Hk(Z, E)

))(−1)j+k

. (1.85)

Let

σ ∈ det H•(X, E)⊗ (
det H•(Y, H•(Z, E)

))−1 (1.86)

be the canonical section induced by (1.84).
Let ωX ∈ Ω1,1(X) and ωY ∈ Ω1,1(Y ) be Kähler forms. For ε > 0, set

ωε = ωX +
1
ε
π∗ωY . (1.87)

Let gE be a Hermitian metric on E.
Let gTX

ε be the metric on TX associated with ωε. Let

‖·‖det H•(X,E),ε (1.88)

be the Quillen metric on det H•(X, E) associated with gTX
ε and gE . Let gTY be the metric on

TY associated with ωY . Let gTZ be the metric on TZ associated with ωX |Z . Let gH•(Z,E) be the
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L2-metric on H•(Z, E) associated with gTZ and gE . For k = 0, . . . , dim Z, let

‖·‖det H•(Y,Hk(Z,E)) (1.89)

be the Quillen metric on det H•(Y, Hk(Z, E)) associated with gTY and gHk(Z,E). Let

‖·‖det H•(Y,H•(Z,E)) (1.90)

be the metric on det H•(Y, H•(Z, E)) induced by the Quillen metrics (1.89) via (1.85). Let ‖σ‖ε
be the norm of σ with respect to the metrics (1.88) and (1.90).

We use the notation in (1.23). Let Td(TY, gTY ) ∈ QY be the Todd form of (TY, gTY ). Let

T (ω, gE) ∈ QY (1.91)

be the analytic torsion form (see § 1.5) associated with (π : X → Y, ωX , E, gE).
Recall that Td′(·) was defined by (1.18).

Theorem 1.17 (Berthomieu and Bismut [BB94, Theorem 3.2]). As ε→ 0,

log‖σ‖2ε +
∫

Y
Td′(TY )

∫
Z

Td(TZ)ch(E) log ε→
∫

Y
Td(TY, gTY )T (ω, gE). (1.92)

Resolution. Let X be a compact Kähler manifold. Let

0→ E0 → E1 → E2 → 0 (1.93)

be a short exact sequence of holomorphic vector bundles over X. Let

σ ∈
2⊗

k=0

(
det H•(X, Ek)

)(−1)k+1

(1.94)

be the canonical section induced by the long exact sequence induced by (1.93).
Let gTX be a Kähler metric on TX. For k = 0, 1, 2, let gEk

be a Hermitian metric on Ek.
Let

‖·‖det H•(X,Ek) (1.95)

be the Quillen metric on det H•(X, Ek) associated with gTX and gEk
. Let ‖σ‖ be the norm of σ

with respect to the metrics (1.95).
We use the notation in (1.23). Let Td(TX, gTX) ∈ QX be the Todd form of (TX, gTX). Let

ch(Ek, gEk
) ∈ QX be the Chern character form of (Ek, gEk

). Let

c̃h(gE•
) ∈ QX/QX,0 (1.96)

be the Bott–Chern form [BGS88a, § 1f)] such that

∂̄∂

2πi
c̃h(gE•

) =
2∑

k=0

(−1)kch(Ek, gEk
). (1.97)

Theorem 1.18 (Bismut, Gillet and Soulé [BGS88b, Theorem 1.23]). The following identity
holds:

log‖σ‖2 =
∫

X
Td(TX, gTX)c̃h(gE•

). (1.98)

Immersion. Let X be a compact Kähler manifold. Let Y ⊆ X be a complex submanifold of
codimension one. Let i : Y ↪→ X be the canonical embedding. Let F be a holomorphic vector
bundle over Y . Let v : E1 → E0 be a map between holomorphic vector bundles over X which,
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together with a restriction map r : E0|Y → F , provides a resolution of i∗OY (F ). More precisely,
we have an exact sequence of analytic coherent sheaves on X,

0→ OX(E1) v−→ OX(E0) r−→ i∗OY (F )→ 0. (1.99)

Let

σ ∈ (
det H•(X, E1)

)−1 ⊗ det H•(X, E0)⊗ (
det H•(Y, F )

)−1 (1.100)

be the canonical section induced by the long exact sequence induced by (1.99).
Let ω ∈ Ω1,1(X) be a Kähler form. For k = 0, 1, let gEk be a Hermitian metric on Ek. Let

gF be a Hermitian metric on F . Assume that there is an open neighborhood Y ⊆ U ⊆ X such
that v|X\U is isometric, i.e.

gE1 |X\U = v∗gE0 |X\U . (1.101)

Let gTX be the metric on TX associated with ω. For k = 0, 1, let

‖·‖det H•(X,Ek) (1.102)

be the Quillen metric on det H•(X, Ek) associated with gTX and gEk . Let gTY be the metric on
TY associated with ω|Y . Let

‖·‖det H•(Y,F ) (1.103)

be the Quillen metric on det H•(Y, F ) associated with gTY and gF . Let ‖σ‖ be the norm of σ
with respect to the metrics (1.102) and (1.103).

The following theorem is a direct consequence of the immersion formula due to Bismut and
Lebeau [BL91, Theorem 0.1] and the anomaly formula due to Bismut, Gillet and Soulé [BGS88b,
Theorem 1.23].

Theorem 1.19. We have

log‖σ‖2 = α(U, ω|U , v|U , gE• |U , r, gF ), (1.104)

where α(U, ω|U , v|U , r|U , gE• , gF ) is a real number determined by

U, ω|U , v|U : E1|U → E0|U , gE• |U , r : E0|Y → F, gF . (1.105)

More precisely, given

Ỹ ⊆ Ũ ⊆ X̃, ω̃, ṽ : Ẽ1 → Ẽ0, r̃ : Ẽ0|Ỹ → F̃ , gẼ• , gF̃ (1.106)

satisfying the same properties that

Y ⊆ U ⊆ X, ω, v : E1 → E0, r : E0|Y → F, gE• , gF (1.107)

satisfy, if there is a biholomorphic map U → Ũ inducing an isomorphism between the restrictions
of the data above to U and Ũ , then

log‖σ‖2 = log‖σ̃‖2, (1.108)

where

σ̃ ∈ (
det H•(X̃, Ẽ1)

)−1 ⊗ det H•(X̃, Ẽ0)⊗ (
det H•(Ỹ , F̃ )

)−1 (1.109)

is the canonical section, and ‖σ̃‖ is its norm with respect to the Quillen metrics.

Remark 1.20. The real number α(U, ω|U , v|U , r|U , gE• , gF ) depends continuously on the input
data.
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Blow-up. Let X be a compact Kähler manifold. Let Y ⊆ X be a complex submanifold of codi-
mension r � 2. Let f : X ′ → X be the blow-up along Y . Let E be a holomorphic vector bundle
over X. Let f∗E be the pull-back of E via f , which is a holomorphic vector bundle over X ′.
Applying spectral sequence, we obtain a canonical identification

H•(X ′, f∗E) = H•(X, E). (1.110)

Let
σ ∈ (

det H•(X, E)
)−1 ⊗ det H•(X ′, f∗E) (1.111)

be the canonical section induced by (1.110).
Let ω ∈ Ω1,1(X) and ω′ ∈ Ω1,1(X ′) be Kähler forms. Assume that there are open neighbor-

hoods Y ⊆ U ⊆ X and f−1(Y ) ⊆ U ′ ⊆ X ′ such that

f−1(U) = U ′, f∗(ω|X\U ) = ω′|X′\U ′ . (1.112)

For the existence of such ω and ω′, see the proof of [Voi02, Proposition 3.24]. Let gE be a
Hermitian metric on E.

Let gTX be the metric on TX associated with ω. Let

‖·‖det H•(X,E) (1.113)

be the Quillen metric on det H•(X, E) associated with gTX and gE . Let gTX′
be the metric on

TX ′ associated with ω′. Let
‖·‖det H•(X′,f∗E) (1.114)

be the Quillen metric on det H•(X ′, f∗E) associated with gTX′
and f∗gE . Let ‖σ‖ be the norm

of σ with respect to the metrics (1.113) and (1.114).
The following theorem is a direct consequence of the blow-up formula due to Bismut [Bis97,

Theorem 8.10].

Theorem 1.21. We have

log‖σ‖2 = α(U, ω|U , U ′, ω′|U ′ , E|U , gE |U ), (1.115)

where α(U, ω|U , U ′, ω′|U ′ , E|U , gE |U ) is a real number determined by

U, ω|U , U ′, ω′|U ′ , E|U , gE |U . (1.116)

Remark 1.22. The real number α(U, ω|U , U ′, ω′|U ′ , E|U , gE |U ) depends continuously on the input
data.

1.7 Topological torsion and BCOV torsion
Let X be an n-dimensional compact Kähler manifold. For p = 0, . . . , n, set

λp(X) = det Hp,•(X) :=
n⊗

q=0

(det Hp,q(X))(−1)q
. (1.117)

Set

η(X) = det H•
dR(X) :=

2n⊗
k=0

(
det Hk

dR(X)
)(−1)k

=
n⊗

p=0

(
λp(X)

)(−1)p

. (1.118)
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Set

λ(X) =
⊗

0�p,q�n

(
det Hp,q(X)

)(−1)p+qp =
n⊗

p=1

(
λp(X)

)(−1)pp
,

λtot(X) =
2n⊗

k=1

(
det Hk

dR(X)
)(−1)kk = λ(X)⊗ λ(X).

(1.119)

The identities in (1.119) appeared in [Kat14]. They were applied to the theory of BCOV invariant
by Eriksson, Freixas i Montplet and Mourougane [EFM21].

For A = Z, R, C, we denote by H•
Sing(X, A) the singular cohomology of X with coefficients

in A. For k = 0, . . . , 2n, let

σk,1, . . . , σk,bk
∈ Im

(
Hk

Sing(X, Z)→ Hk
Sing(X, R)

)
(1.120)

be a basis of the lattice. We fix a square root of i. In what follows, the choice of square root is
irrelevant. We identify Hk

dR(X) with Hk
Sing(X, C) as follows:

Hk
dR(X)→ Hk

Sing(X, C)

[α] �→
[
a �→ (2πi)−k/2

∫
a
α

]
,

(1.121)

where α is a closed k-form on X and a is a k-chain in X. Then σk,1, . . . , σk,bk
form a basis of

Hk
dR(X). Set

σk = σk,1 ∧ · · · ∧ σk,bk
∈ det Hk

dR(X),

εX =
2n⊗

k=0

σ
(−1)k

k ∈ η(X), σX =
2n⊗

k=1

σ
(−1)kk
k ∈ λtot(X),

(1.122)

which are well-defined up to ±1.
Let ω be a Kähler form on X. Let ‖·‖λp(X),ω be the Quillen metric on λp(X) associated with ω.

Let ‖·‖η(X) be the metric on η(X) induced by ‖·‖λp(X),ω via (1.118). The same calculation as
in [Zha22, Theorem 2.1] together with the first identity in Proposition 1.5 shows that ‖·‖η(X) is
independent of ω.

Definition 1.23. We define
τtop(X) = log‖εX‖η(X). (1.123)

Indeed ‖·‖η(X) is the classical Ray–Singer metric up to a normalization. Later, we use this
fact to show that τtop(X) = 0.

Let ‖·‖λ(X),ω be the metric on λ(X) induced by ‖·‖λp(X),ω via the first identity in (1.119).
Let ‖·‖λtot(X),ω be the metric on λtot(X) induced by ‖·‖λ(X),ω via the second identity in (1.119).

