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Abstract
We establish the mean convergence for multiple ergodic averages with iterates given by distinct fractional powers
of primes and related multiple recurrence results. A consequence of our main result is that every set of integers with
positive upper density contains patterns of the form {𝑚, 𝑚 + [𝑝𝑎𝑛], 𝑚 + [𝑝𝑏𝑛]}, where 𝑎, 𝑏 are positive nonintegers
and 𝑝𝑛 denotes the nth prime, a property that fails if a or b is a natural number. Our approach is based on a recent
criterion for joint ergodicity of collections of sequences, and the bulk of the proof is devoted to obtaining good
seminorm estimates for the related multiple ergodic averages. The input needed from number theory are upper
bounds for the number of prime k-tuples that follow from elementary sieve theory estimates and equidistribution
results of fractional powers of primes in the circle.
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1. Introduction and main results

1.1. Introduction

Given an ergodic measure preserving system (𝑋, 𝜇, 𝑇) and functions 𝑓 , 𝑔 ∈ 𝐿∞(𝜇), it was shown in [6]
that for distinct 𝑎, 𝑏 ∈ R+ \ Z, we have

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝑇 [𝑛𝑎 ] 𝑓 · 𝑇 [𝑛𝑏 ]𝑔 =
∫

𝑓 𝑑𝜇 ·
∫

𝑔 𝑑𝜇 (1)

in 𝐿2 (𝜇).1 An immediate consequence of this limit formula is that for every (not necessarily ergodic)
measure preserving system and measurable set A, we have

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝜇(𝐴 ∩ 𝑇−[𝑛𝑎 ]𝐴 ∩ 𝑇−[𝑛𝑏 ]𝐴) ≥ 𝜇(𝐴)3. (2)

Examples of periodic systems show that equations (1) and (2) fail if either a or b is an integer greater
than 1. Using the Furstenberg correspondence principle [10, 11], it is easy to deduce from equation (2)
that every set of integers with positive upper density contains patterns of the form

{𝑚, 𝑚 + [𝑛𝑎], 𝑚 + [𝑛𝑏]}

for some 𝑚, 𝑛 ∈ N.
The main goal of this article is to establish similar convergence and multiple recurrence results, and

deduce related combinatorial consequences, when in the previous statements we replace the variable
n with the nth prime number 𝑝𝑛. For instance, we show in Theorem 1.1 that if 𝑎, 𝑏 ∈ R+ are distinct
nonintegers, then

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝑇 [𝑝𝑎
𝑛 ] 𝑓 · 𝑇 [𝑝𝑏

𝑛 ]𝑔 =
∫

𝑓 𝑑𝜇 ·
∫

𝑔 𝑑𝜇 (3)

in 𝐿2 (𝜇). We also prove more general statements of this sort involving two or more linearly independent
polynomials with fractional exponents evaluated at primes (related results for fractional powers of
integers were previously established in [4, 6, 26]).

If 𝑎, 𝑏 ∈ N are natural numbers, then equation (3) fails because of obvious congruence obstructions.
On the other hand, using the method in [9], it can be shown that if 𝑎, 𝑏 ∈ N are distinct, then equation (3)
does hold under the additional assumption that the system is totally ergodic; see also [19, 20] for related
work regarding polynomials in R[𝑡] evaluated at primes. The main idea in the proof of these results is to
show that the difference of a modification of the averages in equation (3) and the averages equation (1)
converges to 0 in 𝐿2 (𝜇). This comparison method works well when 𝑎, 𝑏 are positive integers since, in
this case, one can bound this difference by the Gowers uniformity norm of the modified von Mangoldt
function Λ̃𝑁 (see [9, Lemma 3.5] for the precise statement), which is known by [14] to converge to 0
as 𝑁 → ∞. Unfortunately, if 𝑎, 𝑏 are not integers, this comparison step breaks down, since it requires
a uniformity property for Λ̃𝑁 in which some of the averaging parameters lie in very short intervals,
a property that is currently not known. An alternative approach for establishing equation (3) is given

1Throughout, with (𝑋, 𝜇, 𝑇 ) , we mean a probability space (𝑋,X, 𝜇) together with an invertible, measurable and measure-
preserving 𝑇 : 𝑋 → 𝑋 . The system is ergodic if the only T-invariant sets in X have measure 0 or 1. If 𝑓 ∈ 𝐿∞(𝜇) , with 𝑇 𝑛 𝑓 ,
we denote the composition 𝑓 ◦𝑇 𝑛, where 𝑇 𝑛 := 𝑇 ◦ · · · ◦𝑇 .
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by the argument used in [6] to prove equation (1). It uses the theory of characteristic factors that
originates from [16] and eventually reduces the problem to an equidistribution result on nilmanifolds.
This method is also blocked since we are unable to establish the needed equidistribution properties on
general nilmanifolds.2

Our approach is quite different and is based on a recent result of the author from [8] (see Theorem 2.1
below); it implies that in order to verify equation (3), it suffices to obtain suitable seminorm estimates
and equidistribution results on the circle (versus the general nilmanifold that the method of characteristic
factors requires). The needed equidistribution property follows from [2] (see Theorem 2.2 below), and
the bulk of this article is devoted to the rather tricky proof of the seminorm estimates (see Theorem 1.4
below).

1.2. Main results

To facilitate discussion, we use the following definition from [8].
Definition. We say that the collection of sequences 𝑏1, . . . , 𝑏ℓ : N → Z is jointly ergodic if, for every
ergodic system (𝑋, 𝜇, 𝑇) and functions 𝑓1, . . . , 𝑓ℓ ∈ 𝐿∞(𝜇), we have

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝑇𝑏1 (𝑛) 𝑓1 · . . . · 𝑇𝑏ℓ (𝑛) 𝑓ℓ =
∫

𝑓1 𝑑𝜇 · . . . ·
∫

𝑓ℓ 𝑑𝜇

in 𝐿2 (𝜇).
For instance, the identities in equations (1) and (3) are equivalent to the joint ergodicity of the pairs

of sequences {[𝑛𝑎], [𝑛𝑏]} and {[𝑝𝑎𝑛], [𝑝𝑏𝑛]} when 𝑎, 𝑏 ∈ R+ are distinct nonintegers.
We will establish joint ergodicity properties involving the class of fractional polynomials that we

define next.
Definition. A polynomial with real exponents is a function 𝑎 : R+ → R of the form 𝑎(𝑡) =

∑𝑟
𝑗=1 𝛼 𝑗 𝑡

𝑑 𝑗 ,
where 𝛼 𝑗 ∈ R and 𝑑 𝑗 ∈ R+, 𝑗 = 1, . . . , 𝑟 . If 𝑑1, . . . , 𝑑𝑟 ∈ R+ \ Z, we call it a fractional polynomial.

The following is the main result of this article:
Theorem 1.1. Let 𝑎1, . . . , 𝑎ℓ be linearly independent3 fractional polynomials. Then the collection of
sequences [𝑎1 (𝑝𝑛)], . . . , [𝑎ℓ (𝑝𝑛)] is jointly ergodic.

In particular, this applies to the collection of sequences [𝑛𝑐1 ], . . . , [𝑛𝑐ℓ ], where 𝑐1, . . . , 𝑐ℓ ∈ R+ \ Z
are distinct. We remark also that the linear independence assumption is necessary for joint ergodicity.
Indeed, suppose that 𝑎1, . . . , 𝑎ℓ is a collection of linearly depended sequences. Then 𝑐1𝑎1+· · ·+𝑐ℓ𝑎ℓ = 0
for some 𝑐1, . . . , 𝑐ℓ ∈ R not all of them 0. After multiplying by an appropriate constant, we can
assume that at least one of the 𝑐1, . . . , 𝑐ℓ is not an integer and max𝑖=1,...,ℓ |𝑐𝑖 | ≤ 1/(10ℓ). Then
𝑐1 [𝑎1 (𝑛)] + · · · + 𝑐ℓ [𝑎ℓ (𝑛)] ∈ [−1/10, 1/10] for all 𝑛 ∈ N, and this easily implies that the collection
[𝑎1 (𝑛)], . . . , [𝑎ℓ (𝑛)] is not good for equidistribution (see definition in Section 2) and hence not jointly
ergodic.

Using standard methods, we immediately deduce from Theorem 1.1 the following multiple recurrence
result:
Corollary 1.2. Let 𝑎1, . . . , 𝑎ℓ be linearly independent fractional polynomials. Then for every system
(𝑋, 𝜇, 𝑇) and measurable set A, we have

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝜇(𝐴 ∩ 𝑇−[𝑎1 (𝑝𝑛) ]𝐴 ∩ · · · ∩ 𝑇−[𝑎ℓ (𝑝𝑛) ]𝐴) ≥ (𝜇(𝐴))ℓ+1.

2For polynomials with integer degrees, the needed equidistribution property can be verified using a comparison method that
again breaks down when the degrees are fractional.

3Henceforth, when we say ‘linearly independent’, we mean linearly independent over R.
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Using the Furstenberg correspondence principle [10, 11], we deduce the following combinatorial
consequence:

Corollary 1.3. Let 𝑎1, . . . , 𝑎ℓ be linearly independent fractional polynomials. Then for every subset Λ
of N, we have4

lim inf
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝑑 (Λ ∩ (Λ − [𝑎1 (𝑝𝑛)]) ∩ · · · ∩ (Λ − [𝑎ℓ (𝑝𝑛)])) ≥ (𝑑 (Λ))ℓ+1.

Hence, every set of integers with positive upper density contains patterns of the form {𝑚, 𝑚 +
[𝑎1 (𝑝𝑛)], . . . , 𝑚 + [𝑎ℓ (𝑝𝑛)]} for some 𝑚, 𝑛 ∈ N.

An essential tool in the proof of our main result is the following statement that is of independent
interest since it covers a larger class of collections of fractional polynomials (not necessarily linearly
independent) evaluated at primes. See Section 2 for the definition of the seminorms ||| · |||𝑠 .

Theorem 1.4. Suppose that the fractional polynomials 𝑎1, . . . , 𝑎ℓ and their pairwise differences are
nonzero. Then there exists 𝑠 ∈ N such that for every ergodic system (𝑋, 𝜇, 𝑇) and functions 𝑓1, . . . , 𝑓ℓ ∈
𝐿∞(𝜇) with ||| 𝑓𝑖 |||𝑠 = 0 for some 𝑖 ∈ {1, . . . , ℓ}, we have

lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

𝑇 [𝑎1 (𝑝𝑛) ] 𝑓1 · . . . · 𝑇 [𝑎ℓ (𝑝𝑛) ] 𝑓ℓ = 0 (4)

in 𝐿2 (𝜇).

