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ROTUNDITY IN KÔTHE SPACES OF 
VECTOR-VALUED FUNCTIONS 

A. KAMINSKA AND B. TURETT 

In this paper, Kothe spaces of vector-valued functions are considered. These 
spaces, which are generalizations of both the Lebesgue-Bochner and Orlicz-
Bochner spaces, have been studied by several people (e.g., see [1], [8]). Perhaps 
the earliest paper concerning the rotundity of such Kôthe space is due to I. 
Halperin [8]. In his paper, Halperin proved that the function spaces E(X) is uni
formly rotund exactly when both the Kothe space E and the Banach space X are 
uniformly rotund; this generalized the analogous result, due to M. M. Day [4], 
concerning Lebesgue-Bochner spaces. In [20], M. Smith and B. Turett showed 
that many properties akin to uniform rotundity lift from X to the Lebesgue-
Bochner space LP(X) when 1 < p < oo. A survey of rotundity notions in 
Lebesgue-Bochner function and sequence spaces can be found in [19]. Fur
ther investigations showed that many of the theorems known in the context of 
Lebesgue-Bochner spaces still held true for Kothe spaces E(X) where E is an 
Orlicz or a Musielak-Orlicz space ([10], [12]). Although the methods used in 
[10], [12], and [20] are different, it is possible to obtain several results analo
gous to those from [10] and [20] in the more general setting of Kothe spaces of 
vector-valued functions. 

The question of when Kothe spaces of vector-valued functions posses certain 
rotundity properties is investigated here. In particular, Kothe spaces of vector-
valued functions which are locally uniformly rotund, uniformly rotund in every 
direction, weakly uniformly rotund, or weakly uniformly rotund in the sense 
of Cudia are considered. With the exception of the last property, these prop
erties are well-known. Weak uniform rotundity in the sense of Cudia is not a 
well-known property under this name, but it is well-known in several different 
senses; Theorem 9 below states several well-known geometric or approximation-
theoretic conditions which are equivalent to Cudia's notion of weak uniformly 
rotundity. 

Let us agree on some terminology. Let (7, Z7 fi) denote a measure space with 
a a-finite and complete measure [i and M (T) = !M the space of X-measurable 
real-valued functions with functions equal //-almost everywhere identified. We 
shall denote the support of a function w, that is, {t £ T : u(t) ^ 0}, by supp u. 
If H is a subset of M, supp J( will denote 

Ujsupp M : M G ^ } . 

A Kôthe space E is a Banach subspace of M such that (i) if \u\ ^ |v| /i — a. e. 
with u G M and v G Ê , then u E E and ||w|| ^ ||v||, and (ii) supp E — T. Kothe 

Received July 26, 1988. 

659 

https://doi.org/10.4153/CJM-1989-030-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-030-2


660 A. KAMINSKA AND B. TURETT 

spaces are Banach lattices and detailed studies of Banach lattices and Kothe 
spaces may be found in [2], [14], [15], [17], and [21]. 

We recall a few known definitions and facts which will be useful in the sequel. 
The first result follows quickly from Theorem 1.2.1 in [2]. 

THEOREM 1. Given a Kôthe space E, there exists an increasing sequence (Tn) 
of subsets of T with 

p,(Tn) < oo and fJ>(T\ U Tn) = 0 and 

j ooi c |71 c j 1 I 

^ I T„ —* ^L I Tn —* L I T„ 

for all n EN. (The symbol <̂-> denotes a continuous embedding.) 

A Banach lattice E is said to have an order continuous norm if, for every 
downward directed set {xa} with inf {xa} = 0, lim ||jca|| = 0 . Since the norm of 
a Kothe function space is a-order complete, the norm of a Kothe function space 
is order continuous whenever every downward directed sequence with infimum 
0 actually converges to 0 in norm [15, pp. 7, 29]. A Banach lattice E is a KB 
- space (Kantorovich-Banach) if each monotone sequence in the unit ball of E 
converges. In every KB -space, the norm is order continuous. 

We state a few results concerning Banach lattices with order continuous norm 
and KB -spaces. 

THEOREM 2. ([2], [15], [17], [18]). Let E be a Banach lattice. Then: 
(i) E has an order continuous norm if and only if E contains no subspace 

isomorphic to l°°. 
(ii) E is reflexive if and only if both E and E* are KB-spaces. 