Definition 1.24. We define

τBCOV(X, ω) = log‖σX‖λtot(X),ω. (1.124)

For p = 0, . . . , n, let g
Λp(T ∗X)
ω be the metric on Λp(T ∗X) induced by ω. Let g

Ωp,q(X)
ω be

the L2-metric on Ωp,q(X). More precisely, g
Ωp,q(X)
ω is defined by (1.70) with (E, gE) replaced

by (Λp(T ∗X), gΛp(T ∗X)
ω ). Let g

Hp,q(X)
ω be the L2-metric on Hp,q(X). More precisely, g

Hp,q(X)
ω is

induced by g
Ωp,q(X)
ω via the Hodge theorem. Let | · |η(X),ω be the metric on η(X) induced by

(gHp,q(X)
ω )0�p,q�n via (1.117) and (1.118).
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Proposition 1.25. The following identity holds,

τtop(X) = log |εX |η(X),ω = 0. (1.125)

Proof. Let �p be as in (1.71) with (Ω0,•(X, E), ∂̄E , gE) replaced by (Ωp,•(X), ∂̄, g
Λp(T ∗X)
ω ). Let

�p,q be the restriction of �p to Ωp,q(X). Let θp(z) be as in (1.74) with �E
q replaced by �p,q. By

Definition 1.13, 1.23, the first equality in (1.125) is equivalent to
n∑

p=0

(−1)pθ′p(0) = 0, (1.126)

which was indicated in [Bis04, p. 1304].
Denote by covol(Hk

Sing(X, Z), ω) the covolume of Im(Hk
Sing(X, Z)→ Hk

Sing(X, R)) with

respect to the metric induced by
⊕

p+q=k g
Hp,q(X)
ω via (1.121). We have

|εX |η(X),ω =
2n∏

k=0

(
covol(Hk

Sing(X, Z), ω)
)(−1)k

. (1.127)

On the other hand, by [EFM21, Remark 5.5(ii)], we have

covol
(
Hk

Sing(X, Z), ω
)
covol

(
H2n−k

Sing (X, Z), ω
)

= 1. (1.128)

Here we remark that, due to the normalization in (1.70) and (1.121), the covolume in the sense
of [EFM21, Remark 5.5(ii)] equals (2π)(n−k)bk/2covol(Hk

Sing(X, Z), ω), where bk is the kth Betti
number of X. From (1.127) and (1.128), we obtain |εX |η(X),ω = 1, which is equivalent to the
second equality in (1.125). This completes the proof. �

2. Several properties of the BCOV torsion

2.1 Kähler metric on projective bundle
For a complex vector space V , we denote by P(V ) the set of complex lines in V . Then P(V ) is
complex manifold.

Let Y be an m-dimensional compact Kähler manifold. Let N be a holomorphic vector bundle
over Y of rank n. Let � be the trivial line bundle over Y . Set

X = P(N ⊕ �). (2.1)

Let π : X → Y be the canonical projection. For y ∈ Y , we denote Zy = π−1(y), which is isomor-
phic to CPn. Let ωCPn be the Kähler form on CPn associated with the Fubini–Study metric. More
precisely, −iωCPn is equal to the curvature of the tautological line bundle over CPn equipped
with the standard metric.

Lemma 2.1. There exists a Kähler form ω on X such that for any y ∈ Y , there exists an
isomorphism φy : CPn → Zy such that φ∗

y(ω|Zy) = ωCPn .

Here (φy)y∈Y is merely a set of maps parameterized by y ∈ Y . It is not even required to
depend continuously on y.

Proof. We refer the reader to the proof of [Voi02, Proposition 3.18]. �
Let s ∈ {1, . . . , n}. We assume that there are holomorphic line bundles L1, . . . , Ls over Y

together with a surjection between holomorphic vector bundles,

N → L1 ⊕ · · · ⊕ Ls. (2.2)
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For k = 1, . . . , s, let N → Lk be the composition of (2.2) and the canonical projection L1 ⊕ · · · ⊕
Ls → Lk. Set

Nk = Ker(N → Lk) ⊆ N, Xk = P(Nk ⊕ �) ⊆ X, X0 = P(N) ⊆ X. (2.3)

Let [ξ0 : · · · : ξn] be homogenous coordinates on CPn. For k = 0, . . . , n, we denote
Hk = {ξk = 0} ⊆ CPn.

Lemma 2.2. There exists a Kähler form ω on X such that for any y ∈ Y , there exists an
isomorphism φy : CPn → Zy such that φ∗

y(ω|Zy) = ωCPn and φ−1
y (Xk ∩ Zy) = Hk for k = 0, . . . , s.

Proof. Let N∗ be the dual of N . We have L−1
1 ⊕ · · · ⊕ L−1

s ↪→ N∗. Let gN∗
be a Hermitian metric

on N∗ such that L−1
1 , . . . , L−1

s ⊆ N∗ are mutually orthogonal. Let gN be the dual metric on N .
Now, proceeding in the same way as in the proof of [Voi02, Proposition 3.18], we obtain ω
satisfying the desired properties. This completes the proof. �

2.2 Behavior under adiabatic limit
We use the notation in § 2.1. By Lemma 2.1, there exists a Kähler form ωX on X such that for
any y ∈ Y , there exists an isomorphism φy : CPn → Zy such that

φ∗
y(ωX |Zy) = ωCPn . (2.4)

Let ωZy = ωX |Zy . Note that (Zy, ωZy)y∈Y are mutually isometric, we omit the index y as long as
there is no confusion. Let ωY be a Kähler form on Y . For ε > 0, set

ωε = ωX +
1
ε
π∗ωY . (2.5)

We denote

(c1cm−1)(Y ) =
∫

Y
c1(TY )cm−1(TY ). (2.6)

Let χ(·) be the topological Euler characteristic. Recall that τBCOV(·, ·) was defined in
Definition 1.24.

Theorem 2.3. As ε→ 0,

τBCOV(X, ωε)− 1
12χ(Z)

(
mχ(Y ) + (c1cm−1)(Y )

)
log ε

→ χ(Z)τBCOV(Y, ωY ) + χ(Y )τBCOV(Z, ωZ). (2.7)

Proof. The proof consists of several steps.
Recall that η(·) was constructed in (1.118) and λtot(·) was constructed in (1.119).

Step 1. We construct two canonical sections of

λtot(X)⊗ (
λtot(Y )

)−χ(Z) ⊗ (
η(Y )

)−nχ(Z)
. (2.8)

For p = 0, . . . , m + n and s = 0, . . . , p− 1, set

Ip
s =

{
u ∈ Λp(T ∗X) : u(v1, . . . , vp) = 0 for any v1, . . . , vs+1 ∈ TZ, vs+2, . . . , vp ∈ TX

}
. (2.9)

For convenience, we denote Ip
p = Λp(T ∗X) and Ip

−1 = 0. We obtain a filtration

Λp(T ∗X) = Ip
p ←↩ Ip

p−1 ←↩ · · · ←↩ Ip
−1 = 0. (2.10)

For r = 0, . . . , m and s = 0, . . . , n, we denote

Er,s = Λs(T ∗Z)⊗ π∗Λr(T ∗Y ). (2.11)
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We have a short exact sequence of holomorphic vector bundles over X,

0→ Ir+s
s−1 → Ir+s

s → Er,s → 0. (2.12)

Let
αr,s ∈

(
det H•(X, Ir+s

s−1)
)−1 ⊗ det H•(X, Ir+s

s )⊗ (
det H•(X, Er,s)

)−1
. (2.13)

be the canonical section induced by the long exact sequence induced by (2.12).
Let H•,•(Z) be the fiberwise cohomology. As Z � CPn, we have

Hp,p(Z) = C for p = 0, . . . , n, Hp,q(Z) = 0 for p �= q. (2.14)

Applying spectral sequence while using (2.11) and (2.14), we obtain

Hq(X, Er,s) � Hr,q−s
(
Y, Hs,s(Z)

)
:= Hq−s

(
Y, Λr(T ∗Y )⊗Hs,s(Z)

)
. (2.15)

Let
βr,s ∈ det H•(X, Er,s)⊗

(
det Hr,•(Y, Hs,s(Z)

))−(−1)s

(2.16)

be the canonical section induced by (2.15).
We have a generator of lattice,

δs ∈ H2s
Sing(CPn, Z) ⊆ H2s

Sing(CPn, R) ⊆ H2s
Sing(CPn, C). (2.17)

We identify H2s
Sing(CPn, C) with H2s

dR(CPn) = Hs,s(CPn) (see (1.121)). Since Hs,s(Z) =
Hs,s(CPn) = H2s

Sing(CPn, C) is a trivial line bundle over Y , we have an isomorphism (cf. [GH94,
p. 607])

Hr,•(Y )→ Hr,•(Y, Hs,s(Z)
)

= Hr,•(Y )⊗Hs,s(CPn)

u �→ u⊗ δs.
(2.18)

Let
γr,s ∈

(
det Hr,•(Y, Hs,s(Z)

))(−1)s ⊗ (
det Hr,•(Y )

)−(−1)s

(2.19)

be the canonical section induced by (2.18). By (2.13), (2.16) and (2.19), we have

αr,s ⊗ βr,s ⊗ γr,s ∈
(
det H•(X, Ir+s

s−1)
)−1 ⊗ det H•(X, Ir+s

s )⊗ (
det Hr,•(Y )

)−(−1)s

. (2.20)

Recall that λ(·) was defined in (1.119). By (1.119) and (2.10), we have

λ(X) =
m+n⊗
p=1

(
det H•(X, Λp(T ∗X)

))(−1)pp

=
m+n⊗
p=1

(
det H•(X, Ip

p )
)(−1)pp

=
m⊗

r=0

n⊗
s=0

((
det H•(X, Ir+s

s−1)
)−1 ⊗ det H•(X, Ir+s

s )
)(−1)r+s(r+s)

. (2.21)

On the other hand, by (1.118), (1.119) and the identities

n + 1 = χ(Z),
n∑

s=0

s =
n(n + 1)

2
=

n

2
χ(Z), (2.22)

we have
m⊗

r=0

n⊗
s=0

(
det Hr,•(Y )

)(−1)r(r+s) =
(
λ(Y )

)χ(Z) ⊗ (
η(Y )

)nχ(Z)/2
. (2.23)
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By (2.20), (2.21) and (2.23), we have
m∏

r=0

n∏
s=0

(αr,s ⊗ βr,s ⊗ γr,s)(−1)r+s(r+s) ∈ λ(X)⊗ (
λ(Y )

)−χ(Z) ⊗ (
η(Y )

)−nχ(Z)/2
. (2.24)

By (1.119) and (2.24), we have
m∏

r=0

n∏
s=0

(αr,s ⊗ βr,s ⊗ γr,s)(−1)r+s(r+s) ⊗
m∏

r=0

n∏
s=0

(αr,s ⊗ βr,s ⊗ γr,s)(−1)r+s(r+s)

∈ λtot(X)⊗ (
λtot(Y )

)−χ(Z) ⊗ (
η(Y )

)−nχ(Z)
, (2.25)

where ·̄ is the conjugation.
Let σX ∈ λtot(X), σY ∈ λtot(Y ) and εY ∈ η(Y ) be as in (1.122). Obviously, we have

σX ⊗ σ
−χ(Z)
Y ⊗ ε

−nχ(Z)
Y ∈ λtot(X)⊗ (

λtot(Y )
)−χ(Z) ⊗ (

η(Y )
)−nχ(Z)

. (2.26)

Step 2. We show that
m∏

r=0

n∏
s=0

(αr,s ⊗ βr,s ⊗ γr,s)(−1)r+s(r+s) ⊗
m∏

r=0

n∏
s=0

(αr,s ⊗ βr,s ⊗ γr,s)(−1)r+s(r+s)

= ±σX ⊗ σ
−χ(Z)
Y ⊗ ε

−nχ(Z)
Y . (2.27)

Let Z(−1) be the inverse of the Tate twist, which is a Hodge structure of pure weight two.
For j ∈ N, we denote by Z(−j) its jth tensor power. We have canonical identifications of Hodge
structures,

H2j
Sing(CPn, Z) = Z(−j) for j = 0, . . . , n,

Hk
Sing(X, Z) =

n⊕
j=0

Hk−2j
Sing (Y, Z)⊗H2j

Sing(CPn, Z)

=
n⊕

j=0

Hk−2j
Sing (Y, Z)⊗ Z(−j).

(2.28)

Complexifying (2.28) and applying Hodge decomposition, we obtain

Hj,j(CPn) = C for j = 0, . . . , n,

Hp,q(X) =
n⊕

j=0

Hp−j,q−j(Y )⊗Hj,j(CPn) =
n⊕

j=0

Hp−j,q−j(Y ).
(2.29)

We use the identifications in (2.28) and (2.29) until the end of Step 2.

Claim. For complex vector spaces A and B, the canonical identification det A⊗ det B ⊗
(det(A⊕B))−1 = C is such that the canonical section of det A⊗ det B ⊗ (det(A⊕B))−1 is
identified with 1 ∈ C.