Remark. It seems likely that with some additional effort the techniques of this article can cover the more
general case of Hardy field functions 𝑎1, . . . , 𝑎ℓ such that the functions and their differences belong to
the set {𝑎 : R+ → R : 𝑡𝑘+𝜀 ≺ 𝑎(𝑡) ≺ 𝑡𝑘+1−𝜀 for some 𝑘 ∈ Z+ and 𝜀 > 0}. Using the equidistribution
result in [3] and the argument in Section 2, this would immediately give a corresponding strengthening
of Theorem 1.1. We opted not to deal with these more general statements because the added technical
complexity would obscure the main ideas of the proof of Theorem 1.4.

The proof of Theorem 1.4 crucially uses the fact that the iterates 𝑎1, . . . , 𝑎ℓ have ‘fractional power
growth’, and our argument fails for iterates with ‘integer power growth’. Similar results that cover the
case of polynomials with integer or real coefficients were obtained in [9, 29] and [19], respectively, and
depend on deep properties of the von Mangoldt function from [13] and [14], but these results and their
proofs do not appear to be useful for our purposes. Instead, we rely on some softer number theory input
that follows from standard sieve theory techniques (see Section 3.2) and an argument that is fine-tuned
for the case of fractional polynomials (but fails for polynomials with integer exponents). This argument
eventually enables us to bound the averages in equation (4) with averages involving iterates given by
multivariate polynomials with real coefficients evaluated at the integers, a case that was essentially
handled in [23].

1.3. Limitations of our techniques and open problems

We expect that the following generalisation of Theorem 1.1 holds:

Problem. Let 𝑎1, . . . , 𝑎ℓ be functions from a Hardy field with polynomial growth such that every
nontrivial linear combination b of them satisfies |𝑏(𝑡) − 𝑝(𝑡) |/log 𝑡 → ∞ for all 𝑝 ∈ Z[𝑡]. Then the
collection of sequences [𝑎1 (𝑝𝑛)], . . . , [𝑎ℓ (𝑝𝑛)] is jointly ergodic.

4For 𝐴 ⊂ N, we let 𝑑 (𝐴) := lim sup𝑁→∞
|𝐴∩[𝑁 ] |

𝑁 .
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By Theorem 2.1, it suffices to show that the collection [𝑎1 (𝑝𝑛)], . . . , [𝑎ℓ (𝑝𝑛)] is good for equidis-
tribution and seminorm estimates. Although the needed equidistribution property has been proved in
[3, Theorem 3.1], the seminorm estimates that extend Theorem 1.4 seem hard to establish. Our argu-
ment breaks down when some of the functions, or their differences, are close to integral powers of t: for
example, when they are 𝑡𝑘 log 𝑡 or 𝑡𝑘/log log 𝑡 for some 𝑘 ∈ N. In both cases, the vdC-operation (see
Section 5.2) leads to sequences of sublinear growth for which we can no longer establish Lemma 4.1, in
the first case because the estimate equation (20) fails and in the second case because in equation (22),
the length of the interval in the average is too short for Corollary 3.4 to be applicable.

Finally, we remark that although the reduction offered by Theorem 2.1 is very helpful when dealing
with averages with independent iterates, as is the case in equation (3), it does not offer any help when
the iterates are linearly dependent, which is the case for the averages

1
𝑁

𝑁∑
𝑛=1

𝑇 [𝑝𝑎
𝑛 ] 𝑓 · 𝑇2[𝑝𝑎

𝑛 ]𝑔, (5)

where 𝑎 ∈ R+ is not an integer. We do expect the 𝐿2 (𝜇)-limit of the averages in equation (5) to be equal
to the 𝐿2 (𝜇)-limit of the averages 1

𝑁

∑𝑁
𝑛=1 𝑇

𝑛 𝑓 · 𝑇2𝑛𝑔, but this remains a challenging open problem5;
see Problem 27 in [7].

1.4. Notation

With N, we denote the set of positive integers, and with Z+, the set of nonnegative integers. With P, we
denote the set of prime numbers. With R+, we denote the set of nonnegative real numbers. For 𝑡 ∈ R,
we let 𝑒(𝑡) := 𝑒2𝜋𝑖𝑡 . If 𝑥 ∈ R+, when there is no danger for confusion, with [𝑥], we denote both the
integer part of x and the set {1, . . . , [𝑥]}. We denote with �(𝑧) the real part of the complex number z.

Let 𝑎 : N→ C be a bounded sequence. If A is a nonempty finite subset of N, we let

E𝑛∈𝐴 𝑎(𝑛) :=
1
|𝐴|

∑
𝑛∈𝐴

𝑎(𝑛).

If 𝑎, 𝑏 : R+ → R are functions, we write

◦ 𝑎(𝑡) ≺ 𝑏(𝑡) if lim𝑡→+∞ 𝑎(𝑡)/𝑏(𝑡) = 0;
◦ 𝑎(𝑡) ∼ 𝑏(𝑡) if lim𝑡→+∞ 𝑎(𝑡)/𝑏(𝑡) exists and is nonzero;
◦ 𝐴𝑐1 ,...,𝑐ℓ (𝑡) 𝑐1 ,...,𝑐ℓ 𝐵𝑐1 ,...,𝑐ℓ (𝑡) if there exist 𝑡0 = 𝑡0(𝑐1, . . . , 𝑐ℓ ) ∈ R+ and 𝐶 = 𝐶 (𝑐1, . . . , 𝑐ℓ) > 0

such that |𝐴𝑐1 ,...,𝑐ℓ (𝑡) | ≤ 𝐶 |𝐵𝑐1 ,...,𝑐ℓ (𝑡) | for all 𝑡 ≥ 𝑡0.

We use the same notation for sequences 𝑎, 𝑏 : N→ R.
Throughout, we let 𝐿𝑁 := [𝑒

√
log 𝑁 ], 𝑁 ∈ N.

We say that a sequence (𝑐𝑁 ,ℎ (𝑛)), where ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑛 ∈ [𝑁], 𝑁 ∈ N, is bounded if there exists
C>0 such that |𝑐𝑁 ,ℎ (𝑛) | ≤ 𝐶 for all ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑛 ∈ [𝑁], 𝑁 ∈ N.

2. Proof strategy

Our argument depends upon a convenient criterion for joint ergodicity that was established recently in
[8] (and was motivated by work in [24, 25]). To state it, we need to review the definition of the ergodic
seminorms from [16].

5Although the method of Theorem 2.4 does give good seminorm bounds for the averages in equation (5), the needed equidis-
tribution properties on nilmanifolds present serious difficulties.
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Definition. For a given ergodic system (𝑋, 𝜇, 𝑇) and function 𝑓 ∈ 𝐿∞(𝜇), we define ||| · |||𝑠 inductively
as follows:

||| 𝑓 |||1 : =
���
∫

𝑓 𝑑𝜇
��� ;

||| 𝑓 |||2𝑠+1

𝑠+1 := lim
𝑁→∞

1
𝑁

𝑁∑
𝑛=1

||| 𝑓 · 𝑇𝑛 𝑓 |||2𝑠𝑠 , 𝑠 ∈ N.

It was shown in [16], via successive uses of the mean ergodic theorem, that for every 𝑠 ∈ N, the
above limit exists, and ||| · |||𝑠 defines an increasing sequence of seminorms on 𝐿∞(𝜇).
Definition. We say that the collection of sequences 𝑏1, . . . , 𝑏ℓ : N→ Z is:

1. Good for seminorm estimates, if for every ergodic system (𝑋, 𝜇, 𝑇), there exists 𝑠 ∈ N such that if
𝑓1, . . . , 𝑓ℓ ∈ 𝐿∞(𝜇) and ||| 𝑓𝑚 |||𝑠 = 0 for some 𝑚 ∈ {1, . . . , ℓ}, then

lim
𝑁→∞

E𝑛∈[𝑁 ] 𝑇
𝑏1 (𝑛) 𝑓1 · . . . · 𝑇𝑏𝑚 (𝑛) 𝑓𝑚 = 0 (6)

in 𝐿2 (𝜇).6
2. Good for equidistribution, if for all 𝑡1, . . . , 𝑡ℓ ∈ [0, 1), not all of them 0, we have

lim
𝑁→∞

E𝑛∈[𝑁 ] 𝑒(𝑏1 (𝑛)𝑡1 + · · · + 𝑏ℓ (𝑛)𝑡ℓ) = 0.

We remark that any collection of nonconstant integer polynomial sequences with pairwise noncon-
stant differences is known to be good for seminorm estimates [23], and examples of periodic systems
show that no such collection is good for equidistribution (unless ℓ = 1 and 𝑏1 (𝑡) = ±𝑡 + 𝑘). On the other
hand, a collection of linearly independent fractional polynomials is known to be good both for seminorm
estimates [6, Theorem 2.9] and equidistribution (follows from [22, Theorem 3.4] and [8, Lemma 6.2]).

A crucial ingredient used in the proof of our main result is the following result that gives convenient
necessary and sufficient conditions for joint ergodicity of a collection of sequences (see also [5] for an
extension of this result for sequences 𝑏1, . . . , 𝑏ℓ : N𝑘 → Z).

Theorem 2.1 ([8]). The sequences 𝑏1, . . . , 𝑏ℓ : N → Z are jointly ergodic if and only if they are good
for equidistribution and seminorm estimates.

Remark. The proof of this result uses ‘soft’ tools from ergodic theory and avoids deeper tools like
the Host-Kra theory of characteristic factors (see [17, Chapter 21] for a detailed description) and
equidistribution results on nilmanifolds.

In view of this result, in order to establish Theorem 1.1, it suffices to show that a collection of
linearly independent fractional polynomials evaluated at primes is good for seminorm estimates and
equidistribution. The good equidistribution property is a consequence of the following result [2, Theorem
2.1]:

Theorem 2.2 ([2]). If 𝑎(𝑡) is a nonzero fractional polynomial, then the sequence (𝑎(𝑝𝑛)) is equidis-
tributed(mod 1).