Now let us define the type of spaces to be considered in this paper. For a real 
Banach space X, denote by fW(!T,X), or just M (X), the family of all strongly 
measurable funcitons f : T —> X identifying functions which are /x-almost 
everywhere equal. For the Kôthe space £, let 

E(X) = {feM(X): «(•) = ||/(-)|U e £ } . 

With the norm 

ll/ll = llll/(-)x|| HE, 

E(X) is a Banach space. 
Denote by E^(X*), the set of weak* measurable functions g : T —> X* such 

that ||g(-)|U* £ E* where two functions gi and g2 in E„(X*) are identified if 

<*,*!(•)> = <*,*20> 

/x-almost everywhere for all x G X. The following theorem characterizes the 
dual of some £(X)-spaces. 
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THEOREM 3 [1]. Let E be a Kôthe space with an order continuous norm. The 
map 

U : £*(X*) -> E(X)* 

defined by 

(Ug)(f) = J(f,g)dp forfeE{X) 

is an isometry between the spaces E^(X*) and E(X)*. 

Finally, two more definitions. A Kothe space E has the Fatou property if 
whenever 0 ^ un ] u and u G E, then ||K„|| j \\u\\. A Banach space X is locally 
uniformly rotund if, for each e > 0 and each x € X with ||jt|| = 1, there exists 
6(x, e) > 0 such that if y G X with \\y\\ = 1 and ||JC -y\\^e, then 

\\(x+y)/2\\£ 1-«(*,€). 

LEMMA 4. A locally uniformly rotund Kôthe space with the Fatou property 
has an order continuous norm. 

Proof. In order to obtain a contradiction, let (fn) be a sequence in the Kothe 
space E which decreases almost everywhere to 0 but with 

inf H/rtll > 6 for some £ > 0. 

Setting 

gn = (f-fn)/\\fl\\ 

produces a sequence in the unit ball of E which increases almost everywhere to 
/ i / | | / i | | . Thus, by the Fatou property, \\gn\\ increases to 1. Since gn ^f{/\\fx\\ 
almost everywhere, 

i*\\(g„ +/,/!!/,||)/2|| 2MUJ->i 

and the local uniform rotundity of E implies that (gn) converges to / i / | | / i | | in 
norm. But 

ll*«-/i/ll/illll = ll/-ll/ll/i|l>*/ll/ill>0, 

a contradiciton. Thus inf ||/w|| = 0 and the proof is complete. 

We are now in position to characterize the locally uniformly rotund E(X)-
space in the setting that E has the Fatou property. 
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THEOREM 5. IfE has the Fatou property then the space E(X) is locally uni
formly rotund if and only if both E and X are locally uniformly rotund. 

Proof Suppose the function space E and the range space X are both locally 
uniformly rotund. Let e > 0 and / in E(X) with | | / | | = 1 be given. For each 
n G N, set 

An = {t G supp/ : 8x(f(t)/\\f(t%e/S) ^ l/n}. 

By the upper semicontinuity of #x(-, e/8) (see e.g. [13]), A„ is a measurable set. 
The local uniform rotundity of X implies that the sequence 

(||/(')Xrvd) 

decreases a.e. to 0. Lemma 4 then yields a natural number «o = 2 such that 

H/XrvOI^/64. 

Let g be a norm-one function in E(X) satisfying | | / — g\\ = e. Define 

B = {t e T : | | / (0 - g(t)\\ ^ (c/4)max{||/(0||, ||g(0||}}. 

Since it is clear that 

ll(/-s)MI^A 
it follows that 

\\(f-g)XB\\Ze/2. 

Let 

tj = (l/2)min{e/8,l/iio}. 

Partition the set B into four sets: 

B 1 = { f e f l : | | s ( 0 | | < ( l - ' J ) | | / ( 0 | | } 

B2 = {teB:(l-r,)\\f(t)\\û\\g(t)\\û\\nt)\\} 

B3 = {teB:(l- v)\\g(t)\\ S ll/WH ^ \\g(t)\\} 
B4 = {t€B:\\f(t)\\<(l-V)\\g(t)\\}. 