Recall that Ir+s
s was defined in (2.9) and Er,s was defined in (2.11). We have

Hq(X, Ir+s
s ) =

s⊕
j=0

Hr+s−j,q−j(Y ), Hq(X, Er,s) = Hr,q−s(Y ). (2.30)

By (2.30), we have
H•(X, Ir+s

s ) = H•(X, Ir+s
s−1)⊕H•(X, Er,s). (2.31)
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Applying the claim in the last paragraph to (2.31), we obtain(
det H•(X, Ir+s

s−1)
)−1 ⊗ det H•(X, Ir+s

s )⊗ (
det H•(X, Er,s)

)−1 = C, αr,s = 1. (2.32)

A similar argument shows that

det H•(X, Er,s)⊗
(
det Hr,•(Y, Hs,s(Z)

))−(−1)s

= C, βr,s = 1,(
det Hr,•(Y, Hs,s(Z)

))(−1)s ⊗ (
det Hr,•(Y )

)−(−1)s

= C, γr,s = 1.
(2.33)

Using (1.119), (1.121) and (2.28), we can show that

λtot(X)⊗ (
λtot(Y )

)−χ(Z) ⊗ (
η(Y )

)−nχ(Z) = C,

σX ⊗ σ
−χ(Z)
Y ⊗ ε

−nχ(Z)
Y = ±1.

(2.34)

From (2.32)–(2.34), we obtain (2.27).

Step 3. We introduce several Quillen metrics.

• Let gTX
ε be the metric on TX induced by ωε.

• Let g
Λp(T ∗X)
ε be the metric on Λp(T ∗X) induced by gTX

ε .
• Let gIp

s
ε be the metric on Ip

s induced by g
Λp(T ∗X)
ε via (2.10).

• Let gTY be the metric on TY induced by ωY .
• Let gΛr(T ∗Y ) be the metric on Λr(T ∗Y ) induced by gTY .
• Let gTZ be the metric on TZ induced by ωZ = ωε|Z .
• Let gΛs(T ∗Z) be the metric on Λs(T ∗Z) induced by gTZ .
• Let gEr,s be the metric on Er,s induced by gΛr(T ∗Y ) and gΛs(T ∗Z) via (2.11).

Let

‖·‖det H•(X,Ip
s ),ε (2.35)

be the Quillen metric on det H•(X, Ip
s ) associated with gTX

ε and gIp
s

ε . Let

‖·‖det H•(X,Er,s),ε (2.36)

be the Quillen metric on det H•(X, Er,s) associated with gTX
ε and gEr,s . Recall that αr,s was

defined by (2.13). Let ‖αr,s‖ε be the norm of αr,s with respect to the metrics (2.35) and (2.36).

• Let gΩs,s(Z) be the L2-metric on Ωs,s(Z) induced by gTZ (see (1.70)).
• Let gHs,s(Z) be the metric on Hs,s(Z) induced by gΩs,s(Z) via the Hodge theorem.

Let

‖·‖det Hr,•(Y,Hs,s(Z)) (2.37)

be the Quillen metric on det Hr,•(Y, Hs,s(Z)) = det H•(Y, Λr(T ∗Y )⊗Hs,s(Z)) associated with
gTY and gΛr(T ∗Y ) ⊗ gHs,s(Z). Recall that βr,s was defined by (2.16). Let ‖βr,s‖ε be the norm of
βr,s with respect to the metrics (2.36) and (2.37). Let

‖·‖det Hr,•(Y ) (2.38)

be the Quillen metric on det Hr,•(Y ) = det H•(Y, Λr(T ∗Y )) associated with gTY and gΛr(T ∗Y ).
Recall that γr,s was defined by (2.19). Let ‖γr,s‖ be the norm of γr,s with respect to the metrics
(2.37) and (2.38).
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By (1.119) and (2.10), we have

σX ∈ λtot(X) =
m+n⊗
p=1

(
det H•(X, Ip

p )
)(−1)pp ⊗

m+n⊗
p=1

(
det H•(X, Ip

p )
)(−1)pp

. (2.39)

Let ‖σX‖ε be the norm of σX with respect to the metrics (2.35) with s = p. By (1.118) and
(1.119), we have

εY ∈ η(Y ) =
m⊗

r=0

(
det Hr,•(Y )

)(−1)r

,

σY ∈ λtot(Y ) =
m⊗

r=1

(
det Hr,•(Y )

)(−1)rr ⊗
m⊗

r=1

(
det Hr,•(Y )

)(−1)rr
.

(2.40)

Let ‖εY ‖ be the norm of εY with respect to the metrics (2.38). Let ‖σY ‖ be the norm of σY with
respect to the metrics (2.38). By (2.27), we have

m∑
r=0

n∑
s=0

(−1)r+s(r + s)
(

log‖αr,s‖2ε + log‖βr,s‖2ε + log‖γr,s‖2
)

= log‖σX‖ε − χ(Z) log‖σY ‖ − nχ(Z) log‖εY ‖. (2.41)

On the other hand, by Definition 1.23 and Proposition 1.25, we have

log‖εY ‖ = 0. (2.42)

By Definition 1.24, (2.41) and (2.42), we have

τBCOV(X, ωε) = χ(Z)τBCOV(Y, ωY )

+
m∑

r=0

n∑
s=0

(−1)r+s(r + s)
(

log‖αr,s‖2ε + log‖βr,s‖2ε + log‖γr,s‖2
)
. (2.43)

Step 4. We estimate log‖αr,s‖2ε.
Recall that Ir+s

s was defined in (2.9), Er,s was defined in (2.11), gIr+s
s

ε and gEr,s were defined
at the beginning of Step 3. Let g

Er,s
ε be quotient metric on Er,s induced by gIr+s

s
ε via the surjection

Ir+s
s → Er,s in (2.12). Note that gIr+s

s
ε is induced by ωε. By (2.5), as ε→ 0,

ε−rg
Er,s
ε → gEr,s . (2.44)

We use the notation from (1.23). Let

T̃r,s,ε = c̃h
(
g

Ir+s
s−1

ε , gIr+s
s

ε , g
Er,s
ε

)
∈ QX/QX,0 (2.45)

be the Bott–Chern form (1.56) with 0→ E′ → E → E′′ → 0 replaced by (2.12) and (gE′
, gE , gE′′

)

replaced by (g
Ir+s
s−1

ε , gIr+s
s

ε , g
Er,s
ε ). Let

Tr,s,ε = c̃h
(
g

Ir+s
s−1

ε , gIr+s
s

ε , gEr,s

)
∈ QX/QX,0 (2.46)

be the Bott–Chern form (1.56) with 0→ E′ → E → E′′ → 0 replaced by (2.12) and (gE′
, gE , gE′′

)

replaced by (g
Ir+s
s−1

ε , gIr+s
s

ε , gEr,s). By Proposition 1.11 and (2.44), as ε→ 0,

Tr,s,ε − T̃r,s,ε − ch(Er,s, g
Er,s)r log ε = c̃h(gEr,s , g

Er,s
ε )− ch(Er,s, g

Er,s)r log ε→ 0. (2.47)
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On the other hand, by Proposition 1.12, as ε→ 0,

T̃r,s,ε → 0. (2.48)

By (2.47) and (2.48), as ε→ 0,

Tr,s,ε − ch(Er,s, g
Er,s)r log ε→ 0. (2.49)

Applying Theorem 1.18 to the short exact sequence (2.12), we obtain

log‖αr,s‖2ε =
∫

X
Td(TX, gTX

ε )Tr,s,ε. (2.50)

By Proposition 1.10, as ε→ 0,

Td(TX, gTX
ε )→ π∗Td(TY, gTY )Td(TZ, gTZ). (2.51)

On the other hand, by the Grothendieck–Riemann–Roch formula (1.76), (2.11) and (2.14), we
have ∫

X
π∗Td(TY, gTY )Td(TZ, gTZ)ch(Er,s, g

Er,s)

=
∫

Y
Td(TY )ch

(
H•(Z, Er,s)

)
=

∫
Y

Td(TY )ch
(
Λr(T ∗Y )

)
ch

(
Hs,•(Z)

)
= (−1)s

∫
Y

Td(TY )ch
(
Λr(T ∗Y )

)
. (2.52)

By (2.49)–(2.52), as ε→ 0,

log‖αr,s‖2ε − (−1)sr

∫
Y

Td(TY )ch
(
Λr(T ∗Y )

)
log ε→ 0. (2.53)

By Proposition 1.5, (2.22) and (2.53), as ε→ 0,
m∑

r=0

n∑
s=0

(−1)r+s(r + s) log‖αr,s‖2ε

−
(

m(3m + 3n + 1)
12

χ(Y ) +
1
6

(c1cm−1)(Y )
)

χ(Z) log ε→ 0. (2.54)

Step 5. We estimate log‖βr,s‖2ε.
Let

Tr,s ∈ QY (2.55)

be the Bismut–Köhler analytic torsion form (see § 1.5) associated with (π : X →
Y, ωX , Er,s, g

Er,s). Applying Theorem 1.17 with E = Er,s, as ε→ 0,

log‖βr,s‖2ε +
∫

Y
Td′(TY )

∫
Z

Td(TZ)ch(Er,s) log ε→
∫

Y
Td(TY, gTY )Tr,s. (2.56)

Similarly to (2.52), we have∫
Y

Td′(TY )
∫

Z
Td(TZ)ch(Er,s) = (−1)s

∫
Y

Td′(TY )ch
(
Λr(T ∗Y )

)
. (2.57)

Applying Proposition 1.15 with E = E0,s and F = Λr(T ∗Y ), we obtain

Tr,s = ch
(
Λr(T ∗Y ), gΛr(T ∗Y )

)
T0,s modulo QY,0. (2.58)
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By (2.56)–(2.58), as ε→ 0,

log‖βr,s‖2ε + (−1)s

∫
Y

Td′(TY )ch
(
Λr(T ∗Y )

)
log ε

→
∫

Y
Td(TY, gTY )ch

(
Λr(T ∗Y ), gΛr(T ∗Y )

)
T0,s. (2.59)

On the other hand, by Theorem 1.16, we have
n∑

s=0

(−1)sT0,s = 0 modulo QY,0. (2.60)

By Propositions 1.5, 1.6, (2.22), (2.59) and (2.60), as ε→ 0,
m∑

r=0

n∑
s=0

(−1)r+s(r + s) log‖βr,s‖2ε +
(

m(m + n)
4

χ(Y ) +
1
12

(c1cm−1)(Y )
)

χ(Z) log ε

→
∫

Y
cm(TY, gTY )

n∑
s=0

(−1)ssT0,s

=
∫

Y
cm(TY, gTY )

n∑
s=0

(−1)ss{T0,s}(0,0), (2.61)

where {·}(0,0) means the component of degree (0, 0).

Step 6. We calculate log‖γr,s‖2.
Recall that Hs,s(Z) is a trivial line bundle over Y . Recall that gHs,s(Z) was constructed in

the paragraph above (2.37). By our assumption (2.4), gHs,s(Z) is a constant metric. Recall that
δs ∈ Hs,s(Z) was constructed in (2.17). Let |δs| be the norm of δs with respect to gHs,s(Z), which
is a constant function on Y . In the following, we do not distinguish between a constant function
and its value. We denote χr(Y ) =

∑m
q=0(−1)q dim Hr,q(Y ). By Remark 1.14, we have

log‖γr,s‖2 = (−1)sχr(Y ) log |δs|2. (2.62)

Let εZ ∈ η(Z) be as in (1.122). We have

εZ = ±
n⊗

s=0

δs. (2.63)

Let |εZ | be the norm of εZ with respect to the metrics gHs,s(Z). By Proposition 1.25 and (2.63),
we have

n∑
s=0

log |δs|2 = log |εZ |2 = 0. (2.64)

Let σZ ∈ λtot(Z) be as in (1.122). We have

σZ = ±
n⊗

s=1

δ2s
s . (2.65)

Let |σZ | be the norm of σZ with respect to the metrics gHs,s(Z). By (2.65), we have
n∑

s=0

s log |δs|2 = log |σZ |. (2.66)
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By (2.62), (2.64), (2.66) and the identity
∑m

r=0(−1)rχr(Y ) = χ(Y ), we have
m∑

r=0

n∑
s=0

(−1)r+s(r + s) log‖γr,s‖2 = χ(Y ) log |σZ |. (2.67)

Step 7. We conclude.
By (2.43), (2.54), (2.61) and (2.67), as ε→ 0,

τBCOV(X, ωε)− 1
12

χ(Z)
(
mχ(Y ) + (c1cm−1)(Y )

)
log ε

→ χ(Z)τBCOV(Y, ωY ) + χ(Y ) log |σZ |

+
∫

Y
cm(TY, gTY )

n∑
s=0

(−1)ss{T0,s}(0,0). (2.68)

Let θs(z) be as in (1.74) with (X, ω) replaced by (Z, ωZ) and (E, gE) replaced by
(Λs(T ∗Z), gΛs(T ∗Z)). By Definition 1.13, 1.24, we have

τBCOV(Z, ωZ) = log |σZ |+
n∑

s=0

(−1)ssθ′s(0). (2.69)

By (2.4), all the terms in (2.69) are constant functions on Y . By (1.79), we have

{T0,s}(0,0) = θ′s(0). (2.70)

From (2.68)–(2.70), we obtain (2.7). This completes the proof. �

Remark 2.4. The key ingredient in the proof of Theorem 2.3 is [BB94, Theorem 3.2], which is a
consequence of [BB94, Theorem 3.1]. Of course, we can replace [BB94, Theorem 3.2] by [BB94,
Theorem 3.1] in our proof to obtain a formula for τBCOV(X, ωX). However, because [BB94,
Theorem 3.1] involves a Bott–Chern form, the formula obtained will be far from clean.