Using the previous result and [8, Lemma 6.2], we immediately deduce the following:

Corollary 2.3. If 𝑎1, . . . , 𝑎ℓ are linearly independent fractional polynomials, then the collection of
sequences [𝑎1 (𝑝𝑛)], . . . , [𝑎ℓ (𝑝𝑛)] is good for equidistribution.

We let Λ′ : N → R+ be the following slight modification of the von Mangoldt function: Λ′(𝑛) :=
log(𝑛) if n is a prime number and 0 otherwise. To establish that the collection [𝑎1 (𝑝𝑛)], . . . , [𝑎ℓ (𝑝𝑛)]

6In practice, s can often be chosen independently of the system, and equation (6) can be established with 𝑚 = ℓ (note that
Property (i) with 𝑚 = ℓ in equation (6) is a stronger property than Property (i) as stated).
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is good for seminorm estimates, it suffices to prove the following result (the case 𝑤𝑁 (𝑛) := Λ′(𝑛),
𝑁, 𝑛 ∈ N, implies Theorem 1.4 in a standard way; see, for example, [9, Lemma 2.1]):

Theorem 2.4. Suppose that the fractional polynomials 𝑎1, . . . , 𝑎ℓ and their pairwise differences are
nonzero. Then there exists 𝑠 ∈ N such that the following holds: If (𝑋, 𝜇, 𝑇) is an ergodic system and
𝑓1, . . . , 𝑓ℓ ∈ 𝐿∞(𝜇) are such that ||| 𝑓𝑖 |||𝑠 = 0 for some 𝑖 ∈ {1, . . . , ℓ}, then for every 1-bounded sequence
(𝑐𝑁 (𝑛)), we have

lim
𝑁→∞

E𝑛∈[𝑁 ] 𝑤𝑁 (𝑛) · 𝑇 [𝑎1 (𝑛) ] 𝑓1 · . . . · 𝑇 [𝑎ℓ (𝑛) ] 𝑓ℓ = 0 (7)

in 𝐿2 (𝜇), where 𝑤𝑁 (𝑛) := Λ′(𝑛) · 𝑐𝑁 (𝑛), 𝑛 ∈ [𝑁], 𝑁 ∈ N.

Remarks.

◦ The sequence (𝑐𝑁 (𝑛)) is not essential in order to deduce Theorem 1.4. It is used because it helps us
absorb error terms that often appear in our argument.

◦ Our proof shows that the place of the sequence (Λ′(𝑛)) can take any nonnegative sequence (𝑏(𝑛))
that satisfies properties (𝑖) and (𝑖𝑖) of Corollary 3.4 and the estimate 𝑏(𝑛)  𝑛𝜀 for every 𝜀 > 0.

To prove Theorem 2.4, we use an induction argument, similar to the polynomial exhaustion technique
(PET-induction) introduced in [1], which is based on variants of the van der Corput inequality stated
immediately after Lemma 3.5. The fact that the weight sequence (𝑤𝑁 (𝑛)) is unbounded forces us to
apply Lemma 3.5 in the form given in equation (15) with 𝐿𝑁 ∈ N that satisfy 𝐿𝑁 � (log 𝑁)𝐴 for every
𝐴 > 0. On the other hand, since we have to take care of some error terms that are of the order 𝐿𝐵

𝑁 /𝑁
𝑎

for arbitrary 𝑎, 𝐵 > 0, we are also forced to take 𝐿𝑁 ≺ 𝑁𝑎 for every 𝑎 > 0 in order for these errors to
be negligible. These two estimates are satisfied for example when 𝐿𝑁 = [𝑒

√
log 𝑁 ], 𝑁 ∈ N, which is the

value of 𝐿𝑁 that we use henceforth.
During the course of the PET-induction argument, we have to keep close track of the additional

parameters ℎ1, . . . , ℎ𝑘 that arise after each application of Lemma 3.5 in the form given in equation (15).
This is why we prove a more general variant of Theorem 2.4 that is stated in Theorem 3.1 and involves
fractional polynomials with coefficients depending on finitely many parameters. It turns out that the
most laborious part of its proof is the base case of the induction where all iterates have sublinear growth.
This case is dealt with in three steps. First, in Lemma 4.1, we use a change of variables argument and
the number theory input from Corollary 3.4 to reduce matters to the case where the weight sequence
(𝑤𝑁 (𝑛)) is bounded. Next, in Lemma 4.2, we use another change of variables argument and Lemma
3.5 to successively ‘eliminate’ the sequences 𝑎1, . . . , 𝑎ℓ , and, after ℓ-iterations, we get an upper bound
that involves iterates given by the integer parts of polynomials in several variables with real coefficients.
Finally, in Lemma 4.3, we show that averages with such iterates obey good seminorm bounds. This
last step is carried out by adapting an argument from [23] to our setup; this is done by another PET-
induction, which this time uses Lemma 3.5 in the form given in equation (16). In Sections 4.1 and 5.1,
the reader will find examples that explain how these arguments work in some model cases that contain
the essential ideas of the general arguments.

To conclude this section, we remark that to prove Theorem 1.1, it suffices to prove Theorem 2.4; the
remaining sections are devoted to this task.

3. Seminorm estimates – some preparation

3.1. A more general statement

To prove Theorem 2.4, it will be convenient to establish a technically more complicated statement that
is better suited for a PET-induction argument. We state it in this subsection.
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Throughout, the sequence 𝐿𝑁 is chosen to satisfy (log 𝑁)𝐴 ≺ 𝐿𝑁 ≺ 𝑁𝑎 for all 𝐴, 𝑎 > 0; so we can
take, for example,

𝐿𝑁 := [𝑒
√

log 𝑁 ], 𝑁 ∈ N.

With R[𝑡1, . . . , 𝑡𝑘 ], we denote the set of polynomials with real coefficients in k-variables.

Definition. We say that 𝑎 : Z𝑘 ×R+ → R is a polynomial with real exponents and k-parameters if it has
the form

𝑎(ℎ, 𝑡) =
𝑟∑
𝑗=0

𝑝 𝑗 (ℎ) 𝑡𝑑 𝑗

for some 𝑟 ∈ N, 0 = 𝑑0 < 𝑑1 < · · · < 𝑑𝑟 ∈ R+, and 𝑝0, . . . , 𝑝𝑟 ∈ R[𝑡1, . . . , 𝑡𝑘 ]. If 𝑑1, . . . , 𝑑𝑟 ∈ R+ \ Z,
we call it a fractional polynomial with k-parameters. If 𝑝 𝑗 is nonzero for some 𝑗 ∈ {1, . . . , 𝑟}, we say
that 𝑎(ℎ, 𝑡) is nonconstant. We define the fractional degree of 𝑎(ℎ, 𝑡) to be the maximum exponent
𝑑 𝑗 for which the polynomial 𝑝 𝑗 is nonzero and denote it by f-deg(𝑎). We call the integer part of its
fractional degree the (integral) degree of 𝑎(ℎ, 𝑡) and denote it by deg(𝑎). We also let deg(0) := −1.

For example, the fractional polynomial with 1-parameter ℎ2𝑡0.5+ (ℎ2√2+ℎ)𝑡0.1 has fractional degree
0.5 and degree 0.

Definition. We say that a collection 𝑎1, . . . , 𝑎ℓ of polynomials with real exponents and k-parameters is
nice if

1. f-deg(𝑎𝑖) ≤ f-deg(𝑎1) for 𝑖 = 2, . . . , ℓ, and
2. the functions 𝑎1, . . . 𝑎ℓ and the functions 𝑎1 − 𝑎2, . . . , 𝑎1 − 𝑎ℓ are nonconstant in the variable t (and

as a consequence they have positive fractional degree).

Given a sequence 𝑢 : N→ C, we let (Δℎ𝑢) (𝑛) := 𝑢(𝑛 + ℎ) · 𝑢(𝑛), ℎ, 𝑛 ∈ N, and if ℎ = (ℎ1, . . . , ℎ𝑘 ),
we let (Δℎ) (𝑢(𝑛)) := (Δℎ𝑘 · · ·Δℎ1 ) (𝑢(𝑛)), ℎ1, . . . , ℎ𝑘 , 𝑛 ∈ N. For example, (Δ (ℎ1 ,ℎ2) ) (𝑢(𝑛)) = 𝑢(𝑛 +
ℎ1 + ℎ2) · 𝑢(𝑛 + ℎ1) · 𝑢(𝑛 + ℎ2) · 𝑢(𝑛), ℎ1, ℎ2, 𝑛 ∈ N.

Theorem 3.1. For 𝑘 ∈ Z+, ℓ ∈ N, let 𝑎1, . . . , 𝑎ℓ : N𝑘 × N → R be a nice collection of fractional
polynomials with k-parameters and (𝑐𝑁 ,ℎ (𝑛)) be a 1-bounded sequence. Then there exists 𝑠 ∈ N such
that the following holds: If (𝑋, 𝜇, 𝑇) is a system and 𝑓𝑁 ,ℎ,1, . . . , 𝑓𝑁 ,ℎ,ℓ ∈ 𝐿∞(𝜇), ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N,
are 1-bounded functions with 𝑓𝑁 ,ℎ,1 = 𝑓1, ℎ ∈ N𝑘 , 𝑁 ∈ N and ||| 𝑓1 |||𝑠 = 0, then

lim
𝑁→∞

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

= 0, (8)

where 𝑤𝑁 ,ℎ (𝑛) := (ΔℎΛ′) (𝑛) · 𝑐𝑁 ,ℎ (𝑛), ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑛 ∈ [𝑁], 𝑁 ∈ N.

Remark. Our argument also works if ΔℎΛ′(𝑛) is replaced by other expressions involving Λ′: for
example, when 𝑘 = 0, one can use the expression

∏𝑚
𝑖=1 Λ

′(𝑛+𝑐𝑖), where 𝑐1, . . . , 𝑐𝑚 are distinct integers.

If in Theorem 3.1, we take 𝑘 = 0, then we get Theorem 2.4 using an argument that we describe next.

Proof of Theorem 2.4 assuming Theorem 3.1. Let 𝑎1, . . . , 𝑎ℓ and 𝑤𝑁 (𝑛) be as in Theorem 2.4. Since
the assumptions of Theorem 2.4 are symmetric with respect to the sequences 𝑎1, . . . , 𝑎ℓ , it suffices to
show that there exists 𝑠 ∈ N such that if ||| 𝑓1 |||𝑠 = 0, then equation (7) holds.