Then 

\\(f-8)XBi\\ ^ e/8 for some i = 1 , 2 , 3 , 4 . 
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For t in the sets B\ or #4, the norms of f(t) and g(t) differ by a "large" 
amount; here things are easy. For example, assume 

||(/-*)X* Il èe/8, 

then, by the definition of B\, ||/x#ill = e/16 a nd mus> 

II (||/(-)ll-IkolDIU^Wie-

The local uniform rotundity of E then yields that 

| | ( / + g)/2|| ^ ||(||/(-)|| + \\igi-)\\)/2\\E £l-8E(\\f(-)\\,m/l6). 

In the setting 

\\(f-g)\\XB4\\*t/*, 

an analgous result occurs. 
For t in the sets B2 and #3, the norms of f(t) and g(t) differ only by a "small" 

amount. Assume 

| | ( / - g ) | | X f l 2 | | £ e / 8 . 

Then, for ? e B2r)A„0, 

\ fit) + git) 

-H*(poV 
^ (1 - l/«o)||/(0|| 

£ ( ( l - l / # i o ) / ( l - . j ) ) 

ll/(0|| 

II/WII +ikwii 

( l - « i ) 
ll/(0|| + ||g(0 

where 

oc\ 
no 

( l - f ? ) > 0 . 

If | | ( / - *)XB3II ^ 6/8, let f G £3 HAno. Then 

/(0 git) 1 > 1 fit) gio 1 I /(0 
11/(011 lk(0||| 

> . 

llU(0|| IU(0||| 
g llg(Qll - ll/c M 

1 IU(0|| 

K0II-

/ (0 
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If follows from this that 

fit) + git) 
^ 1-8 

ll/(0|| \\g(t)\\ 

for t in Z?3 P\Ano. Thus, for t in £3 nAno 

( fit) £ \ 
x\ ll/wll '87 

fit) + git) 

11/(011 11/(0 

-Ki_^^o?8-)H 
«(0 s(0 

11/(011 ||g(0ll 

£ | (1 -1 / /K>) + 

lls(0 

l|g(0ll -11/(011 
2||/(0|| 

1 

2||/(0|| ' 2 ^ 
1 / 1 1 
2 V1 - V «o 

1 — C*2 

where the last equality defines a2 > 0 since 

z 1 < «o+l 
«o 2«o + 1 

Therefore, if t <E B3 r\A„0, 

||(/(0 + * (0 ) /2 | | ^ ( l - a 2 ) | | / (0 | | 

11/(011+ ||*(0|| = £ ( l - a 2 ) 

Thus if either 

| | ( / - « ) X * 2 | | S e / 8 or \\(f-g)xB3\\^e/t, 

with a = min{ai, a2, \} and C equaling the corresponding B2C\A„0 or i^PlA,, 
we have 

/ ( 0 + g(0 
^ ( l - « ) 

ll/(0|| + ||g(0 

for t e C. 
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We claim that C is a "large" set in the sense that | | /xc | | = e/64. Assuming 
this momentarily, how does the proof finish? Note 

/ + * < ii/(-)ii + ik(oii 
X r \ c + 0 - « ) 

II/OH +HsOll 
Xc 

^ll<ll/(0||-a||/(0||xc)|| + £ 
||/(0||+(11/(011-2cr||/(0Hxc) <I 1 

+ 2 

S i ( l - M | | / ( 0 | | , a e / 3 2 ) ) + 

= 1 - ^ £ ( | | / ( 0 | | , ae/32). 

Thus no matter which of the inequalities, | | ( / — g)Xfi,-|| = e / 8 , i = 1,2,3,4, 
holds, 

/ + * ^ 1-8 

where 

8 = min { M l / ( 0 | | , i/e/16), ^ ( | | / ( 0 | | , ae/32)} . 

Thus, once the claim is established, the proof of the theorem will be complete. 
We now establish the claim. In the case | | ( / — £)XB2II - e/8> 

C=B2nAno. 

Since \\g(t)\\ < ||/(r)|| for t in B2, 

H/Xftllèc/16. 

Then 

\\fXB2r*J Z WfXB2\\ ~ \\/XB2\AJ 2l 6 /16-e /64 £ e/64. 

In the case | | ( / - g ) x B 3 1 1 ^ / 8 , 

C=B3riAH0. 

Here 

2 
e/S^\\fXB,\\ + \\gXB,\ < 

1 - 7 , ll/Xftll Ml/X*,l 

by the definitions of #3 and 77. Thus 

II/XS3II 2^/32. 
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Then 

ll/x*™JI ^ ll/x«,ll - II/XBAAJI ^e/64-

This establishes the claim and the theorem. 