2.3 Behavior under blow-ups
The following lemma is direct consequence of Bott formula [Bot57] (see also [OSS11, p. 5]).

Lemma 2.5. Let L be the holomorphic line bundle of degree one over CPn. For k = 1, . . . , n and
s = 1, . . . , k, we have

H•(CPn, Λk(T ∗CPn)⊗ Ls
)

= 0. (2.71)

Let X be an n-dimensional compact Kähler manifold. Let Y ⊆ X be a closed complex sub-
manifold. Let f : X ′ → X be the blow-up along Y . Let Y ⊆ U ⊆ X be an open neighborhood of
Y . Set U ′ = f−1(U). Let ω be a Kähler form on X. Let ω′ be a Kähler form on X ′ such that

ω′|X′\U ′ = f∗(ω|X\U ). (2.72)

For the existence of such ω′, see the proof of [Voi02, Proposition 3.24].

Theorem 2.6. We have

τBCOV(X ′, ω′)− τBCOV(X, ω) = α(U, U ′, ω|U , ω′|U ′), (2.73)

where α(U, U ′, ω|U , ω′|U ′) is a real number determined by U , U ′, ω|U and ω′|U ′ .

Proof. The proof consists of several steps.
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Step 0. We introduce several pieces of notation.
We denote D = f−1(Y ). Let i : D ↪→ X ′ be the canonical embedding. Let I ⊆ OX′ be the

ideal sheaf associated with D. More precisely, for open subset U ⊆ X ′, we have

I (U) = {θ ∈ OX′(U) : θ|U∩D = 0}. (2.74)

For p = 0, . . . , n, there exist holomorphic vector bundles over X ′ linked by holomorphic maps

f∗Λp(T ∗X) = F p
p → F p

p−1 → · · · → F p
0 = Λp(T ∗X ′) (2.75)

such that for s = 0, . . . , p− 1,

• the induced map OX′(F p
s+1)→ OX′(F p

s ) is injective;
• we have I ⊗ OX′(F p

s ) ↪→ OX′(F p
s+1) ↪→ OX′(F p

s ).

Set

G p
s = OX′(F p

s )/OX′(F p
s+1). (2.76)

Then we have a commutative diagram of analytic coherent sheaves on X ′,

0 �� OX′(F p
s+1) �� OX′(F p

s ) ��

�������������
G p

s
�� 0

i∗OD(F p
s |D)

��

(2.77)

where the first row is exact. Now we briefly explain the existence of these F p
s . We have

I ⊗p ⊗ OX′
(
Λp(T ∗X ′)

)
↪→ OX′

(
f∗Λp(T ∗X)

)
↪→ OX′

(
Λp(T ∗X ′)

)
. (2.78)

For s = 0, . . . , p, let F p
s be the sub-sheaf of OX′(Λp(T ∗X ′)) generated by I ⊗s ⊗ OX′(Λp(T ∗X ′))

and OX′(f∗Λp(T ∗X)). Then the desired properties hold with OX′(F p
s ) replaced by F p

s . It remains
to show that each F p

s is given by a holomorphic vector bundle. Let r be the codimension of
Y ↪→ X. Let NY be the normal bundle of Y ↪→ X. Let π : D = P(NY )→ Y be the canonical
projection. Let (y0, y1, . . . , yn−r, z1, . . . , zr−1) ∈ Cn be local coordinates on a neighborhood of
x ∈ D such that:

• (y1, . . . , yn−r) are the coordinates on Y ;
• (z1, . . . , zr−1) are the coordinates on the fiber of π : D → Y ;
• D ⊆ X ′ is given by the equation y0 = 0.

Then the image of OX′(f∗T ∗X) ↪→ OX′(T ∗X ′) is generated by

dy0, dy1, . . . , dyn−r, y0 dz1, . . . , y0 dzr−1. (2.79)

As a consequence, the image of F p
s ↪→ OX′(Λp(T ∗X ′)) is generated by

y
min{s,|J |}
0

⊗
i∈I

dyi ⊗
⊗
j∈J

dzj (2.80)

with I ⊆ {0, 1, . . . , n− r} and J ⊆ {1, . . . , r − 1} satisfying |I|+ |J | = p. Each term in (2.80)
yields a holomorphic line bundle. Hence, F p

s is given by a holomorphic vector bundle, which we
denote by F p

s .
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Let TD → π∗TY be the derivative of π. Set

T V D = Ker(TD → π∗TY ) ⊆ TD ⊆ TX ′|D. (2.81)

Set

Ip
s =

{
α ∈ Λp(T ∗X ′)|D : α(v1, . . . , vp) = 0 for any v1, . . . , vs+1 ∈ T V D, vs+2, . . . , vp ∈ TX ′|D}.

(2.82)

We obtain a filtration of holomorphic vector bundles over D,

Λp(T ∗X ′)|D = Ip
p ⊇ Ip

p−1 ⊇ · · · ⊇ Ip
0 . (2.83)

Let ND be the normal line bundle of D ↪→ X ′. From the calculation in local coordinates, we see
that

G p
s = i∗OD

(
N−s

D ⊗ (Ip
p/Ip

s )
)

for s = 0, . . . , p− 1. (2.84)

For convenience, we denote
Gp

s = N−s
D ⊗ (Ip

p/Ip
s ). (2.85)

Then we obtain a short exact sequence

0→ OX′(F p
s+1)→ OX′(F p

s )→ i∗OD(Gp
s)→ 0. (2.86)

Step 1. We show that

Hq(D, Gp
0) =

r−1⊕
k=1

Hk,k(CPr−1)⊗Hp−k,q−k(Y ),

Hq(D, Gp
s) = 0 for s = 1, . . . , p− 1.

(2.87)

Set

Jp
s =

{
α ∈ Λp(T ∗D) : α(v1, . . . , vp) = 0 for any v1, . . . , vs+1 ∈ T V D, vs+2, . . . , vp ∈ TD

}
.

(2.88)

Let φ : Λp(T ∗X ′)|D → Λp(T ∗D) be the canonical projection. By (2.82) and (2.88), we have

Jp
s = φ(Ip

s ) ⊆ Λp(T ∗D). (2.89)

By (2.83) and (2.89), we have a filtration of holomorphic vector bundles over D,

Λp(T ∗D) = Jp
p ⊇ Jp

p−1 ⊇ · · · ⊇ Jp
0 . (2.90)

We also have
Jp

k/Jp
k−1 = π∗(Λp−k(T ∗Y )

)⊗ Λk(T V,∗D), (2.91)

and a short exact sequence of holomorphic vector bundles over D,

0→ N−1
D ⊗ Jp−1

k → Ip
k → Jp

k → 0. (2.92)

Combining (2.91) and (2.92), we obtain a short exact sequence,

0→ N−1
D ⊗ π∗(Λp−k−1(T ∗Y )

)⊗ Λk(T V,∗D)→ Ip
k/Ip

k−1

→ π∗(Λp−k(T ∗Y )
)⊗ Λk(T V,∗D)→ 0. (2.93)

By (2.85) and (2.93), Gp
s admits a filtration with factors(

N−s−ε
D ⊗ π∗(Λp−k−ε(T ∗Y )

)⊗ Λk(T V,∗D)
)
ε=0,1,k=s+1,...,p

. (2.94)

We remark that π : D → Y is a CPr−1-bundle and the restriction of N−1
D to the fiber of

π : D → Y is a holomorphic line bundle of degree one. Applying spectral sequence while using
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Lemma 2.5, we see that the cohomology of the holomorphic vector bundles in (2.94) vanishes
unless ε = s = 0. Hence, we obtain the second identity in (2.87). This argument also shows that

Hq(D, Gp
0) = Hq(D, Ip

p/Ip
0 ) = Hq(D, Jp

p/Jp
0 ). (2.95)

Using spectral sequence and (2.91), we obtain

Hq(D, Jp
k/Jp

k−1) = Hk,k(CPr−1)⊗Hp−k,q−k(Y ). (2.96)

On the other hand, it is classical that

Hq(D, Jp
p ) = Hq

(
D, Λp(T ∗D)

)
=

r−1⊕
k=0

Hk,k(CPr−1)⊗Hp−k,q−k(Y ). (2.97)

From (2.95)–(2.97), we obtain the first identity in (2.87).
Set

λ(G•
0) =

n⊗
p=1

(
det H•(D, Gp

0)
)(−1)pp

, λtot(G•
0) = λ(G•

0)⊗ λ(G•
0). (2.98)

Recall that λtot(X) was defined in (1.119).
Step 2. We construct two canonical sections of(

λtot(X)
)−1 ⊗ λtot(X ′)⊗ (

λtot(G•
0)

)−1 (2.99)

and show that they coincide up to ±1.
Let

μp,s ∈
(
det H•(X ′, F p

s+1)
)−1 ⊗ det H•(X ′, F p

s )⊗ (
det H•(D, Gp

s)
)−1 (2.100)

be the canonical section induced by the long exact sequence induced by (2.86). Indeed, by (2.87),
we have

μp,s ∈
(
det H•(X ′, F p

s+1)
)−1 ⊗ det H•(X ′, F p

s ) for s �= 0. (2.101)

Set

μp =
p−1⊗
s=0

μp,s ∈
(
det H•(X ′, F p

p )
)−1 ⊗ det H•(X ′, F p

0 )⊗ (
det H•(D, Gp

0)
)−1

=
(
det H•(X ′, f∗Λp(T ∗X))

)−1 ⊗ det Hp,•(X ′)⊗ (
det H•(D, Gp

0)
)−1

. (2.102)

We remark that f∗OX′ = OX and R>0f∗OX′ = 0. Using spectral sequence, we obtain a
canonical identification

Hp,•(X) = H•(X ′, f∗Λp(T ∗X)
)
. (2.103)

Let
νp ∈

(
det Hp,•(X)

)−1 ⊗ det H•(X ′, f∗Λp(T ∗X)
)

(2.104)

be the canonical section induced by (2.103).
By (2.102) and (2.104), we have

μp ⊗ νp ∈
(
det Hp,•(X)

)−1 ⊗ det Hp,•(X ′)⊗ (
det H•(D, Gp

0)
)−1

. (2.105)

By (1.119), (2.98) and (2.105), we have
n⊗

p=1

(μp ⊗ νp)(−1)pp ∈ (
λ(X)

)−1 ⊗ λ(X ′)⊗ (
λ(G•

0)
)−1

, (2.106)
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and
n⊗

p=1

(μp ⊗ νp)(−1)pp ⊗
n⊗

p=1

(μp ⊗ νp)(−1)pp ∈ (
λtot(X)

)−1 ⊗ λtot(X ′)⊗ (
λtot(G•

0)
)−1

. (2.107)

We have the Hodge decomposition

Hj
dR(Y ) =

⊕
p+q=j

Hp,q(Y ). (2.108)