If 𝑎1 has maximal fractional degree within the family 𝑎1, . . . 𝑎ℓ , then if we take 𝑘 = 0 and all
functions to be independent of N in Theorem 3.1, we get that the conclusion of Theorem 2.4 holds.
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Otherwise, we can assume that 𝑎ℓ is the function with the highest fractional degree and, as a consequence,
f-deg(𝑎1) < f-deg(𝑎ℓ). It suffices to show that

lim
𝑁→∞

E𝑛∈[𝑁 ] 𝑤𝑁 (𝑛) ·
∫

𝑓𝑁 ,0 ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (𝑛) ] 𝑓𝑖 𝑑𝜇 = 0,

where

𝑓𝑁 ,0 := E𝑛∈[𝑁 ] 𝑤𝑁 (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (𝑛) ] 𝑓 𝑖 , 𝑁 ∈ N.

Note that since 𝑓1, . . . , 𝑓ℓ and 𝑐𝑁 are 1-bounded, we have

lim sup
𝑁→∞

�� 𝑓𝑁 ,0
��
∞ ≤ lim

𝑁→∞
E𝑛∈[𝑁 ] Λ

′(𝑛) = 1,

(the last identity follows from the prime number theorem, but we only need the much simpler upper
bound) hence, we can assume that 𝑓𝑁 ,0 is 1-bounded for every 𝑁 ∈ N.

After composing with 𝑇−[𝑎ℓ (𝑛) ] , using the Cauchy-Schwarz inequality, and the identity [𝑥] − [𝑦] =
[𝑥 − 𝑦] + 𝑒 for some 𝑒 ∈ {0, 1}, we are reduced to showing that

lim
𝑁→∞

�����E𝑛∈[𝑁 ] 𝑤𝑁 (𝑛) ·
ℓ−1∏
𝑖=1

𝑇 [𝑎𝑖 (𝑛)−𝑎ℓ (𝑛) ]+𝑒𝑖 (𝑛) 𝑓𝑖 · 𝑇 [−𝑎ℓ (𝑛) ]+𝑒ℓ (𝑛) 𝑓𝑁 ,0

�����
𝐿2 (𝜇)

= 0,

for some 𝑒1(𝑛), . . . , 𝑒ℓ−1(𝑛) ∈ {0, 1}, 𝑛 ∈ N. Next, we would like to replace the error sequences
𝑒1, . . . , 𝑒ℓ−1 with constant sequences. To this end, we use Lemma 3.6 for I a singleton, 𝐽 := [𝑁], 𝑋 :=
𝐿∞(𝜇), 𝐴𝑁 (𝑛1, . . . , 𝑛ℓ) :=

∏ℓ−1
𝑖=1 𝑇

𝑛𝑖 𝑓𝑖 ·𝑇−𝑛ℓ 𝑓𝑁 ,0, 𝑛1, . . . , 𝑛ℓ ∈ Z, and 𝑏𝑖 := [𝑎𝑖 − 𝑎ℓ], 𝑖 = 1, . . . , ℓ − 1,
𝑏ℓ := [−𝑎ℓ ]. We get that it suffices to show that

lim
𝑁→∞

�����E𝑛∈[𝑁 ] 𝑧𝑁 (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎′𝑖 (𝑛) ]𝑔𝑁 ,𝑖

�����
𝐿2 (𝜇)

= 0, (9)

where

𝑎′𝑖 := 𝑎𝑖 − 𝑎ℓ , 𝑖 = 1, . . . , ℓ − 1, 𝑎′ℓ := −𝑎ℓ

for some 1-bounded sequence (𝑧𝑁 (𝑛)), where 𝑔𝑁 ,𝑖 := 𝑇 𝜖𝑖 𝑓𝑖 , 𝑖 = 1, . . . , ℓ − 1, 𝑔𝑁 ,ℓ := 𝑇 𝜖ℓ 𝑓𝑁 ,0, 𝑁 ∈ N,
for some constants 𝜖1, . . . , 𝜖ℓ ∈ {0, 1}. Note that the family 𝑎′1, . . . , 𝑎

′
ℓ is nice, and 𝑔𝑁 ,1 = 𝑇 𝜖1 𝑓1, 𝑁 ∈ N,

so Theorem 3.1 applies (for 𝑘 = 0 and all but one of the functions independent of N) and gives that
there exists 𝑠 ∈ N so that if ||| 𝑓1 |||𝑠 = 0, then equation (9) holds. This completes the proof. �

We will prove Theorem 3.1 in Sections 4 and 5 using a PET-induction technique. The first section
covers the base case of the induction where all the iterates have sublinear growth, and the subsequent
section contains the proof of the induction step. Before moving into the details, we gather some basic
tools that will be used in the argument.

3.2. Feedback from number theory

The next statement is well known and can be proved using elementary sieve theory methods (see, for
example, [15, Theorem 5.7] or [18, Theorem 6.7]).

https://doi.org/10.1017/fms.2022.35 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.35


10 Nikos Frantzikinakis

Theorem 3.2. Let P be the set of prime numbers. For all 𝑘 ∈ N, there exist 𝐶𝑘 > 0 such that for all
distinct ℎ1, . . . , ℎ𝑘 ∈ N and all 𝑁 ∈ N, we have

|{𝑛 ∈ [𝑁] : 𝑛 + ℎ1, . . . , 𝑛 + ℎ𝑘 ∈ P}| ≤ 𝐶𝑘𝔊𝑘 (ℎ1, . . . , ℎ𝑘 )
𝑁

(log 𝑁)𝑘
,

where

𝔊𝑘 (ℎ1, . . . , ℎ𝑘 ) :=
∏
𝑝∈P

(
1 − 1

𝑝

)−𝑘 (
1 −

𝜈𝑝 (ℎ1, . . . , ℎ𝑘 )
𝑝

)
(10)

and 𝜈𝑝 (ℎ1, . . . , ℎ𝑘 ) denotes the number of congruence classesmod 𝑝 that are occupied by ℎ1, . . . , ℎ𝑘 .

We remark that although 𝔊1 = 1, the expression 𝔊𝑘 (ℎ1, . . . , ℎ𝑘 ) is not bounded in ℎ1, . . . , ℎ𝑘 if
𝑘 ≥ 2, and this causes some problems for us. Asymptotics for averages of powers of𝔊𝑘 (ℎ1, . . . , ℎ𝑘 ) are
given in [12] and [21, Theorem 1.1] using elementary but somewhat elaborate arguments. These results
are not immediately applicable for our purposes, since we need to understand the behavior of𝔊𝑘 on thin
subsets of Z𝑘 : for instance, when 𝑘 = 4, we need to understand the averages of 𝔊4(0, ℎ1, ℎ2, ℎ1 + ℎ2).
Luckily, we only need to get upper bounds for these averages, and this can be done rather easily, as we will
see shortly (a similar argument was used in [28] to handle averages over r of𝔊𝑘 (0, 𝑟, 2𝑟, . . . , (𝑘 −1)𝑟)).

Definition. Let ℓ ∈ N, and for ℎ ∈ Nℓ , let Cube(ℎ) ∈ N2ℓ be defined by

cube(ℎ) := (𝜖 · ℎ)𝜖 ∈{0,1}ℓ ,

where 𝜖 · ℎ is the inner product of 𝜖 and ℎ.
If S is a subset of Nℓ , we define

𝑆∗ := {ℎ ∈ 𝑆 : cube(ℎ) has distinct coordinates}.

For instance, when ℓ = 3, we have

cube(ℎ1, ℎ2, ℎ3) = (0, ℎ1, ℎ2, ℎ3, ℎ1 + ℎ2, ℎ1 + ℎ3, ℎ2 + ℎ3, ℎ1 + ℎ2 + ℎ3),

and ([𝑁]3)∗ consists of all triples (ℎ1, ℎ2, ℎ3) ∈ [𝑁]3 with distinct coordinates that in addition satisfy
ℎ𝑖 ≠ ℎ 𝑗 + ℎ𝑘 for all distinct 𝑖, 𝑗 , 𝑘 ∈ {1, 2, 3}. Since the complement of ([𝑁]ℓ )∗ in [𝑁]ℓ is contained on
the zero set of finitely many (at most 3ℓ) linear forms, we get that there exists 𝐾ℓ > 0 such that

| [𝑁]ℓ \ ([𝑁]ℓ)∗ | ≤ 𝐾ℓ 𝑁
ℓ−1 (11)

for every 𝑁 ∈ N.

Proposition 3.3. For every ℓ ∈ N, there exists 𝐶ℓ > 0 such that

Eℎ∈[𝑁 ]ℓ
(
𝔊2ℓ (cube(ℎ))

)2 ≤ 𝐶ℓ

for all 𝑁 ∈ N, where 𝔊2ℓ (cube(ℎ)) is as in equation (10).

Remark. If we use kth powers instead of squares, we get similar upper bounds (which also depend on
k), but we will not need this.

Proof. In the following argument, whenever we write p, we assume that p is a prime number.
Let ℎ ∈ [𝑁]ℓ . Note that if 𝜈𝑝 (cube(ℎ)) = 2ℓ , then

(
1 − 1

𝑝

)−2ℓ (
1 −

𝜈𝑝 (cube(ℎ))
𝑝

)
≤ 1,
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and if 𝜈𝑝 (cube(ℎ)) < 2ℓ , then for 𝑎ℓ := 2ℓ+1 − 2, we have

(
1 − 1

𝑝

)−2ℓ (
1 −

𝜈𝑝 (cube(ℎ))
𝑝

)
≤

(
1 − 1

𝑝

)−(2ℓ−1)
≤ 𝑒

𝑎ℓ
𝑝 ,

where we use that 1
1−𝑥 ≤ 𝑒2𝑥 for 𝑥 ∈ [0, 1

2 ]. Note also that if 𝜈𝑝 (cube(ℎ)) < 2ℓ , then there exist distinct
𝜖, 𝜖 ′ ∈ {0, 1}ℓ such that 𝑝 | (𝜖 − 𝜖 ′) · ℎ, in which case we have that 𝑝 ∈ P(ℎ), where

P(ℎ) :=
⋃

𝜖 , 𝜖 ′ ∈{0,1}ℓ , 𝜖 ,≠𝜖 ′
{𝑝 ∈ P : 𝑝 | (𝜖 − 𝜖 ′) · ℎ}, ℎ ∈ Nℓ .