Although the above proof is similar in nature to the proof of the special 
case E — LP, 1 < p < oo, given in [20], there is a difference. In [20], the 
assumption that p,T is finite is actually used in the proof; in the Lebesgue-
Bochner case, this is not really a restriction since, for any a-finite measure /i, 
there exists a probability measure v with Lp(/x,X) linearly isometric to Z/(i/,X). 
Since the properties considered in [20] are sequentially determined, knowing 
the theorems for a-finite measures quickly yields the theorems in general. In the 
more general case considered above, it is unclear if knowing the theorem for all 
finite measures yields the theorem for a general measure. Thus the above proof 
avoids any dependence on the measure being finite. It should also be mentioned 
that in the case E — Lp, 1 < p < oo, a shorter and easier proof has been 
provided by M. Smith [19]. It is not apparent that his proof can be modified in 
the more general setting considered above. 

For the special case E = L$> where Lo is a Musielak- Orlicz space, the 
analogous result concerning local uniform rotundity has been given in [10] but 
under the assumption of separability of X. By virtue of the above theorem, the 
assumption of separability of X may be avoided in [10]. 

A different sort of generalization of uniform rotundity is uniform rotundity in 
every direction, a property that characterizes those Banach spaces in which every 
bounded set has at most one Cebysev center. A Banach space X is uniformly 
rotund in every direction if, for each e > 0 and nonzero z £ X, there exists 
8x(—> z, e) > 0 such that if x and _y are norm-one elements in X with x—y = az 
for some a and \\x —y\\ = e, then 

| | (x+y) /2 | | ^ l - f c ( — z , e ) . 

There is no guarantee that a Kôthe space which is uniformly rotund in every 
direction has an order continuous norm. As an example, consider the space 
L°°[0,1] renormed with the norm 

lll/IH = V /^l|2oo + ll/l|22-

It has been shown by Zizler (see e.g. [4], p. 1055) that (L°°[0,1],||| • |||) is 
uniformly rotund in every direction and that ||| • ||| is equivalent to || * ||oo- Since 

|||X[o,i/«]||| ^ 1 for all n in N, 

HI • HI is not order continuous. However, if a Kothe space is uniformly rotund, 
then it does have an order continuous norm. This follows from the general fact 
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that reflexive Banach lattices have order continuous norms (see e.g. [15, p. 27]). 
Using this, we have a sufficient condition for E(X) to be uniformly rotund in 
every direction. 

THEOREM 6. If a Kôthe space E is uniformly rotund and if X is uniformly 
rotund in every direction, then E(X) is uniformly rotund in every direction. 

Proof. Let / ^ 0 belong to E(X) and let g G E(X) be a norm-one element 
such that | | / + g || ^ 1. By Theorem 1 in [5], it suffices to show that 

| | s + i / | | S l - 7 ( / ) where 7 ( / ) > 0 . 

Setting 

A = {t e T : | | / (0| | è (| |/ | | /4)max{||/(0 + g(t)l \\g(t)\\} > 0}, 

we have 

\\/XA\\ > II/II/2. 

Let 

An = {te supp/ : fc (— / ( 0 , H/ll/4) ^ l/n}. 

By [13], An is a measurable set. Since E has an order continuous norm, there 
exists no G N such that 

WfXT\A„0 II ^11/11/4. 

So, for B — A Pi Art0, we have 

ll/Xfill 2= II/II/4. 

Let 0 < 9 < I/no and define 

*i = {te B : | | | / (0 + £(0|| - |U(0|| |^ 0max{||/(O + *(0||, ||*(0||}}. 

There are two possibilities: either 

||/Xfi l || ^ | | / | | / 8 or | | /Xf i\e , | | ^ | | / | | / 8 . 

If H/xe, || ^ II/II/8, it is easy to see that 

IKII/O + g(0lUHIs(0lU)IUMI/ll/i6. 