Let bk be the kth Betti number of Y . By (2.87), (2.98) and (2.108), we have

λtot(G•
0) =

r−1⊗
k=1

2k+2n−2r⊗
j=2k

((
det H2k

dR(CPr−1)
)bj−2k ⊗ det Hj−2k

dR (Y )
)(−1)jj

. (2.109)

Let
δj ∈ Hj

Sing(CPr−1, Z) ⊆ Hj
Sing(CPr−1, C) = Hj

dR(CPr−1) (2.110)

be a generator of Hj
Sing(CPr−1, Z). Let

τj,1, . . . , τj,bj ∈ Im
(
Hj

Sing(Y, Z)→ Hj
Sing(Y, R)

) ⊆ Hj
dR(Y ) (2.111)

be a basis of the lattice. We denote τj = τj,1 ∧ · · · ∧ τj,bj ∈ det Hj
dR(Y ). Set

σG•
0

=
r−1⊗
k=1

2k+2n−2r⊗
j=2k

(δbj−2k

2k ⊗ τj−2k)(−1)jj ∈ λtot(G•
0). (2.112)

Let σX ∈ λtot(X) and σX′ ∈ λtot(X ′) be as in (1.122). Obviously, we have

σ−1
X ⊗ σX′ ⊗ σ−1

G•
0
∈ (

λtot(X)
)−1 ⊗ λtot(X ′)⊗ (

λtot(G•
0)

)−1
. (2.113)

We have a canonical identification (cf. [Voi02, Théorème 7.31])

Hj
Sing(X ′, Z) = Hj

Sing(X, Z)⊕
r−1⊕
k=1

H2k
Sing(CPr−1, Z)⊗Hj−2k

Sing (Y, Z), (2.114)

which induces an isomorphism of Hodge structures. Similarly to Step 2 in the proof of
Theorem 2.3, using (2.114), we can show that

n⊗
p=1

(μp ⊗ νp)(−1)pp ⊗
n⊗

p=1

(μp ⊗ νp)(−1)pp = ±σ−1
X ⊗ σX′ ⊗ σ−1

G•
0
. (2.115)

Step 3. We introduce Quillen metrics.
Let gTX be the metric on TX induced by ω. Let gΛp(T ∗X) be the metric on Λp(T ∗X) induced

by gTX . Let
‖·‖det Hp,•(X) (2.116)

be the Quillen metric on det Hp,•(X) = det H•(X, Λp(T ∗X)) associated with gTX and gΛp(T ∗X).
Let gTX′

be the metric on TX ′ induced by ω′. Let gΛp(T ∗X′) be the metric on Λp(T ∗X ′)
induced by gTX′

. Let
‖·‖det Hp,•(X′) (2.117)

be the Quillen metric on det Hp,•(X ′) = det H•(X ′, Λp(T ∗X ′)) associated with gTX′
and

gΛp(T ∗X′).
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Let

‖·‖det H•(X′,f∗Λp(T ∗X)) (2.118)

be the Quillen metric on det H•(X ′, f∗Λp(T ∗X)) associated with gTX′
and f∗gΛp(T ∗X).

Let gTD and gND be the metrics on TD and ND induced by gTX′
. Let gIp

s be the metric on
Ip
s induced by gΛp(T ∗X′) via (2.83). Let gGp

s be the metric on Gp
s induced by gND and gIp

s via
(2.85). Let

‖·‖det H•(D,Gp
s) (2.119)

be the Quillen metric on det H•(D, Gp
s) associated with gTD and gGp

s . By the second identity
in (2.87), we have a canonical identification det H•(D, Gp

s) = C for s �= 0. However, the metric
(2.119) with s �= 0 is not necessarily the standard metric on C.

We remark that

Λp(T ∗X ′)|X′\U ′ = F p
s |X′\U ′

= f∗Λp(T ∗X)|X′\U ′ for s = 0, . . . , p. (2.120)

We equip F p
s with Hermitian metric gF p

s such that

gF p
0 = gΛp(T ∗X′), gF p

p = f∗gΛp(T ∗X),

gF p
s+1 |X′\U ′ = gF p

s |X′\U ′ for s = 0, . . . , p− 1.
(2.121)

Our assumption (2.72) implies gΛp(T ∗X′)|X′\U ′ = f∗(gΛp(T ∗X)|X\U ), which guarantees the exis-
tence of gF p

s satisfying (2.121). Let

‖·‖det H•(X′,F p
s ) (2.122)

be the Quillen metric on det H•(X ′, F p
s ) associated with gTX′

and gF p
s . We remark that

H•(X ′, F p
0 ) = Hp,•(X ′) and

‖·‖det H•(X′,F p
0 ) = ‖·‖det Hp,•(X′). (2.123)

Recall that μp,s was defined in (2.100). Let ‖μp,s‖ be the norm of μp,s with respect to the
metrics (2.119) and (2.122).

Recall that νp was defined in (2.104). Let ‖νp‖ be the norm of νp with respect to the Quillen
metrics (2.116) and (2.118).

Recall that σG•
0

was defined in (2.112). By (2.98) and the second identity in (2.87), we can
and do view σG•

0
as the section of

λtot(G•
•) :=

n⊗
p=1

p−1⊗
s=0

(
det H•(D, Gp

s)
)(−1)pp ⊗

n⊗
p=1

p−1⊗
s=0

(
det H•(D, Gp

s)
)(−1)pp

. (2.124)

Let ‖σG•
0
‖λtot(G••) be the norm of σG•

0
∈ λtot(G••) with respect to the metrics (2.119).

Let ‖σX‖λtot(X) be the norm of σX with respect to the metrics (2.116). Let ‖σX′‖λtot(X′) be
the norm of σX′ with respect to the metrics (2.117). By (2.102) and (2.115), we have

log‖σX′‖λtot(X′) − log‖σX‖λtot(X) − log‖σG•
0
‖λtot(G••)

=
n∑

p=1

(−1)pp

(
log‖νp‖2 +

p−1∑
s=0

log‖μp,s‖2
)

. (2.125)
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By Definition 1.24 and (2.125), we have

τBCOV(X ′, ω′)− τBCOV(X, ω)

= log‖σG•
0
‖λtot(G••) +

n∑
p=1

(−1)pp

(
log‖νp‖2 +

p−1∑
s=0

log‖μp,s‖2
)

. (2.126)

Step 4. We conclude.
For ease of notation, we denote

αp,s = log‖μp,s‖2. (2.127)

Applying Theorem 1.19 to the short exact sequence (2.86) while using the second line in (2.121),
we see that αp,s is determined by (U ′, ω′|U ′ , gF p

s |U ′ , gF p
s+1 |U ′). We denote

αp =
p−1∑
s=0

αp,s. (2.128)

We remark that for s = 1, . . . , p− 1, the contributions of the metric ‖·‖det H•(X′,F p
s ) (see (2.122))

to αp,s−1 and αp,s cancel with each other. Thus, αp is independent of (gF p
s )s=1,...,p−1. Hence, αp

is determined by (U ′, ω′|U ′ , gF p
0 |U ′ , gF p

p |U ′). Now, applying the first line in (2.121), we see that
αp is determined by (U, U ′, ω|U , ω′|U ′).

For ease of notation, we denote

βp = log‖νp‖2, (2.129)

Applying Theorem 1.21 with E = Λp(T ∗X) while using (2.72), we see that βp is determined by
(U, U ′, ω|U , ω′|U ′).

By (2.126)–(2.129), we have

τBCOV(X ′, ω′)− τBCOV(X, ω) = log‖σG•
0
‖λtot(G••) +

n∑
p=1

(−1)pp(αp + βp). (2.130)

Here:

• the section σG•
0
∈ λtot(G••) is determined by D ⊆ U ′ and its normal bundle;

• the Quillen metric ‖·‖λtot(G••) is determined by ω′|U ′ ;
• the real number αp is determined by (U, U ′, ω|U , ω′|U ′);
• the real number βp is determined by (U, U ′, ω|U , ω′|U ′).

In conclusion, the right-hand side of (2.130) is determined by (U, U ′, ω|U , ω′|U ′). This completes
the proof. �

Let π : U → C be a holomorphic submersion between complex manifolds. Let Y ⊆ U be a
closed complex submanifold. We assume that π|Y : Y → C is a holomorphic submersion with
compact fiber. For z ∈ C, we denote Uz = π−1(z) and Yz = Uz ∩ Y . Assume that for any z ∈
C, Uz can be extended to a compact Kähler manifold. More precisely, there exist a compact
Kähler manifold Xz and a holomorphic embedding iz : Uz ↪→ Xz whose image is open. Here
{Xz : z ∈ C} is just a set of complex manifolds parameterized by C. The topology of Xz may
vary as z varies. We identify Uz with iz(Uz) ⊆ Xz. Let fz : X ′

z → Xz be the blow-up along Yz.
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Set U ′
z = f−1

z (Uz) ⊆ X ′
z. Let(

ωz ∈ Ω1,1(Xz)
)
z∈C

,
(
ω′

z ∈ Ω1,1(X ′
z)

)
z∈C

(2.131)

be Kähler forms. We assume that (ωz|Uz)z∈C and (ω′
z|U ′

z
)z∈C are smooth families. We further

assume that
ω′

z|X′
z\U ′

z
= f∗

z (ωz|Xz\Uz
) for z ∈ C. (2.132)

Theorem 2.7. The function z �→ τBCOV(X ′
z, ω

′
z)− τBCOV(Xz, ωz) is continuous.

Proof. We proceed in the same way as in the proof of Theorem 2.6. Each object constructed
becomes a function of z ∈ C. In particular, the identity (2.130) becomes

τBCOV(X ′
z, ω

′
z)− τBCOV(Xz, ωz) = log‖σG•

0
‖λtot(G••),z +

n∑
p=1

(−1)pp(αp,z + βp,z). (2.133)

From Remarks 1.20 and 1.22 and the last paragraph in the proof of Theorem 2.6, we see that
each term on the right-hand side of (2.133) is a continuous function of z. This completes the
proof. �

3. BCOV invariant

3.1 Several meromorphic sections
Let X be a compact complex manifold. Let KX be the canonical line bundle of X. Let d be a
non-zero integer. Let Kd

X be the dth tensor power of KX . We assume that there is an invertible
element γ ∈M (X, Kd

X). We denote

div(γ) = D =
l∑

j=1

mjDj , (3.1)

where mj ∈ Z\{0}, D1, . . . , Dl ⊆ X are mutually distinct and irreducible. We assume that D is
of simple normal crossing support (see Definition 1.2).

For J ⊆ {1, . . . , l}, let DJ ⊆ X be as in (0.9). For j ∈ J ⊆ {1, . . . , l}, let LJ,j be the normal
line bundle of DJ ↪→ DJ\{j}. Set

KJ = Kd
X |DJ

⊗
⊗
j∈J

L
−mj

J,j = Kd
DJ
⊗

⊗
j∈J

L
−mj−d
J,j , (3.2)

which is a holomorphic line bundle over DJ . In particular, we have K∅ = Kd
X .