We deduce from the above facts and equation (10) that

𝔊2ℓ (cube(ℎ)) ≤ 𝑒𝑎ℓ
∑

𝑝∈P(ℎ)
1
𝑝 . (12)

By [27, Lemma E.1], we have for some 𝑏ℓ , 𝑐ℓ > 0 that

𝑒𝑎ℓ
∑

𝑝∈P(ℎ)
1
𝑝 ≤ 𝑏ℓ

∑
𝑝∈P(ℎ)

(log 𝑝)𝑐ℓ
𝑝

= 𝑏ℓ
∑

𝜖 , 𝜖 ′ ∈{0,1}ℓ , 𝜖≠𝜖 ′

( ∑
𝑝 | (𝜖−𝜖 ′) ·ℎ

(log 𝑝)𝑐ℓ
𝑝

)
. (13)

Moreover, we get for some 𝑑ℓ , 𝑒ℓ > 0 that

∑
ℎ∈[𝑁 ]ℓ

( ∑
𝑝 | (𝜖−𝜖 ′) ·ℎ

(log 𝑝)𝑐ℓ
𝑝

)
≤ 𝑑ℓ

∑
𝑝

(log 𝑝)𝑐ℓ
𝑝

𝑁ℓ

𝑝
≤ 𝑒ℓ 𝑁

ℓ , (14)

for all 𝑁 ∈ N, where to get the first estimate, we used the fact that for some 𝑑ℓ > 0, we have

|ℎ ∈ [𝑁]ℓ : 𝑝 | (𝜖 − 𝜖 ′) · ℎ| ≤ 𝑑ℓ
𝑁ℓ

𝑝

for all 𝑁 ∈ N, and to get the second estimate, we used that
∑

𝑝
(log 𝑝)𝑐ℓ

𝑝2 < ∞.
If we take squares in equation (12), sum over all ℎ ∈ [𝑁]ℓ and then use equations (13) and (14), we

get the asserted estimate. �

From this we deduce the following estimate that is a crucial ingredient used in the proof of
Theorem 2.4:

Corollary 3.4. Let ℓ ∈ N. Then for every 𝐴 ≥ 1, there exist𝐶𝐴,ℓ (ℎ) > 0, ℎ ∈ Nℓ and 𝐷𝐴,ℓ > 0 such that

1. for all 𝑁 ∈ N, ℎ = (ℎ1, . . . , ℎℓ) ∈ (Nℓ)∗, 𝑐 ∈ N, such that 𝑐 + ℎ1 + · · · + ℎℓ ≤ 𝑁𝐴, we have

E𝑛∈[𝑁 ] (ΔℎΛ
′) (𝑛 + 𝑐) ≤ 𝐶𝐴,ℓ (ℎ);

2. Eℎ∈[𝐻 ]ℓ (𝐶𝐴,ℓ (ℎ))2 ≤ 𝐷𝐴,ℓ for every 𝐻 ∈ N.

Remark. We will use this result in the proof of Lemma 4.1 for values of c that are larger than N and
smaller than 𝑁𝐴 for some 𝐴 > 0 (the choice of A depends on the situation).

Proof. Since Λ′ is supported on primes and 𝑐 + ℎ1 + · · · + ℎℓ ≤ 𝑁𝐴, we have that
∑

𝑛∈[𝑁 ]
(ΔℎΛ

′) (𝑛 + 𝑐) ≤ |{𝑛 ∈ [𝑁] : 𝑛 + 𝑐 + cube(ℎ) ∈ P2ℓ }| · (log(𝑁 + 𝑁𝐴))2ℓ ,
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where 𝑛 + 𝑐 is a vector with 2ℓ coordinates, all equal to 𝑛 + 𝑐. Note that for ℎ ∈ (Nℓ)∗, we can apply
Theorem 3.2, and we get that there exists 𝐷𝐴,ℓ > 0 such that for every 𝑁 ∈ N, the last expression is
bounded by

𝐷𝐴,ℓ𝔊2ℓ (cube(ℎ)) 𝑁.

If we let 𝐶𝐴,ℓ (ℎ) := 𝐷𝐴,ℓ𝔊2ℓ (cube(ℎ)) and ℎ ∈ Nℓ and use Proposition 3.3, we get that properties (𝑖)
and (𝑖𝑖) hold. �

3.3. Two elementary lemmas

We will use the following inner product space variant of a classical elementary estimate of van der
Corput (see [22, Lemma 3.1]):

Lemma 3.5. Let 𝑁 ∈ N and (𝑢(𝑛))𝑛∈[𝑁 ] be vectors in some inner product space. Then for all 𝐻 ∈ [𝑁],
we have

��E𝑛∈[𝑁 ] 𝑢(𝑛)
��2 ≤ 2

𝐻
E𝑛∈[𝑁 ] ‖𝑢(𝑛)‖2 + 4Eℎ∈[𝐻 ]

(
1 − ℎ

𝐻

)
�
( 1
𝑁

𝑁−ℎ∑
𝑛=1

〈𝑢(𝑛 + ℎ), 𝑢(𝑛)〉
)
.

We will apply the previous lemma in the following two cases, depending on the range of the shift
parameter h (the first case will be used when the relevant sequences are not necessarily bounded).

1. If 𝑀𝑁 := 1+max𝑛∈[𝑁 ] ‖𝑢𝑁 (𝑛)‖2, 𝑁 ∈ N and 𝐿𝑁 are such that 𝑀𝑁 ≺ 𝐿𝑁 ≺ 𝑁
𝑀𝑁

, then for 𝐻 := 𝐿𝑁 ,
we have

��E𝑛∈[𝑁 ] 𝑢𝑁 (𝑛)
��2 ≤ 4Eℎ∈[𝐿𝑁 ]

���E𝑛∈[𝑁 ] 〈𝑢𝑁 (𝑛 + ℎ), 𝑢𝑁 (𝑛)〉
��� + 𝑜𝑁 (1), (15)

where for every fixed 𝑁 ∈ N, the sequence (𝑢𝑁 (𝑛)) is either defined on the larger interval [𝑁 + 𝐿𝑁 ]
or extended to be zero outside the interval [𝑁]. In all the cases where we will apply this estimate,
we have 𝑀𝑁  (log 𝑁)𝐴 for some 𝐴 > 0, and we take 𝐿𝑁 = [𝑒

√
log 𝑁 ], 𝑁 ∈ N.

2. If the sequence (𝑢𝑁 (𝑛)) is bounded, then we have

lim sup
𝑁→∞

��E𝑛∈[𝑁 ] 𝑢𝑁 (𝑛)
��2 ≤ 4 lim sup

𝐻→∞
Eℎ∈[𝐻 ] lim sup

𝑁→∞

���E𝑛∈[𝑁 ] 〈𝑢𝑁 (𝑛 + ℎ), 𝑢𝑁 (𝑛)〉
���, (16)

where for every fixed 𝑁 ∈ N, the sequence (𝑢𝑁 (𝑛)) is either defined on the larger interval [𝑁 + 𝐻]
or extended to be zero outside the interval [𝑁].

We will also make frequent use of the following simple lemma, or variants of it, to replace error
sequences that take finitely many integer values with constant sequences.

Lemma 3.6. For 𝑓 , ℓ ∈ N, there exists𝐶 𝑓 ,ℓ > 0 such that the following holds: Let (𝑋, ‖·‖) be a normed
space and F be a finite subset of Z with |𝐹 | = 𝑓 , 𝑘 ∈ N, and 𝐼 ⊂ N𝑘 , 𝐽 ⊂ N be finite. For ℎ ∈ 𝐼, consider
sequences 𝐴ℎ : Zℓ → 𝑋 , 𝑏1,ℎ , . . . , 𝑏ℓ,ℎ : 𝐽 → Z, 𝑤ℎ : 𝐽 → C, and 𝑒1,ℎ , . . . , 𝑒ℓ,ℎ : 𝐽 → 𝐹. Then there
exist sequences �̃�ℎ : 𝐽 → C, ℎ ∈ 𝐼, with

���̃�ℎ

��
𝐿∞ (𝐽 ) ≤

��𝑤ℎ

��
𝐿∞ (𝐽 ) and constants 𝜖1, . . . , 𝜖ℓ ∈ 𝐹, such

that
∑
ℎ∈𝐼

���
���∑
𝑛∈𝐽

𝑤ℎ (𝑛) · 𝐴ℎ (𝑏1,ℎ (𝑛) + 𝑒1,ℎ (𝑛), . . . , 𝑏ℓ,ℎ (𝑛) + 𝑒ℓ,ℎ (𝑛))
���
��� ≤

𝐶 𝑓 ,ℓ

∑
ℎ∈𝐼

���
���∑
𝑛∈𝐽

�̃�ℎ (𝑛) · 𝐴ℎ (𝑏1,ℎ (𝑛) + 𝜖1, . . . , 𝑏ℓ,ℎ (𝑛) + 𝜖ℓ)
���
���.
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Remark. Often, when this estimate is used, the sequence 𝐴ℎ is defined only on a subset of Zℓ , and we
assume that it is extended to be zero at the elements where it is not defined.