Since E is uniformly rotund, 

||g + ! / | | S l - M 0 | | / | | / l 6 ) . 
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If WfXB\Bl II ^H/ l l / 8 , it follows that 

(1 -0)max{| | / ( / ) + g(O||,||g(O||} ^ min{||/(0 + g(0||, | |g(0||} 

if t € B\B\. Since X is uniformly rotund in every direction and, for t € B, 

(f(t) + g(0)-g(t) 

|max{||/(0 + g(0||, | |g(0||} 

it follows that whenever t 6 B\B\, 

fit) 
g(t) + 

< l-fr(->/(0,||/ll/4) 
1-6» 

l - l / « o | | / (0+ g(0|| + ||g(0|| 
1-61 2 

11/(0+g(o|l + lU(oll 

min{||/(0 + g(r)||,||g(0||} 

= ( l - a ) 
Z 

where a > 0 is defined to be 1 - (1 - l/n0)/(\ - 0). Set 

K=l l s (0+i / ( - ) | | x ^ d v = i(| |/(-) + g(-)|U + k(0 |U) . 

Then w and v are in the unit ball of the Kôthe space E and 

v(t) - u(t) ^ av(t) for t G B\BX. 

Thus, 

| | v - « | | S cr||/| |/16. 

Since £ is uniformly rotund, 

II w + v 
^ 1 - ^ H / | | / 1 6 ) . 

Combining the two cases above completes the proof of the theorem. 

As a corollary to Theorem 6, we obtain the analgous result in the context 
of Lebesgue-Bochner function spaces given in [20]. Theorem 6 is not however 
sharp enough to obtain the analogous results for Orlicz-Bochner spaces. In fact, 
it is shown in [10] that a Musielak-Orlicz space of Bochner type L<&(X) is 
uniformly rotund in every direction exactly when both L<D and X are. Moreover, 
for Musielak-Orlicz spaces, the notions of uniform rotundity in every direction 
and rotundity coincide and are weaker than uniform rotundity [9]. Also, if E is 
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(L°°, HI • |||) defined prior to the statement of Theorem 6, then E(X) is uniformly 
rotund in every direction when X is. Since this particular E is not uniformly 
rotund (it is not even reflexive), Theorem 6 is clearly not the best possible. 

One geometric property of Banach spaces which lies in strength between 
uniform rotundity and uniform rotundity in every direction is weak uniform 
rotundity. A Banach space X is weakly uniformly rotund if, for each e > 0 and 
x* £ X* with ||**|| = 1, there exists ë(x*, e) > 0 such that if x and y are in X 
with ||JC|| = ||y|| = 1 and JC*(X -y) ^ e, then 

\\\(x+y)\\^\-b{x\e). 

Weakly uniformly rotund Banach spaces need not be reflexive. In fact, co, or 
more generally, any Banach space with a separable dual can be renormed to be 
weakly uniformly rotund [22]. The situation is different for weakly uniformly 
rotund KB -spaces. 

LEMMA 7. Weakly uniformly rotund KB-spaces are reflexive. 

Proof. Let E be a weakly uniformly rotund KB -space. If E is not reflexive, 
then, from our introductory remarks, E* is not a KB -space and hence E con
tains an isomorphic copy of ll [15]. But ll can not be renormed to be weakly 
uniformly rotund (see e.g. [11] or [23]). This contradiction completes the proof 
of the lemma. 

The next theorem provides a characterization of some weakly uniformly ro
tund E(X) spaces. 

THEOREM 8. Let the Kôthe space E be a KB-space. The space E(X) is weakly 
uniformly rotund if and only if both E and X are weakly uniformly rotund. 

Proof Assume that E and X are weakly uniformly rotund. Let / and g be 
norm-one elements of E(X) and let h be a norm-one element in E(X)* such that 

J{f-g,h)dii^e. 

(Note by Lemma 4 that, since E is reflexive and hence has an order continuous 
norm, E(X)* = £*(X*). Also note that the measurability off and g allows us to 
assume, without loss of generality, that X is separable.) Let (Tn) be an increasing 
sequence of measurable sets with fi(Tn) < oo and {i(T\UTn) = 0 such that E\T„ 
injects into L1 \T„. By the order continuity of the norm of E*, 

Pxnr.lllO; 

so there exists no G N such that 

J{f-g,hXTJdnZe/2. 

https://doi.org/10.4153/CJM-1989-030-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-030-2


670 A. KAMINSKA AND B. TURETT 

Let K > 0 satisfy 

\\UXTJI ^ K\\UXTJ 

and choose 9 > 0 such that 

e0=\e- 26K > 0. 

Setting 

An = {t € supp h : 6x(h(t),e) ^ 1/n}, 

we have that A„ is measurable, by the separability of X, and 

HAXr^rxTvJI i °-

Thus, for some mo £ N and with T0 = Am C\ T„0, it follows that 

(*) J{f-g,hXTo)dlièt/4. 