Recall that Res·(·) was defined in Definition 1.4. By (1.9), there exist(
γJ ∈M (DJ , KJ)

)
J⊆{1,...,l} (3.3)

such that
γ∅ = γ, γJ = ResDJ

(γJ\{j}) for j ∈ J ⊆ {1, . . . , l}. (3.4)

By (1.8), we have

div(γJ) =
∑
j /∈J

mjDJ∪{j}. (3.5)

3.2 Construction of BCOV invariant
We use the notation from § 3.1. We further assume that X is Kähler and mj �= −d for j = 1, . . . , l.
Then (X, γ) is a d-Calabi–Yau pair (see Definition 0.2).
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Let ω be a Kähler form on X. Let | · |KDJ
,ω be the metric on KDJ

induced by ω. Let | · |LJ,j ,ω

be the metric on LJ,j induced by ω. Let | · |KJ ,ω be the metric on KJ induced by | · |KDJ
,ω and

| · |LJ,j ,ω via (3.2).
We use the notation from (1.23). For J ⊆ {1, . . . , l}, let |J | be the number of elements in J ,

let gTDJ
ω be the metric on TDJ induced by ω, let ck(TDJ , gTDJ

ω ) ∈ QDJ be kth Chern form of
(TDJ , gTDJ

ω ). Let n = dim X. Set

aJ(γ, ω) =
1
12

∫
DJ

cn−|J |
(
TDJ , gTDJ

ω

)
log |γJ |2/d

KJ ,ω. (3.6)

We consider the short exact sequence of holomorphic vector bundles over DJ ,

0→ TDJ → TDJ\{j}|DJ
→ LJ,j → 0. (3.7)

Let

c̃
(
TDJ , TDJ\{j}|DJ

, g
TDJ\{j}
ω |DJ

)
∈ QDJ /QDJ ,0 (3.8)

be the Bott–Chern form (1.30) with 0→ E′ → E → E′′ replaced by (3.7) and gE replaced by
g

TDJ\{j}
ω |DJ

. Set

bJ,j(ω) =
1
12

∫
DJ

c̃
(
TDJ , TDJ\{j}|DJ

, g
TDJ\{j}
ω |DJ

)
. (3.9)

Let wJ
d be as in (0.9). Recall that τBCOV(·, ·) was defined in Definition 1.24. For ease of

notation, we denote τBCOV(DJ , ω) = τBCOV(DJ , ω|DJ
). We define

τd(X, γ, ω) =
∑

J⊆{1,...,l}
wJ

d

(
τBCOV(DJ , ω)− aJ(γ, ω)−

∑
j∈J

mj + d

d
bJ,j(ω)

)
. (3.10)

Theorem 3.1. The real number τd(X, γ, ω) is independent of ω.

Proof. Let (ωs)s∈CP1 be a smooth family of Kähler forms on X parameterized by CP1. It is
sufficient to show that τd(X, γ, ωs) is independent of s.

We view the terms involved in (3.10) as smooth functions on CP1, i.e.

τd(X, γ, ω) : s �→ τd(X, γ, ωs),

τBCOV(DJ , ω) : s �→ τBCOV(DJ , ωs), etc.
(3.11)

We view TDJ and LJ,j as holomorphic vector bundles over DJ × CP1. Let gTDJ
ω and g

LJ,j
ω be

metrics on TDJ and LJ,j induced by (ωs)s∈CP1 . More precisely, the restrictions gTDJ
ω |DJ×{s} and

g
LJ,j
ω |DJ×{s} are induced by ωs. By [Zha22, Theorem 1.6], we have

∂̄∂

2πi
τBCOV(DJ , ω) =

1
12

∫
DJ

cn−|J |(TDJ , gTDJ
ω )c1(TDJ , gTDJ

ω ). (3.12)
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Similarly to [Zha22, (2.9)], by the Poincaré–Lelong formula, (3.2), (3.5) and (3.6), we have

∂̄∂

2πi
aJ(γ, ω) =

1
12d

∫
DJ

cn−|J |(TDJ , gTDJ
ω )

(− c1(KJ , | · |KJ ,ω) + δdiv(γJ )

)
=

1
12

∫
DJ

cn−|J |(TDJ , gTDJ
ω )c1(TDJ , gTDJ

ω )

+
∑
j∈J

mj + d

12d

∫
DJ

cn−|J |(TDJ , gTDJ
ω )c1(LJ,j , | · |LJ,j ,ω)

+
∑
j /∈J

mj

12d

∫
DJ∪{j}

cn−|J |(TDJ , gTDJ
ω ). (3.13)

Similarly to [Zha22, (2.10)], by (1.29), (1.30) and (3.9), we have

∂̄∂

2πi
bJ,j(ω) =

1
12

∫
DJ

cn−|J |+1

(
TDJ\{j}, g

TDJ\{j}
ω

)

− 1
12

∫
DJ

cn−|J |
(
TDJ , gTDJ

ω

)
c1

(
LJ,j , g

LJ,j
ω

)
. (3.14)

By (3.12)–(3.14), we have

∂̄∂

2πi

(
τBCOV(DJ , ω)− aJ(γ, ω)−

∑
k∈J

mj + d

d
bJ,j(ω)

)

= −
∑
j∈J

mj + d

12d

∫
DJ

cn−|J |+1

(
TDJ\{j}, g

TDJ\{j}
ω

)
−

∑
j /∈J

mj

12d

∫
DJ∪{j}

cn−|J |
(
TDJ , gTDJ

ω

)
.

(3.15)

From (0.9), (3.10) and (3.15), we obtain ∂̄∂τd(X, γ, ω) = 0. Hence, s �→ τd(X, γ, ωs) is constant
on CP1. This completes the proof. �

Definition 3.2. The BCOV invariant of (X, γ) is defined by

τd(X, γ) = τd(X, γ, ω). (3.16)

By Theorem 3.1, τd(X, γ) is well-defined.

Proposition 3.3. For a non-zero integer r, let γr ∈M (X, Krd
X ) be the rth tensor power of γ.

Then (X, γr) is a rd-Calabi–Yau pair and

τrd(X, γr) = τd(X, γ). (3.17)

Proof. Once we replace γ by γr, each γJ is replaced by γr
J . We can directly verify that

τrd(X, γr, ω) = τd(X, γ, ω). (3.18)

From Definition 3.2 and (3.18), we obtain (3.17). This completes the proof. �

Recall that χd(·, ·) was defined in Definition 1.3.

Proposition 3.4. For z ∈ C∗, we have

τd(X, zγ) = τd(X, γ)− χd(X, D)
12

log |z|2/d. (3.19)
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Proof. Once we replace γ by zγ, each γJ is replaced by zγJ . By (3.6), we have

aJ(zγ, ω)− aJ(γ, ω) =
χ(DJ)

12
log |z|2/d. (3.20)

By Definition 1.3, (3.10) and (3.20), we have

τd(X, zγ, ω)− τd(X, γ, ω) = −χd(X, D)
12

log |z|2/d. (3.21)

From Definition 3.2 and (3.21), we obtain (3.19). This completes the proof. �
Proof of Theorem 0.4. As π : X → S is locally Kähler, for any s0 ∈ S, there exist an open subset
s0 ∈ U ⊆ S and a Kähler form ω on π−1(U). For s ∈ U , we denote ωs = ω|Xs . Similarly to the
proof of Theorem 3.1, we view the terms involved in (3.10) as smooth functions on U .

Though the fibration π−1(U)→ U is not necessarily trivial, the identities (3.13) and (3.14)
still hold. On the other hand, by [Zha22, Theorem 1.6], we have

∂̄∂

2πi
τBCOV(DJ , ω) = ωH•(DJ ) +

1
12

∫
DJ

cn−|J |
(
TDJ , gTDJ

ω

)
c1

(
TDJ , gTDJ

ω

)
. (3.22)

By (0.9), (3.10), (3.13), (3.14) and (3.22), we have

∂̄∂

2πi
τd(X, γ, ω)

∣∣∣∣
U

=
∑

J⊆{1,...,l}
wJ

d ωH•(DJ ). (3.23)

From Definition 3.2 and (3.23), we obtain (0.15). This completes the proof. �

3.3 BCOV invariant of projective bundle
Let Y be a compact Kähler manifold. Let N be a holomorphic vector bundle of rank r � 2
over Y . Let � be the trivial line bundle over Y . Set

X = P(N ⊕ �). (3.24)

Let π : X → Y be the canonical projection.
Let q ∈ {0, . . . , r}. Let (Lk)k=1,...,q be holomorphic line bundles over Y . We assume that there

is a surjection between holomorphic vector bundles

N → L1 ⊕ · · · ⊕ Lq. (3.25)

Let N∗ be the dual of N . Taking the dual of (3.25), we obtain

L−1
1 ⊕ · · · ⊕ L−1

q ↪→ N∗. (3.26)

Let d, m1, . . . , mq be positive integers. Let

γY ∈M
(
Y, (KY ⊗ det N∗)d ⊗ L−m1

1 ⊗ · · · ⊗ L
−mq
q

)
(3.27)

be an invertible element. We assume that

• div(γY ) is of simple normal crossing support;
• div(γY ) does not possess component of multiplicity −d.

Denote m = m1 + · · ·+ mq. Let SmN∗ be the mth symmetric tensor power of N∗. By (3.26)
and (3.27), we have

γY ∈M
(
Y, (KY ⊗ det N∗)d ⊗ SmN∗). (3.28)

Let N be the total space of N . We have

X = N ∪ P(N), KX |N = π∗(KY ⊗ det N∗). (3.29)
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We may view a section of SmN∗ as a function on N . By (3.28) and (3.29), γY may be viewed
as an element of M (N , Kd

X). Let

γX ∈M (X, Kd
X) (3.30)

be such that γX |N = γY .
For j = 1, . . . , q, let N → Lj be the composition of the map (3.25) and the canonical

projection L1 ⊕ · · · ⊕ Lq → Lj . Set

Nj = Ker(N → Lj), Xj = P(Nj ⊕ �) ⊆ X, X∞ = P(N) ⊆ X. (3.31)

We denote

div(γY ) =
l∑

j=q+1

mjYj , (3.32)

where Yj ⊆ Y are mutually distinct and irreducible. For j = q + 1, . . . , l, set

Xj = π−1(Yj) ⊆ X. (3.33)

Denote

m∞ = −m1 − · · · −mq − rd− d. (3.34)

Note that:

• X is locally the product of an open subset of Y and CPr;
• γX is locally the product of a d-canonical section on an open subset of Y and γr,m1,...,mq

defined in (0.20);

we have

div(γX) = π∗div(γY ) + m∞X∞ +
q∑

j=1

mjXj = m∞X∞ +
l∑

j=1

mjXj , (3.35)

which is of simple normal crossing support. Hence, (X, γX) is a d-Calabi–Yau pair.
For y ∈ Y , we denote Zy = π−1(y). Let KY,y be the fiber of KY at y ∈ Y . We have

KX |Zy = KZy ⊗ π∗KY,y. (3.36)

For y ∈ Y \⋃l
j=q+1 Yj , there exist γZy ∈M (Zy, K

d
Zy

) and ηy ∈ Kd
Y,y such that

γX |Zy = γZy ⊗ π∗ηy. (3.37)

Then (Zy, γZy) is a d-Calabi–Yau pair, which is independent of y up to isomorphism. We may
omit the index y as long as there is no confusion. We remark that (Z, γZ) is isomorphic to
(CPr, γr,m1,...,mq) constructed in the paragraph containing (0.20).

Recall that χd(·, ·) was defined in Definition 1.3.

Lemma 3.5. The following identity holds:

χd(Z, γZ) = 0. (3.38)
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Proof. Set

f(t) = tr−q
∏

j∈{1,...,q,∞}

(
t− mj

mj + d

)
. (3.39)

For J ⊆ {1, . . . , q,∞}, let wJ
d be as in (0.9). By (1.3), (1.4) and the fact that χ(CPk) = k + 1,

we have

χd(Z, γZ) =
∑

J⊆{1,...,q,∞}
wJ

d (r + 1− |J |) = f ′(1). (3.40)

On the other hand, we have

f ′(1)
f(1)

= r − q +
∑

j∈{1,...,q,∞}

(
1− mj

mj + d

)−1

=
m1 + · · ·+ mq + m∞

d
+ r + 1. (3.41)

From (3.34), (3.40) and (3.41), we obtain (3.38). This completes the proof. �
Theorem 3.6. The following identity holds:

τd(X, γX) = χd(Y, γY )τd(Z, γZ). (3.42)

Proof. The proof consists of several steps.

Step 0. We introduce several pieces of notation.
We denote A = {q + 1, . . . , l} and B = {1, . . . , q,∞}. For I ⊆ A and J ⊆ B, set

YI = Y ∩
⋂
j∈I

Yj , XI,J = X ∩
⋂

j∈I∪J

Xj ,

XI = XI,∅, XJ = X∅,J .

(3.43)

For y ∈ Y and J ⊆ B, set

ZJ,y = Zy ∩XJ . (3.44)

Note that ZJ,y is independent of y up to isomorphism, we may omit the index y as long as there
is no confusion. We remark that π|XI,J

: XI,J → YI is a fibration with fiber ZJ .
Let ωX be a Kähler form on X such that Lemma 2.2 holds. Let ωY be a Kähler form on Y .