Proof. The expression on the left-hand side is bounded by

𝑡∑
𝑗=1

∑
ℎ∈𝐼

���
���∑
𝑛∈𝐽

𝑤ℎ (𝑛) · 𝐴ℎ (𝑏1,ℎ (𝑛) + 𝑒1,ℎ (𝑛), . . . , 𝑏ℓ,ℎ (𝑛) + 𝑒ℓ,ℎ (𝑛)) · 1𝐸 𝑗,ℎ (𝑛)
���
���,

where for 𝑡 = 𝑓 ℓ , the sets 𝐸1,ℎ , . . . , 𝐸𝑡 ,ℎ form a partition of N into sets (possibly empty) on which all
the sequences 𝑒1,ℎ , . . . , 𝑒ℓ,ℎ are constant (and the constants do not depend on ℎ). If the maximum of the
summands over j occurs for some 𝑗0 ∈ [𝑡], then there exist 𝜖1, . . . , 𝜖ℓ ∈ 𝐹 such that for all 𝑛 ∈ 𝐸 𝑗0 ,ℎ ,
we have 𝑒𝑖,ℎ (𝑛) = 𝜖𝑖 , 𝑖 ∈ [ℓ], ℎ ∈ 𝐼. Hence, the last sum is bounded by

𝑡
∑
ℎ∈𝐼

���
���∑
𝑛∈𝐽

�̃�ℎ (𝑛) · 𝐴ℎ (𝑏1,ℎ (𝑛) + 𝜖1, . . . , 𝑏ℓ,ℎ (𝑛) + 𝜖ℓ)
���
���,

where �̃�ℎ (𝑛) := 𝑤ℎ (𝑛) · 1𝐸 𝑗0 ,ℎ
(𝑛), 𝑛 ∈ 𝐽, ℎ ∈ 𝐼. �

We will use the previous lemma to handle some error sequences that occur when we use the Taylor
expansion in order to perform some approximations and when we replace the sum (or the difference) of
the integer parts of sequences with the corresponding integer part of their sum (or the difference), and
vice versa. For instance, if 𝑒1 (𝑛), . . . 𝑒ℓ (𝑛) ∈ (−1, 1), 𝑛 ∈ [𝑁], we have

��E𝑛∈[𝑁 ] 𝑤(𝑛) · 𝐴([𝑎1 (𝑛) + 𝑏1(𝑛) + 𝑒1(𝑛)], . . . , [𝑎ℓ (𝑛) + 𝑏ℓ (𝑛) + 𝑒ℓ (𝑛)])
�� ≤

4ℓ
��E𝑛∈[𝑁 ] �̃�(𝑛) · 𝐴([𝑎1 (𝑛)] + [𝑏1(𝑛)] + 𝜖1, . . . , [𝑎ℓ (𝑛)] + [𝑏ℓ (𝑛)] + 𝜖ℓ)

��
for some 𝜖1, . . . , 𝜖ℓ ∈ {−1, 0, 1, 2} and �̃� : [𝑁] → C with ‖�̃�‖𝐿∞ [𝑁 ] ≤ ‖𝑤‖𝐿∞ [𝑁 ] . Often the constants
𝜖1, . . . , 𝜖ℓ make no difference for our argument and can be ignored.

4. Seminorm estimates – sublinear case

The goal of this section is to establish Theorem 3.1 in the case where all the iterates have fractional
degree smaller than 1; see Proposition 4.4 below.

4.1. An example

We explain in some detail how the proof of Theorem 3.1 works when 𝑘 = 1, ℓ = 2 and 𝑎1 (ℎ, 𝑡) :=
𝑝1 (ℎ)𝑡0.5 + 𝑞1 (ℎ)𝑡0.1, 𝑎2 (ℎ, 𝑡) := 𝑝2 (ℎ)𝑡0.5 + 𝑞2 (ℎ)𝑡0.1, ℎ ∈ N, 𝑡 ∈ R+. We assume that 𝑝1 ≠ 0 and
𝑎1, 𝑎2, 𝑎1 − 𝑎2 are nonzero.

We also assume that the sequence of weights (𝑤𝑁 ,ℎ (𝑛)) is defined by

𝑤𝑁 ,ℎ (𝑛) := Λ′(𝑛) · Λ′(𝑛 + ℎ) · 𝑐𝑁 ,ℎ (𝑛), ℎ ∈ [𝐿𝑁 ], 𝑛 ∈ [𝑁], 𝑁 ∈ N,

where (𝑐𝑁 ,ℎ (𝑛)) is a 1-bounded sequence.
Our aim is to show that there exists 𝑠 ∈ N such that if ||| 𝑓1 |||𝑠 = 0, then

lim
𝑁→∞

Eℎ∈[𝐿𝑁 ]

�����E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ (𝑛) ·
2∏
𝑖=1

𝑇 [𝑝𝑖 (ℎ)𝑛0.5+𝑞𝑖 (ℎ)𝑛0.1 ] 𝑓𝑖

�����
𝐿2 (𝜇)

= 0.
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Step 1. Our first goal is to use the number theory feedback of Section 3.2 to reduce matters to showing
mean convergence to zero for some other averages with bounded weights 𝑤𝑁 ,ℎ (this step corresponds
to Lemma 4.1 below). We let

𝑝(ℎ) := [max{|𝑝1 | (ℎ), |𝑝2 | (ℎ), |𝑞1 | (ℎ), |𝑞2 | (ℎ)}10] + 1, ℎ ∈ N.

Note that p is not a polynomial, but this will not bother us. After splitting the average over [𝑁] into
subintervals, we see (this reduction will be explained in more detail in the proof of Lemma 4.1) that it
suffices to show mean convergence to zero for

Eℎ∈[𝐿𝑁 ]

�����E𝑛∈𝐼𝑁,ℎ E𝑛1∈𝐽𝑛,ℎ 𝑤𝑁 ,ℎ (𝑛1) ·
2∏
𝑖=1

𝑇 [𝑝𝑖 (ℎ)𝑛0.5
1 +𝑞𝑖 (ℎ)𝑛0.1

1 ] 𝑓𝑖

�����
𝐿2 (𝜇)

,

where

𝐼𝑁 ,ℎ := [𝑁0.5𝑝(ℎ)], 𝐽𝑛,ℎ :=
[(𝑛 − 1
𝑝(ℎ)

)2
,
( 𝑛

𝑝(ℎ)

)2)
, 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ], 𝑁 ∈ N.

For convenience, we write

𝐽𝑛,ℎ = (𝑘𝑛,ℎ , 𝑘𝑛,ℎ + 𝑙𝑛,ℎ], 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ], 𝑁 ∈ N

for some 𝑘𝑛,ℎ , 𝑙𝑛,ℎ ∈ N.
Note that for fixed 𝑛, ℎ ∈ N, when 𝑛1 ranges in 𝐽𝑛,ℎ , the value of 𝑝1 (ℎ)𝑛0.5

1 ranges in an interval of
length at most 1; the same property holds for the values of 𝑝2 (ℎ)𝑛0.5

1 , 𝑞1(ℎ)𝑛0.1
1 , 𝑞2(ℎ)𝑛0.1

1 . Hence, for
𝑛1 ∈ 𝐽𝑛,ℎ , we have

𝑝𝑖 (ℎ)𝑛0.5
1 + 𝑞𝑖 (ℎ)𝑛0.1

1 =
𝑝𝑖 (ℎ)
𝑝(ℎ) 𝑛 + 𝑞𝑖 (ℎ)

( 𝑛

𝑝(ℎ)

)0.2
+ 𝑒𝑖 (ℎ, 𝑛, 𝑛1), 𝑖 = 1, 2,

where 𝑒1(ℎ, 𝑛, 𝑛1), 𝑒2(ℎ, 𝑛, 𝑛1) are bounded by 2 for all 𝑛1 ∈ 𝐽𝑛,ℎ , 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ], 𝑁 ∈ N. Using
Lemma 3.6, and since replacing 𝑓𝑖 with 𝑇 𝜖𝑖,𝑁 𝑓𝑖 , 𝑖 = 1, 2, where 𝜖1,𝑁 , 𝜖2,𝑁 take finitely many values for
𝑁 ∈ N, does not introduce changes to our argument, we can ignore these error terms. We are thus left
with showing convergence to zero for

Eℎ∈[𝐿𝑁 ]

�����E𝑛∈𝐼𝑁,ℎ �̃�𝑁 ,ℎ (𝑛) ·
2∏
𝑖=1

𝑇

[
𝑝𝑖 (ℎ)
𝑝 (ℎ) 𝑛+𝑞𝑖 (ℎ) (

𝑛
𝑝 (ℎ) )

0.2
]
𝑓𝑖

�����
𝐿2 (𝜇)

,

where for 𝑛 ∈ [𝐼𝑁 ,ℎ], ℎ ∈ [𝐿𝑁 ], 𝑁 ∈ N, we let

�̃�𝑁 ,ℎ (𝑛) := E𝑛1∈𝐽𝑛,ℎ 𝑤𝑁 ,ℎ (𝑛1) = E𝑛1∈[𝑙𝑛,ℎ ] Λ
′(𝑛1 + 𝑘𝑛,ℎ) · Λ′(𝑛1 + 𝑘𝑛,ℎ + ℎ) · 𝑐𝑁 ,ℎ (𝑛1 + 𝑘𝑛,ℎ). (17)

From the definition of 𝑘𝑛,ℎ , 𝑙𝑛,ℎ , 𝐿𝑁 , we get that there exists 𝑁0 = 𝑁0 (𝑝) ∈ N such that

𝑘𝑛,ℎ + ℎ ≤ 𝑙3𝑛,ℎ , for all 𝑛 ∈ [𝑁0.4, 𝑁0.5𝑝(ℎ)], ℎ ∈ [𝐿𝑁 ], 𝑁 ≥ 𝑁0.

Using Corollary 3.4 (with ℓ = 1, 𝐴 = 3, 𝑐 = 𝑘𝑛,ℎ , 𝑁 = 𝑙𝑛,ℎ), we see that there exist 𝐷 > 0 and 𝐶 (ℎ),
ℎ ∈ N, such that for the above-mentioned values of 𝑛, ℎ, 𝑁 , we can write

�̃�𝑁 ,ℎ (𝑛) = 𝐶 (ℎ) · 𝑧𝑁 ,ℎ (𝑛),
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where (𝑧𝑁 ,ℎ (𝑛)) is 1-bounded and

Eℎ∈[𝐿𝑁 ] (𝐶 (ℎ))2 ≤ 𝐷

for every 𝑁 ∈ N.
We use this estimate, apply the Cauchy-Schwarz inequality and keep in mind that the part of the

intervals 𝐼𝑁 ,ℎ that intersects the interval [𝑁0.4] is negligible for our averages. We deduce that it suffices
to show convergence to zero for

Eℎ∈[𝐿𝑁 ]

�����E𝑛∈𝐼𝑁,ℎ 𝑧𝑁 ,ℎ (𝑛) ·
2∏
𝑖=1

𝑇

[
𝑝𝑖 (ℎ)
𝑝 (ℎ) 𝑛+𝑞𝑖 (ℎ) (

𝑛
𝑝 (ℎ) )

0.2
]
𝑓𝑖

�����
2

𝐿2 (𝜇)

,

where the sequence (𝑧𝑁 ,ℎ (𝑛)) is 1-bounded. We write 𝑛 = 𝑛′𝑝(ℎ) + 𝑠 for some 𝑛′ ∈ [𝑁0.5] and
𝑠 ∈ [𝑝(ℎ)]. For convenience, we also rename 𝑛′ as n and use Lemma 3.6 to treat finite valued error
sequences that are introduced when we approximate 𝑞𝑖 (ℎ) (𝑛 + 𝑠/𝑝(ℎ))0.2 with 𝑞𝑖 (ℎ)𝑛0.2, 𝑖 = 1, 2. We
get that it suffices to show convergence to zero for