Defining 

A = {t e T0 : (/(r) - g(t),h(t)) ^ 9m2x{\\f(t)l \\g(t)\\} > 0, 

we have 

/ {f-g,h)diL^0\f \\f(-W+ [ \\g(-)\\dA 
JTo\A \JTnQ JT„0 J 

è 28K. 

This combines with (*) to yield 

J (f-g,h)dti^e0. 

Fixing 0i in (0,1/rao) and setting 

B = {t E A : | | | / (0 | | - ||*(0|| 1^ Ai max{||/(r)||, ||g(f)||}}, 

either 

[ (f-g,h)d»^e0/2 or [ (f - glh}d^i è e0/2. 
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If JB(f — g1h)dfj, ^ eo/2 occurs, then 

\e0Z / ,2max{| | /(-) | | , |k(-) | |}| |M0||^ 
JB 

^ / In/(-)ii-u-)\\ i \ m w . 
Thus 

/ I ll/(0|| - ||*(-)|| I \\h{t)\\dii > ^e0/4. 
IT 

Letting 

a(-) = sign(||/(.)|| - \\g(-)\\) 

yields that 

R)| | /(-) | |-^(-) |k(-) | | , | |A(-)| |>èflieo/4. 

The weak uniform rotundity of £ then implies that 

| | i ( / + g)||£(x)^|||(||/(-)||x + IU(-)IU)IU 

= \\-2(<r(-)\\f(-)h+°(-)\\g(-)h)h 

gl-« £ (P(-) | | , f l l£o/4) . 

Now consider the case 

/ (f-g,h)dn* eo/2. 
JA\B A\B 

If r G A\fi, then 

(1 - 0,)max{||/(O||, \\g(t)\\} è min{||/(/)||, ||g(0||}. 

Thus the weak uniform rotundity of X implies, for t G A\B, that 

(**) \\i(f(t) + g(t))\\ ^ (1 -Sx(h(t),9))max{\\f(t)\\,\\g(t)\\} 

' ~ ' ^ min{||/(r)||, ||g(/)||} 
< 1 - 1//MQ m . r 

< „ ^ 11/(011+ ||g(0|| 
1 - 0 , 

( 1 - a ) 
z 

where 

\/m0-9i 

by the choice of #1. Setting 

«(•) = i l l / » + «(011 and v(-) = I(||/(.)|| + IU(-)||), 
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we have 

f |«(.) - v(-)| ||A(0|| \W ^ / (||/(0|| + ||g(-)||)||A(-)||^ 
JT

 l
 JA\B 

^ f 11/(0-g(-)\\\\K-)\\d» 
1
 JA\B 

^ ? / (f-g,h)dp 
1
 JA\B 

^ 7 ac0. 
1 

4 

Using the sign function as in the previous case, it follows that 

\\±(f + g ) \ \ E { X ) < L \ \ l ( u + v)\\E 

gl-«£(||A0)||,aco/4). 

Combining the two cases finishes the proof of Theorem 8. 

The analogous theorems in the setting of Bochner LP -spaces ([6], [20]) or 
in the setting of Orlicz-Bochner spaces [11] can be obtained as corollaries of 
Theorem 8. 

The final generalization of uniform rotundity considered here is another no
tion of weak uniform rotundity due to Cudia [3]. A Banach space X is weakly 
uniformly rotund in the sense of Cudia if, for every e > 0 and x* G X, there 
exists <Sr(jt*,e) > 0 such that if x and y are in X with ||JC|| = ||;y|| = 1 and 
\\x — y\\ ^ e, then 

\x\\(x+y))\^\-bc{x*,t). 

The following theorem summarizes what is known connecting this property with 
other geometric and approximation theoretic properties. 

THEOREM 9. ([7], [11], [19]). The following statements are equivalent. 
(a) X is weakly uniformly rotund in the sense of Cudia. 
(b) X is an E-space (in the sense of Fan and Glicksberg). 
(c) X is reflexive and every point in the unit sphere ofX is strongly exposed. 
(d) X is reflexive and rotund and has the Kadec-Klee property. 

One should note that if, in the definition of weak uniform rotundity in the 
sense of Cudia, x and y are allowed to be in the ball of X and not just on the 
unit sphere, an equivalent definition is obtained. 