For ε > 0, set

ωε = ωX +
1
ε
π∗ωY . (3.45)

For I ⊆ A, J ⊆ B and j ∈ (A ∪B)\(I ∪ J), let aI,J(γX , ωε) and bI,J,j(ωε) be as in (3.6) and
(3.9) with (X, γ, ω) replaced by (X, γX , ωε) and J replaced by I ∪ J . Let wI

d be as in (0.9) with
J replaced by I. By Definition 3.2, (0.9) and (3.10), we have

τd(X, γX) =
∑
I⊆A

∑
J⊆B

wI
dw

J
d τBCOV(XI,J , ωε)

−
∑
I⊆A

∑
J⊆B

wI
dw

J
d aI,J(γX , ωε)

−
∑
I⊆A

∑
J⊆B

∑
j∈I∪J

wI
dw

J
d

mj + d

d
bI,J,j(ωε). (3.46)
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Step 1. We estimate τBCOV(XI,J , ωε).
For y ∈ Y , we denote ωZy = ωX |Zy . As ωX satisfies Lemma 2.2, for any J ⊆ B,

(ZJ,y, ωZy |ZJ,y
)y∈Y are mutually isometric. We may omit the index y as long as there is no

confusion. For ease of notation, we denote

τBCOV(YI , ωY ) = τBCOV(YI , ωY |YI
), τBCOV(ZJ , ωZ) = τBCOV(ZJ , ωZ |ZJ

). (3.47)

For I ⊆ A and J ⊆ B, by Theorem 2.3, as ε→ 0,

τBCOV(XI,J , ωε)− χ(ZJ)
12

(
dim(YI)χ(YI) + c1cdim(YI)−1(YI)

)
log ε

→ χ(ZJ)τBCOV(YI , ωY ) + χ(YI)τBCOV(ZJ , ωZ). (3.48)

On the other hand, by Lemma 3.5, (1.3) and (1.4), we have∑
I⊆A

wI
dχ(YI) = χd(Y, γY ),

∑
J⊆B

wJ
d χ(ZJ) = 0. (3.49)

By (3.48) and (3.49), as ε→ 0,∑
I⊆A

∑
J⊆B

wI
dw

J
d τBCOV(XI,J , ωε)→ χd(Y, γY )

∑
J⊆B

wJ
d τBCOV(ZJ , ωZ). (3.50)

Step 2. We estimate aI,J(γX , ωε).
For I ⊆ A and J ⊆ B, let KI,J be as in (3.2) with (X, γ) replaced by (X, γX) and J replaced

by I ∪ J . Then KI,J is a holomorphic line bundle over XI,J . Let

γI,J ∈M (XI,J , KI,J) (3.51)

be as in (3.4) with (X, γ) replaced by (X, γX) and J replaced by I ∪ J .
Let U ⊆ Y be a small open subset. Set U = π−1(U). Recall that γZ ∈M (Z, Kd

Z) was con-
structed in the paragraph containing (3.36). We fix an identification U = U × Z such that there
exists η ∈M (U, Kd

Y ) satisfying

γX |U = pr∗1η ⊗ pr∗2γZ , (3.52)

where pr1 : U × Z → U and pr2 : U × Z → Z are canonical projections.
For I ⊆ A, let KI be as in (3.2) with (X, γ) replaced by (U, η). Then KI is a holomorphic

line bundle over U ∩ YI . Let

ηI ∈M (U ∩ YI , KI) (3.53)

be as in (3.4) with (X, γ) replaced by (U, η). For J ⊆ B, let KJ be as in (3.2) with (X, γ) replaced
by (Z, γZ). Then KJ is a holomorphic line bundle over ZJ . Let

γJ ∈M (ZJ , KJ) (3.54)

be as in (3.4) with (X, γ) replaced by (Z, γZ). By the constructions of KI,J and γI,J in the
paragraph containing (3.51), we have

KI,J |U∩XI,J
= pr∗1KI ⊗ pr∗2KJ , γI,J |U∩XI,J

= pr∗1ηI ⊗ pr∗2γJ . (3.55)

For I ⊆ A and J ⊆ B, let g
TXI,J
ε (respectively, gTYI , gTZJ ) be the metric on TXI,J (respec-

tively, TYI , TZJ) induced by ωε (respectively, ωY , ωZ), let | · |KI,J ,ε (respectively, | · |KI
, | · |KJ

)
be the norm on KI,J (respectively, KI , KJ) induced by ωε (respectively, ωY , ωZ) in the same
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way as in the paragraph above (3.6). We denote

aI,J(U , γX , ωε) =
1
12

∫
U∩XI,J

c(TX, gTX
ε ) log |γI,J |2/d

KI,J ,ε. (3.56)

Recall that ωε was defined in (3.45). As g
TXI,J
ε is induced by ωε, by Proposition 1.7, as ε→ 0.

c
(
TXI,J , g

TXI,J
ε

)→ c
(
TZJ , gTZJ

)
π∗c(TYI , g

TYI ). (3.57)

Recall that ηI , γJ and γI,J are linked by (3.55). As | · |KI,J ,ε is induced by ωε, as ε→ 0,

log |γI,J |2KI,J ,ε −
(

dim(Y )d +
∑
j∈I

mj

)
log ε→ log |γJ |2KJ

+ log |ηI |2KI
. (3.58)

Let aJ(γZ , ωZ) be as in (3.6) with (X, γ, ω) replaced by (Z, γZ , ωZ). More precisely,

aJ(γZ , ωZ) =
1
12

∫
ZJ

c
(
TZJ , gTZJ

)
log |γZ |2/d

KJ
. (3.59)

By (3.56)–(3.59), as ε→ 0,

aI,J(U , γX , ωε)− χ(ZJ)
12

(
dim(Y ) +

1
d

∑
j∈I

mj

)
log ε

∫
U∩YI

c(TYI , g
TYI )

→ χ(ZJ)
12

∫
U∩YI

c(TYI , g
TYI ) log |ηI |2/d

KI
+ aJ(γZ , ωZ)

∫
U∩YI

c(TYI , g
TYI ). (3.60)

By (3.49) and (3.60), as ε→ 0,∑
I⊆A

∑
J⊆B

wI
dw

J
d aI,J(U , γX , ωε)→

∑
J⊆B

wJ
d aJ(γZ , ωZ)

∑
I⊆A

wI
d

∫
U∩YI

c(TYI , g
TYI ). (3.61)

The left-hand side of (3.61) yields a measure on X,

με : U �→
∑
I⊆A

∑
J⊆B

wI
dw

J
d aI,J(U , γX , ωε), (3.62)

The right-hand side of (3.61) yields a measure on Y ,

ν : U �→
∑
J⊆B

wJ
d aJ(γZ , ωZ)

∑
I⊆A

wI
d

∫
U∩YI

c(TYI , g
TYI ). (3.63)

The convergence in (3.61) is equivalent to the following: as ε→ 0,

π∗με → ν. (3.64)

By (3.49) and (3.62)–(3.64), as ε→ 0,∑
I⊆A

∑
J⊆B

wI
dw

J
d aI,J(γX , ωε) = με(X)→ ν(Y ) = χd(Y, γY )

∑
J⊆B

wJ
d aJ(γZ , ωZ). (3.65)

Step 3. We estimate bI,J,j(ωε).
First we consider the case j ∈ I. We denote I ′ = I\{j}. By (3.9), we have

bI,J,j(ωε) =
1
12

∫
XI,J

c̃
(
TXI,J , TXI′,J |XI,J

, g
TXI′,J
ε |XI,J

)
. (3.66)

By Proposition 1.9, as ε→ 0,

c̃
(
TXI,J , TXI′,J |XI,J

, g
TXI′,J
ε |XI,J

)
→ c

(
TZJ , gTZJ

)
π∗c̃

(
TYI , TYI′ |YI

, gTYI′ |YI

)
. (3.67)
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By (3.66) and (3.67), as ε→ 0,

bI,J,j(ωε)→ χ(ZJ)
12

∫
YI

c̃
(
TYI , TYI′ |YI

, gTYI′ |YI

)
. (3.68)

By (3.49) and (3.68), as ε→ 0,∑
I⊆A

∑
J⊆B

∑
j∈I

wI
dw

J
d

mj + d

d
bI,J,j(ωε)→ 0. (3.69)

Now we consider the case j ∈ J . We denote J ′ = J\{j}. By (3.9), we have

bI,J,j(ωε) =
1
12

∫
XI,J

c̃
(
TXI,J , TXI,J ′ |XI,J

, g
TXI,J′
ε |XI,J

)
. (3.70)

By Proposition 1.9, as ε→ 0,

c̃
(
TXI,J , TXI,J ′ |XI,J

, g
TXI,J′
ε |XI,J

)
→ c̃

(
TZJ , TZJ ′ |ZJ

, gTZJ′ |ZJ

)
π∗c(TYI , g

TYI ). (3.71)

Let bJ,j(ωZ) be as in (3.9) with (X, γ, ω) replaced by (Z, γZ , ωZ). More precisely,

bJ,j(ωZ) =
1
12

∫
ZJ

c̃
(
TZJ , TZJ ′ |ZJ

, gTZJ′ |ZJ

)
. (3.72)

By (3.70)–(3.72), as ε→ 0,
bI,J,j(ωε)→ χ(YI)bJ,j(ωZ). (3.73)

By (3.49) and (3.73), as ε→ 0,∑
I⊆A

∑
J⊆B

∑
j∈J

wI
dw

J
d

mj + d

d
bI,J,j(ωε)→ χd(Y, γY )

∑
J⊆B

∑
j∈J

wJ
d

mj + d

d
bJ,j(ωZ). (3.74)

Step 4. We conclude.
Taking ε→ 0 on the right-hand side of (3.46) and applying (3.50), (3.65), (3.69) and (3.74),

we obtain

τd(X, γX) = χd(Y, γY )
∑
J⊆B

wJ
d

(
τBCOV(ZJ , ωZ)− aJ(γZ , ωZ)−

∑
j∈J

mj + d

d
bJ,j(ωZ)

)
. (3.75)

On the other hand, by Definition 3.2 and (3.10), we have

τ(Z, γZ) =
∑
J⊆B

wJ
d

(
τBCOV(ZJ , ωZ)− aJ(γZ , ωZ)−

∑
j∈J

mj + d

d
bJ,j(ωZ)

)
. (3.76)

From (3.75) and (3.76), we obtain (3.42). This completes the proof. �

3.4 Proof of Theorem 0.5
Now we are ready to prove Theorem 0.5.

Proof of Theorem 0.5. The proof consists of several steps.

Step 1. Following [BFM75, § 1.5], we introduce a deformation to the normal cone.
Let X → X × C be the blow-up along Y × {0}. Let Π : X → C be the composition of the

canonical projections X → X × C and X × C→ C. For z ∈ C∗, we denote

Xz = Π−1(z). (3.77)

Let � be the trivial line bundle over Y . Recall that NY is the normal bundle of Y ↪→ X.
Recall that X ′ is the blow-up of X along Y . The variety Π−1(0) consists of two irreducible
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Figure 1. Deformation to the normal cone.

components: Π−1(0) = Σ1 ∪ Σ2 with Σ1 � P(NY ⊕ �) and Σ2 � X ′. We denote

X0 = Σ1. (3.78)

For j = 1, . . . , l, let Dj ⊆X be the closure of Dj × C∗ ⊆X . For z ∈ C, we denote

Dj,z = Dj ∩Xz. (3.79)

Let Y ⊆X be the closure of Y × C∗ ⊆X . For z ∈ C, we denote

Yz = Y ∩Xz. (3.80)

See Figure 1.
Let gTX be a Hermitian metric on TX. Let d(·, ·) : X ×X → R be the geodesic distance

associated with gTX . For x ∈ X, we denote

dY (x) = inf
y∈Y

d(x, y). (3.81)

For z ∈ C∗, set
Uz = {x ∈ X : dY (x) < |z|} × {z} ⊆ Xz. (3.82)

We identify the fiber of � with C. For v ∈ NY and s ∈ C such that (v, s) �= (0, 0), we denote by
[v : s] the image of (v, s) in P(NY ⊕ �). Let | · | be the norm on NY induced by gTX . Set

U0 = {[v : s] ∈ P(NY ⊕ �) : |v| < |s|} ⊆ X0. (3.83)

For ε > 0 small enough, we have smooth families

(Uz)|z|<ε, (Yz)|z|<ε, (Uz ∩Dj,z)|z|<ε with j = 1, . . . , l. (3.84)

We remark that Yz ⊆ Uz for z ∈ C.
Let F : X ′ →X be the blow-up along Y . For z ∈ C, we denote

X ′
z = F−1(Xz). (3.85)

Set
fz = F |X′

z
: X ′

z → Xz, (3.86)

which is the blow-up along Yz. For z ∈ C, set

D′
0,z = f−1

z (Yz) ⊆ X ′
z. (3.87)

For z ∈ C and j = 1, . . . , l, let D′
j,z ⊆ X ′

z be the strict transformation of Dj,z ⊆ Xz.
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For z ∈ C, set

U ′
z = f−1

z (Uz). (3.88)

For ε > 0 small enough, we have smooth families

(U ′
z)|z|<ε, (U ′

z ∩D′
j,z)|z|<ε with j = 0, . . . , l. (3.89)

We remark that D′
0,z ⊆ U ′

z for z ∈ C.