Eℎ∈[𝐿𝑁 ]E𝑠∈[𝑝 (ℎ) ]

�����E𝑛∈[𝑁 0.5 ] 𝑧𝑁 ,ℎ,𝑠 (𝑛) ·
2∏
𝑖=1

𝑇 [𝑝𝑖 (ℎ)𝑛+𝑞𝑖 (ℎ)𝑛0.2+𝑒𝑖 (ℎ,𝑠) ] 𝑓𝑖

�����
2

𝐿2 (𝜇)

,

where (𝑧𝑁 ,ℎ,𝑠 (𝑛)) is some other 1-bounded sequence and 𝑒𝑖 (ℎ, 𝑠) := 𝑠 𝑝𝑖 (ℎ)𝑝 (ℎ) , 𝑖 = 1, 2. After replacing
the average E𝑠∈[𝑝 (ℎ) ] with max𝑠∈[𝑝 (ℎ) ] , we are left with dealing with the averages

Eℎ∈[𝐿𝑁 ]

�����E𝑛∈[𝑁 0.5 ] 𝑧𝑁 ,ℎ (𝑛) ·
2∏
𝑖=1

𝑇 [𝑝𝑖 (ℎ)𝑛+𝑞𝑖 (ℎ)𝑛0.2+𝑒𝑖,𝑁 (ℎ) ] 𝑓𝑖

�����
2

𝐿2 (𝜇)

for some other 1-bounded sequence (𝑧𝑁 ,ℎ (𝑛)) and arbitrary sequences of real numbers
(𝑒1,𝑁 (ℎ)), (𝑒2,𝑁 (ℎ)) (which will be eliminated later, so their particular form is not important).

Step 2. Our next goal is to reduce matters to showing mean convergence to zero for averages with
iterates given by polynomials in several variables and real coefficients (this step corresponds to Lemma
4.2 below). After using equation (15) for the average over n, we are left with showing convergence to
zero for

Eℎ,ℎ1∈[𝐿𝑁 ]

���E𝑛∈[𝑁 0.5 ] 𝑐𝑁 ,ℎ,ℎ1 (𝑛) ·
∫ 2∏

𝑖=1
𝑇 [𝑝𝑖 (ℎ) (𝑛+ℎ1)+𝑞𝑖 (ℎ) (𝑛+ℎ1)0.2+𝑒𝑖,𝑁 (ℎ) ] 𝑓𝑖 ·

2∏
𝑖=1

𝑇 [𝑝𝑖 (ℎ)𝑛+𝑞𝑖 (ℎ)𝑛0.2+𝑒𝑖,𝑁 (ℎ) ] 𝑓 𝑖 𝑑𝜇
���,

where (𝑐𝑁 ,ℎ,ℎ1 (𝑛)) is a 1-bounded sequence. We compose with 𝑇−[𝑝2 (ℎ)𝑛+𝑞2 (ℎ)𝑛0.2+𝑒2,𝑁 (ℎ) ] (and not
with 𝑇−[𝑝1 (ℎ)𝑛+𝑞1 (ℎ)𝑛0.2+𝑒1,𝑁 (ℎ) ] because we want the highest fractional degree iterate to be applied to
the function 𝑓1), use that (𝑛 + ℎ1)0.2 can for our purposes be replaced with 𝑛0.2, ignore errors that take
finitely many values using Lemma 3.6 and use the Cauchy-Schwarz inequality. We are left with showing
convergence to zero for

Eℎ,ℎ1∈[𝐿𝑁 ]

���E𝑛∈[𝑁 0.5 ] 𝑐𝑁 ,ℎ,ℎ1 (𝑛) · 𝑇 [ (𝑝1−𝑝2) (ℎ)𝑛+(𝑞1−𝑞2) (ℎ)𝑛0.2+𝑒3,𝑁 (ℎ) ] (𝑇 [𝑝1 (ℎ)ℎ1 ] 𝑓1 · 𝑓 1)
���
𝐿2 (𝜇)

,

where (𝑐𝑁 ,ℎ,ℎ1 (𝑛)) is some other 1-bounded sequence and the sequence (𝑒3,𝑁 (ℎ)) takes arbitrary real
values.
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We consider two cases. Suppose first that 𝑝1 = 𝑝2. Then by assumption, 𝑞1 − 𝑞2 ≠ 0. Repeating the
argument used in Step 1, we are left with showing convergence to zero for

Eℎ,ℎ1∈[𝐿𝑁 ]

���E𝑛∈[𝑁 0.1 ] 𝑐𝑁 ,ℎ,ℎ1 (𝑛) · 𝑇 [ (𝑞1−𝑞2) (ℎ)𝑛+𝑒4,𝑁 (ℎ) ] (𝑇 [𝑝1 (ℎ)ℎ1 ] 𝑓1 · 𝑓 1)
���
𝐿2 (𝜇)

for some other 1-bounded sequence of complex numbers (𝑐𝑁 ,ℎ,ℎ1 (𝑛)) and (𝑒4,𝑁 (ℎ)) arbitrary se-
quence of real numbers. Using as above equation (15) for the average over n, composing with
𝑇−[(𝑞1−𝑞2) (ℎ)𝑛+𝑒4,𝑁 (ℎ) ] and then using the Cauchy-Schwarz inequality and Lemma 3.6 to treat errors,
we are left with showing mean convergence to zero for

Eℎ,ℎ1 ,ℎ2∈[𝐿𝑁 ] 𝑐𝑁 ,ℎ,ℎ1 ,ℎ2 (𝑛) · 𝑇 [ (𝑞1−𝑞2) (ℎ)ℎ2+𝑝1 (ℎ)ℎ1 ] 𝑓1 · 𝑇 [ (𝑞1−𝑞2) (ℎ)ℎ2 ] 𝑓 1 · 𝑇 [𝑝1 (ℎ)ℎ1 ] 𝑓 1

for some 1-bounded sequence of complex numbers (𝑐𝑁 ,ℎ,ℎ1 ,ℎ2 (𝑛)).
If 𝑝1 ≠ 𝑝2, we apply equation (15) for the average over n, compose with the transformation

𝑇−[(𝑝1−𝑝2) (ℎ)𝑛+(𝑞1−𝑞2) (ℎ)𝑛0.2+𝑒3,𝑁 (ℎ) ] and use the Cauchy-Schwarz inequality and Lemma 3.6 to treat
errors. We are left with showing mean convergence to zero for

Eℎ,ℎ1 ,ℎ2∈[𝐿𝑁 ] 𝑐𝑁 ,ℎ,ℎ1 ,ℎ2 (𝑛) · 𝑇 [ (𝑝1−𝑝2) (ℎ)ℎ2+𝑝1 (ℎ)ℎ1 ] 𝑓1 · 𝑇 [ (𝑝1−𝑝2) (ℎ)ℎ2 ] 𝑓 1 · 𝑇 [𝑝1 (ℎ)ℎ1 ] 𝑓 1

for some other 1-bounded sequence of complex numbers (𝑐𝑁 ,ℎ,ℎ1 ,ℎ2 (𝑛)).

Step 3. In Step 2, we were led to show mean convergence to zero for averages with iterates given
by nonconstant polynomials with real coefficients in several variables that have pairwise nonconstant
differences. For such averages, one can argue as in [23] to show that there exists 𝑠 ∈ N such that if
||| 𝑓1 |||𝑠 = 0, then we have mean convergence to zero. For more details, see the proof of Lemma 4.3 below.
This achieves our goal.

4.2. Reduction to averages with bounded weights and change of variables

Our first goal is to prove the following result that allows us to restrict to the case where the weights
𝑤𝑁 ,ℎ are 1-bounded and also allows us to perform the substitution 𝑛 ↦→ 𝑛1/𝑑 .

Lemma 4.1. For 𝑘 ∈ Z+, ℓ ∈ N, let 𝑎1, . . . , 𝑎ℓ be a nice collection of fractional polynomials with k-
parameters and suppose that 𝑑 := f-deg(𝑎1) ∈ (0, 1). Then the following holds: If (𝑋, 𝜇, 𝑇) is a system,
𝑓𝑁 ,ℎ,1, . . . , 𝑓𝑁 ,ℎ,ℓ ∈ 𝐿∞(𝜇), ℎ ∈ N𝑘 , 𝑁 ∈ N, are 1-bounded functions, 𝑎 > 0, and

𝑤𝑁 ,ℎ (𝑛) := (ΔℎΛ
′) (𝑛) · 𝑐𝑁 ,ℎ (𝑛) or 𝑤𝑁 ,ℎ (𝑛) := 𝑐𝑁 ,ℎ (𝑛), ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑛 ∈ [𝑁𝑎], 𝑁 ∈ N,

where (𝑐𝑁 ,ℎ (𝑛)) is a 1-bounded sequence, then there exist a 1-bounded sequence (𝑧𝑁 ,ℎ (𝑛)) and
sequences of real numbers (𝑒1,𝑁 (ℎ)), . . . , (𝑒ℓ,𝑁 (ℎ)), such that

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 𝑎 ] 𝑤𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

𝑘,𝑎1 ,...,𝑎ℓ

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 𝑎𝑑 ] 𝑧𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛1/𝑑)+𝑒𝑖,𝑁 (ℎ) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

+ 𝑜𝑁 (1), (18)

where 𝑜𝑁 (1) is a quantity that converges to 0 when 𝑁 → ∞ and all other parameters remain fixed.

Remark. It is important that the function 𝑎1 has sublinear growth; our argument would not work if 𝑎1
had linear or larger than linear growth.

Proof. We cover the case where 𝑤𝑁 ,ℎ (𝑛) = (ΔℎΛ′) (𝑛) · 𝑐𝑁 ,ℎ (𝑛); the case where 𝑤𝑁 ,ℎ (𝑛) = 𝑐𝑁 ,ℎ (𝑛)
is similar (in fact, easier).
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By assumption, we have that 𝑎𝑖 (ℎ, 𝑡) :=
∑𝑟

𝑗=0 𝑝𝑖, 𝑗 (ℎ)𝑡𝑑 𝑗 , 𝑖 = 1, . . . , ℓ, where 0 = 𝑑0 < 𝑑1 < . . . <
𝑑𝑟 = 𝑑 < 1 and 𝑝𝑖, 𝑗 ∈ R[𝑡1, . . . , 𝑡𝑘 ] with 𝑝1,𝑟 ≠ 0. We let

𝑝(ℎ) :=
[

max
𝑖, 𝑗

{|𝑝𝑖, 𝑗 | (ℎ)}
1
𝑑1
]
+ 1, ℎ ∈ N𝑘 .