Before characterizing the £(X)-spaces which are weakly uniformly rotund in 
the sense of Cudia, we need a lemma. 

LEMMA 10. If a Kbthe space E is weakly uniformly rotund in the sense of 
Cudia, then, for every norm-one positive functional F G E* and for every e > 0, 
there exists l{F,e) > 0 such that, for all u G E and A G Z, ||w|| ^ 1 and 
11 MX/i 11 — e implies that 

F{uXT\A)^\-l(F,t). 
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PROOF. In order to obtain a contradiction, suppose that there exist a norm-one 
positive functional F E £*, e > 0 , and sequences (un) and (An) with 

0 ^ w„, \\un\\ ^ 1, \\unXAn\\ è c, and 

Setting v„ = w„X7V„ >"ields 

| | w „ - v j ^ e and 

FCICM» + V„)) ^ FC^xn^) = ! - \ -

This contradicts that E is weakly uniformly rotund in the sense of Cudia and 
the proof of Lemma 10 is complete. 

Our final result is: 

THEOREM 11. The space E(X) is weakly uniformly rotund in the sense of 
Cudia if and only if both E and X are weakly uniformly rotund in the sense of 
Cudia. 

Proof. Let E and X be weakly uniformly rotund in the sense of Cudia. Again, 
there is no loss of generality in assuming that X is separable. Let e > 0 be given 
and l e t / and g be norm-one elements in E(X) with | | / — g\\ ^ e. Since E is 
reflexive, choose 

H E E(X)* = Et(X*) with \\H|| = 1. 

Define H e E* by 

H(u) = ju(.)\\H(.)\\x*dF, 

H is a positive norm-one linear functional on E. 
Choose 6 > 0 such that e0 = e - 20 > 0. Setting 

An = {te supp// : 6c
x(H(t)/\\H(t)l9) ^ l//i}, 

there exists «o € N such that 

\\HXT\AJ^\I(H^I6) 

where 1(H, co/6) is defined in the preceding lemma. Choose #i > 0 such that 

( l - l / / i o ) / ( l - 0 i ) < l 

and define the sets 

A = 0 6 r : | | / (0 - g(r)|| ^ 0max{||/(O||, \\g(f)\\} ^ 0} 

« = {t € r : | 11/(011 - ||g(0|| |£ 0i max{||/(0||, ||g(0||}}. 

https://doi.org/10.4153/CJM-1989-030-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1989-030-2


674 A. KAMINSKA AND B. TURETT 

Since 

A = BU[(A\B)DAno]U[(A\B)\ANJ and | | ( / - g ) x * | | ^ e0, 

we consider three cases. 
If | | ( / -g)Xi»l l^eo/3, then 

ll(ll/(-)IU - lk(-)iU)||£ ^ flieo/6. 

Since E is weakly uniformly rotund in the sense of Cudia, 

/ / ( ! ( / + g)) Û H({(\\f(')\\ + lU(-)ID) ^ 1 - 6C
E(H, flico/6). 

If \\(f ~ S)X(A\B)nAn II = eo/3, the Cudia weak uniform rotundity of X yields, 
similar to the proof of(**) in Theorem 8, that 

\(f(t) + g(t),H(t))\ g (1 - a)||tf (f)||(||/(0|| + |k(0| |)/2 

for t 6 (A\B) n A„0 where 

a = ( l / / i o - f l ! ) / ( l - f l | ) . 

Now set 

«(•) = K5(/(-) + g(-)),//(-)/||//(-)||)|XsupP//(-) and 

v(-)=i( | | / ( - ) | | + ||g(-)||). 

Then 

\\u — v|| ^ aeo/6 and 

| / / (±(/ + g))| ^ / / (± (K + v)) ^ 1 - 6C
E(H, aeo/6). 

Finally, if 

\\(f ~ g)X(A\B)\AnQ\\ ^ C 0 / 3 , 

then 

ll5(ll/(-)|| + lk(-)||)Xrv^ll^£o/6-

So, by Lemma 10, 

#(3(ll/(-)|| + ll*(-)||)XA„) = 1 -7(f f ,e 0 /6) . 
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Then, by the choice of no, 

\H(\(f + g))\ ^ H{\(\\f(.)\\ + \\g{-)\\)XAno) + ||//XnA„0II 

Thus, no matter which case occurs, \H{\(f + g))\ is bounded below 1. This 
completes the proof of Theorem 11. 
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