Step 2. We introduce a family of meromorphic pluricanonical sections.
Denote

m = m1 + · · ·+ mq, (3.90)

which is the vanishing order of γ on Y . Recall that r is the codimension of Y ↪→ X. Recall that
γ ∈M (X, Kd

X). For z �= 0, we identify Xz with X in the obvious way. For z �= 0, set

γz = z−m−rdγ ∈M (Xz, K
d
Xz

). (3.91)

There is a unique γ0 ∈M (X0, K
d
X0

) such that for ε > 0 small enough,

(γz|Uz)|z|<ε (3.92)

is a smooth family. Now we briefly explain the existence of γ0. We take a holomorphic local chart

ϕ : Cn ⊇ V → X (3.93)

such that:

• 0 ∈ V and ϕ(0) ∈ Y ;
• ϕ−1(Y ) = {(z1, . . . , zn) ∈ V : z1 = · · · = zr = 0};
• ϕ∗γ = θ(z1, . . . , zn)zm1

1 · · · zmq
q (dz1 ∧ · · · ∧ dzn)d, where θ is a holomorphic function on V such

that θ(0, . . . , 0, zr+1, . . . , zn) �= 0 for generic zr+1, . . . , zn.

For z �= 0, let ϕz : V → Xz be the composition of ϕ : V → X and the identification X = Xz. We
take a holomorphic local chart

φ : Cn × {z ∈ C : |z| < ε} ⊇W →X (3.94)

such that for 0 < |z| < ε:

• φ(z1, . . . , zn, z) ∈ ϕz(V ) ⊆ Xz;
• ϕ−1

z (φ(z1, . . . , zn, z)) = (zz1, . . . , zzr, zr+1, . . . , zn).

Then a direct calculation yields

z−m−rdφ∗γ = θ(zz1, . . . , zzr, zr+1, . . . , zn)zm1
1 · · · zmq

q (dz1 ∧ · · · ∧ dzn)d

→ θ(0, . . . , 0, zr+1, . . . , zn)zm1
1 · · · zmq

q (dz1 ∧ · · · ∧ dzn)d (3.95)

as z → 0. Moreover, the calculation above shows that the hypothesis in § 3.3 holds with (X, γX)
replaced by (X0, γ0). In particular, (X0, γ0) is a d-Calabi–Yau pair.

Step 3. We introduce a family of Kähler forms.
Let U ⊆X be such that U ∩Xz = Uz for any z ∈ C. Then U is an open subset of X . Set

U ′ = F−1(U ) ⊆X ′. We have U ′ ∩X ′
z = U ′

z for any z ∈ C.
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Let ω be a Kähler form on X . Let ω′ be a Kähler form on X ′ such that

ω′|X ′\U ′ = F ∗(ω|X \U ). (3.96)

For z ∈ C, set

ωz = ω|Xz , ω′
z = ω′|X′

z
. (3.97)

By (3.86), (3.96) and (3.97), we have

ω′
z|X′

z\U ′
z

= f∗
z (ωz|Xz\Uz

) for z ∈ C. (3.98)

For ε > 0 small enough, we have smooth families

(ωz|Uz)|z|<ε, (ω′
z|U ′

z
)|z|<ε. (3.99)

Step 4. We show that the function z �→ τd(X ′
z, f

∗
z γz)− τd(Xz, γz) is continuous at z = 0.

Denote

m0 = m1 + · · ·+ mq + (r − 1)d. (3.100)

For z ∈ C, by (3.79), (3.86), (3.87) and (3.92), we have

div(γz) =
l∑

j=1

mjDj,z, div(f∗
z γz) =

l∑
j=0

mjD
′
j,z. (3.101)

Here Dj,0 and D′
j,0 may be empty for certain j. Let (DJ,z)J⊆{1,...,l} be as in (0.9) with X replaced

by Xz and Dj replaced by Dj,z. Let (D′
J,z)J⊆{0,...,l} be as in (0.9) with X replaced by X ′

z and
Dj replaced by D′

j,z. By Definition 3.2 and (3.10), we have

τd(X ′
z, f

∗
z γz)− τd(Xz, γz)

=
∑

0∈J⊆{0,...,l}
wJ

d

(
τBCOV(D′

J,z, ω
′
z)− aJ(f∗

z γz, ω
′
z)−

∑
j∈J

mj + d

d
bJ,j(ω′

z)
)

−
∑

J⊆{1,...,l}
wJ

d

(
aJ(f∗

z γz, ω
′
z)− aJ(γz, ωz)

)

−
∑

J⊆{1,...,l}

∑
j∈J

wJ
d

mj + d

d

(
bJ,j(ω′

z)− bJ,j(ωz)
)

+
∑

J⊆{1,...,l}
wJ

d

(
τBCOV(D′

J,z, ω
′
z)− τBCOV(DJ,z, ωz)

)
. (3.102)

For 0 ∈ J ⊆ {0, . . . , l}, we have D′
J,z ⊆ U ′

z. Thus,

(D′
J,z)z∈C (3.103)

is a smooth family. Hence, the first summation in (3.102) is continuous at z = 0.
For J ⊆ {1, . . . , l}, we denote

DJ,z = Din
J,z �Dex

J,z (3.104)

such that each irreducible component of Din
J,z (respectively, Dex

J,z) lies in (respectively, does not
lie in) Yz. As Din

J,z ⊆ Yz ⊆ Uz, the family

(Din
J,z)z∈C (3.105)
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is smooth. On the other hand, we have

Dex
J,z = fz(D′

J,z). (3.106)

Moreover, the map fz|D′
J,z

: D′
J,z → Dex

J,z is the blow-up along Dex
J,z ∩ Yz.

Recall that

KJ , γJ , gTDJ
ω , | · |KJ ,ω (3.107)

were constructed in §§ 3.1 and 3.2 for a d-Calabi–Yau pair (X, γ) together with a Kähler form ω
on X. Let

KJ,z, γJ,z, g
TDJ,z
ωz , | · |KJ,z ,ωz (3.108)

be as in (3.107) with (X, γ) replaced by (Xz, γz) and ω replaced by ωz. Let

K ′
J,z, γ′

J,z, g
TD′

J,z

ω′
z

, | · |K′
J,z ,ω′

z
(3.109)

be as in (3.107) with (X, γ) replaced by (X ′
z, f

∗
z γz) and ω replaced by ω′

z. By (3.6), (3.98), (3.104)
and (3.106), for J ⊆ {1, . . . , l}, we have

aJ(f∗
z γz, ω

′
z)− aJ(γz, ωz) =

1
12

∫
D′

J,z∩U ′
z

cn−|J |
(
TD′

J,z, g
TD′

J,z

ω′
z

)
log |γ′

J,z|2/d
K′

J,z ,ω′
z

− 1
12

∫
Dex

J,z∩Uz

cn−|J |
(
TDJ,z, g

TDJ,z
ωz

)
log |γJ,z|2/d

KJ,z ,ωz

− 1
12

∫
Din

J,z

cn−|J |
(
TDJ,z, g

TDJ,z
ωz

)
log |γJ,z|2/d

KJ,z ,ωz
. (3.110)

By (3.89), each integration in (3.110) depends continuously on z. Thus, the second summation
in (3.102) is continuous at z = 0. The same argument shows that the third summation in (3.102)
is continuous at z = 0.

By (3.104), we have the obvious identity

τBCOV(D′
J,z, ω

′
z)− τBCOV(DJ,z, ωz)

= τBCOV(D′
J,z, ω

′
z)− τBCOV(Dex

J,z, ωz)− τBCOV(Din
J,z, ωz). (3.111)

As the families in (3.99) are smooth, by Theorem 2.7 and (3.98), the function z �→
τBCOV(D′

J,z, ω
′
z)− τBCOV(Dex

J,z, ωz) is continuous at z = 0. As the families in (3.99) and (3.105)
are smooth, the function z �→ τBCOV(Din

J,z, ωz) is continuous at z = 0. Hence, the fourth
summation in (3.102) is continuous at z = 0.

Step 5. We conclude.
By Step 4, we have

lim
z→0

(
τ(X ′

z, f
∗
z γz)− τ(Xz, γz)

)
= τ(X ′

0, f
∗
0 γ0)− τ(X0, γ0). (3.112)

On the other hand, by Proposition 3.4 and (3.91), for z �= 0, we have

τd(Xz, γz) = τd(X, γ)− χd(X, γ)
12

log |z|−2(m+rd)/d,

τd(X ′
z, f

∗
z γz) = τ(X ′, f∗γ)− χd(X ′, f∗γ)

12
log |z|−2(m+rd)/d.

(3.113)
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Note that (m + rd)/d > 0, by (3.112) and (3.113), we have

χd(X ′, f∗γ)− χd(X, γ) = 0,

τd(X ′, f∗γ)− τd(X, γ) = τd(X ′
0, f

∗
0 γ0)− τd(X0, γ0).

(3.114)

Note that X0 is a CPr-bundle over Y0 � Y , by Theorem 3.6, we have

τd(X0, γ0) = χd(Y, DY )τd

(
CPr, γr,m1,...,mq

)
. (3.115)

Recall that E = f−1(Y ). Note that X ′
0 is a CP1-bundle over D′

0,0 � E, by Theorem 3.6, we have

τd(X ′
0, f

∗
0 γ0) = χd(E, DE)τd

(
CP1, γ1,m0

)
. (3.116)

From (3.114)–(3.116), we obtain (0.22). This completes the proof. �

Acknowledgements

The author is grateful to Professor K.-I. Yoshikawa who drew the author’s attention to the BCOV
invariant and gave many helpful suggestions. The author is grateful to Professor K. Matsuki
who kindly explained their result [AKMW02] to the author. The author is grateful to Professors
X. Dai and V. Maillot for their interest in this work. The author is grateful to Professor Y. Cao
for many helpful discussions. The author is grateful to the anonymous referee for very careful
reading and many precious suggestions.

This work was supported by JSPS KAKENHI Grant JP17F17804, also by KIAS individual
Grant MG077401 at Korea Institute for Advanced Study.

References

AKMW02 D. Abramovich, K. Karu, K. Matsuki and J. W�lodarczyk, Torification and factorization of
birational maps, J. Amer. Math. Soc. 15 (2002), 531–572.

BFM75 P. Baum, W. Fulton and R. MacPherson, Riemann–Roch for singular varieties, Publ. Math.
Inst. Hautes Études Sci. 45 (1975), 101–145.

BCOV93 M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological
field theories, Nuclear Phys. B 405 (1993), 279–304.

BCOV94 M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira–Spencer theory of gravity and
exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), 311–427.

BB94 A. Berthomieu and J.-M. Bismut, Quillen metrics and higher analytic torsion forms, J. Reine
Angew. Math. 457 (1994), 85–184.

Bis97 J.-M. Bismut, Quillen metrics and singular fibres in arbitrary relative dimension, J. Algebraic
Geom. 6 (1997), 19–149.

Bis04 J.-M. Bismut, Holomorphic and de Rham torsion, Compos. Math. 140 (2004), 1302–1356.
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Modern Birkhäuser Classics (Birkhäuser/Springer, Basel, 2011); corrected reprint of the 1988
edition, with an appendix by S. I. Gelfand.

Qui85 D. Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funct. Anal.
Appl. 19 (1985), 31–34.

See67 R. T. Seeley, Height pairing between algebraic cycles, in Singular integrals, Proceedings
of Symposia in Pure Mathematics, Chicago, IL, 1966 (American Mathematical Society,
Providence, RI, 1967), 288–307.
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