For ℎ ∈ [𝐿𝑁 ]𝑘 , after partitioning [𝑁𝑎] into subintervals, we deduce that it suffices to get an upper
bound for the averages

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈𝐼𝑁,ℎ E
∗
𝑛1∈𝐽𝑛,ℎ 𝑤𝑁 ,ℎ (𝑛1) ·

ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛1) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

,

where

𝐼𝑁 ,ℎ := [𝑁𝑎𝑑 𝑝(ℎ)], 𝐽𝑛,ℎ :=
[(𝑛 − 1
𝑝(ℎ)

) 1
𝑑
,
( 𝑛

𝑝(ℎ)

) 1
𝑑
)
, 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N,

and for 𝐷 : N→ C and fixed 𝑁 ∈ N, 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , we let

E
∗
𝑛1∈𝐽𝑛,ℎ𝐷 (𝑛1) :=

1
𝑁𝑎/|𝐼𝑁 ,ℎ |

∑
𝑛1∈𝐽𝑛,ℎ

𝐷 (𝑛1). (19)

Note that an application of the mean value theorem gives

|𝐽𝑛,ℎ | ≤
1
𝑑

(𝑁𝑎𝑑 𝑝(ℎ)) 1
𝑑 −1

𝑝(ℎ) 1
𝑑

=
1
𝑑
· 𝑁𝑎

|𝐼𝑁 ,ℎ |
, 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N. (20)

For7 convenience, we write

𝐽𝑛,ℎ = (𝑘𝑛,ℎ , 𝑘𝑛,ℎ + 𝑙𝑛,ℎ], 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N

for some 𝑘𝑛,ℎ , 𝑙𝑛,ℎ ∈ N. Note that for 𝑖 = 1, . . . , ℓ, 𝑗 = 1, . . . , 𝑟 and fixed 𝑛, ℎ, when 𝑛1 ranges on 𝐽𝑛,ℎ ,
the values of 𝑝𝑖, 𝑗 (ℎ)𝑛

𝑑 𝑗

1 belong to an interval of length 1. Hence, for 𝑖 = 1, . . . , ℓ, we can write

𝑎𝑖 (ℎ, 𝑛1) = 𝑎𝑖 (ℎ, (𝑛/𝑝(ℎ))1/𝑑) + 𝜖𝑖 (ℎ, 𝑛, 𝑛1),

where 𝜖𝑖 (ℎ, 𝑛, 𝑛1) is bounded by r for all 𝑛1 ∈ 𝐽𝑛,ℎ , 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N.
The terms 𝜖𝑖 (ℎ, 𝑛, 𝑛1) can be easily taken care by using Lemma 3.6 and appropriately modifying

(𝑐𝑁 ,ℎ (𝑛)) to another bounded sequence of weights. We deduce that it suffices to get an upper bound for
the averages

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈𝐼𝑁,ℎ 1𝐼 ′
𝑁,ℎ

(𝑛) �̃�𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ, (𝑛/𝑝 (ℎ))1/𝑑) ]+𝜖𝑖,𝑁 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

, (21)

where 𝐼 ′𝑁 ,ℎ := [𝑁 𝑎𝑑
2 , 𝑁𝑎𝑑 𝑝(ℎ)], 𝑁 ∈ N (the indicator introduces a negligible 𝑜𝑁 (1) term),

𝜖1,𝑁 , . . . , 𝜖ℓ,𝑁 take finitely many values for 𝑁 ∈ N, and for 𝑛 ∈ [𝐼𝑁 ,ℎ], ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N, we let

�̃�𝑁 ,ℎ (𝑛) := E∗𝑛1∈𝐽𝑛,ℎ 𝑤𝑁 ,ℎ (𝑛1). (22)

We used that 𝐿𝑁 ,Λ′(𝑁) ≺ 𝑁 𝜀 for all 𝜀 > 0 to justify that inserting the indicator 1𝐼 ′
𝑁,ℎ

only introduces
an 𝑜𝑁 (1) term, which is fine for our purposes.

7We crucially used here that fractional polynomials do not grow too slowly. The estimate would fail if, for example, for ℓ = 1,
we started with 𝑎1 (𝑡) := log 𝑡 .
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Using that (𝑐𝑁 ,ℎ (𝑛)) is 1-bounded, ((ΔℎΛ′) (𝑛)) is nonnegative and equations (19) and (20), we
deduce that

|�̃�𝑁 ,ℎ (𝑛) | ≤ 𝑑−1 · E𝑛1∈𝐽𝑛,ℎ (ΔℎΛ
′) (𝑛1) = 𝑑−1 · E𝑛1∈[𝑙𝑛,ℎ ] (ΔℎΛ

′) (𝑛1 + 𝑘𝑛,ℎ). (23)

From the definition of 𝑙𝑛,ℎ and the mean value theorem, we have that

𝑙𝑛,ℎ ≥ 𝑛
1
𝑑 −1

𝑑 (𝑝(ℎ)) 1
𝑑

, 𝑛 ∈ N.

Since 𝐿𝑁 ≺ 𝑁 𝜀 for every 𝜀 > 0 and 𝑘𝑛,ℎ ≤ 𝑛1/𝑑 , it follows that if 𝐴 > 1
1−𝑑 – for example, if 𝐴 := 1

1−𝑑 +1
– then there exists 𝑁0 = 𝑁0 (𝑑, 𝑝) ∈ N such that for all 𝑁 ≥ 𝑁0 and all 𝑛 ∈ 𝐼 ′𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , we have

𝑘𝑛,ℎ ≤ 𝑙𝐴𝑛,ℎ .

Hence,8 there exists 𝑁1 = 𝑁1 (𝑑, 𝑘, 𝑝) ∈ N such that for all 𝑁 ≥ 𝑁1, we have for all 𝑛 ∈ 𝐼 ′𝑁 ,ℎ and
ℎ = (ℎ1, . . . , ℎ𝑘 ) ∈ [𝐿𝑁 ]𝑘 that

𝑘𝑛,ℎ + ℎ1 + · · · + ℎ𝑘 ≤ 𝑙𝐴𝑛,ℎ .

We will combine this with the identity

(ΔℎΛ
′) (𝑛) =

∏
𝜖 ∈{0,1}𝑘

Λ′(𝑛 + 𝜖 · ℎ),

the estimate equation (23) and Corollary 3.4 (with ℓ := 𝑘 , 𝑐 := 𝑘𝑛,ℎ , 𝑁 := 𝑙𝑛,ℎ , 𝐴 := 1
1−𝑑 + 1). We

deduce that there exist 𝐶 = 𝐶 (𝑑, 𝑘) > 0 and 𝐶𝑑,𝑘 (ℎ) > 0, ℎ ∈ N𝑘 , such that for all large enough N
(depending only on 𝑑, 𝑘, 𝑝), for every 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ ([𝐿𝑁 ]𝑘 )∗, we can write

�̃�𝑁 ,ℎ (𝑛) = 𝐶𝑑,𝑘 (ℎ) · 𝑧𝑁 ,ℎ (𝑛), (24)

where (𝑧𝑁 ,ℎ (𝑛)) is 1-bounded and

Eℎ∈[𝐿𝑁 ]𝑘 (𝐶𝑑,𝑘 (ℎ))2 ≤ 𝐶 (25)

for every 𝑁 ∈ N.
Note that since 𝐿𝑁 � (log 𝑁)𝐾 for every 𝐾 > 0 and Λ′(𝑛) ≤ log 𝑛, for every 𝑛 ∈ N, we have that

maxℎ∈[𝐿𝑁 ]𝑘 ,𝑛∈[𝑁 ] (�̃�𝑁 ,ℎ (𝑛))2 ≺ 𝐿𝑁 . Using this, and since by equation (11), we have that 1
𝐿𝑘
𝑁

| [𝐿𝑁 ]𝑘 \
([𝐿𝑁 ]𝑘 )∗ | 𝑘

1
𝐿𝑁

, we deduce that we can redefine𝐶 (ℎ) on the complement of ([𝐿𝑁 ]𝑘 )∗ so that for all
large enough N (depending on 𝑑, 𝑘, 𝑝), equation (24) holds for all 𝑛 ∈ 𝐼𝑁 ,ℎ , ℎ ∈ [𝐿𝑁 ]𝑘 , and equation
(25) also holds (for some larger constant 𝐶 ′ in place of C).

We now use equations (24) and (25) and the Cauchy-Schwarz inequality to bound the averages in
equation (21). We can also remove the indicator 1𝐼 ′

𝑁,ℎ
(𝑛) since it has a negligible effect on our averages.

We deduce that it suffices to get an upper bound for the averages

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈𝐼𝑁,ℎ 𝑧𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ, (𝑛/𝑝 (ℎ))1/𝑑) ]+𝜖𝑖,𝑁 𝑓𝑁 ,ℎ,𝑖

�����
2

𝐿2 (𝜇)

.

8In the process of deriving this estimate, we crucially used that sublinear fractional polynomials are not too close to linear
ones. The estimate would fail if, for example, for ℓ = 1, we started with 𝑎1 (𝑡) := 𝑡/log 𝑡 .
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Note that since the weights and functions are bounded, it suffices to get an upper bound for the previous
expression, ignoring the square. For ℎ ∈ [𝐿𝑁 ]𝑘 , we can express 𝑛 ∈ 𝐼𝑁 ,ℎ as 𝑛 = 𝑛′𝑝(ℎ) + 𝑠 for some
𝑛′ ∈ [𝑁𝑎𝑑] or 𝑛′ = 0 and 𝑠 ∈ [𝑝(ℎ)]. After renaming 𝑛′ as n for convenience, we are led to upper-
bounding the averages

Eℎ∈[𝐿𝑁 ]𝑘E𝑠∈[𝑝 (ℎ) ]

�����E𝑛∈[𝑁 𝑎𝑑 ] 𝑧𝑁 ,ℎ,𝑠 (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ, (𝑛+𝑠/𝑝 (ℎ))1/𝑑) ]+𝜖𝑖,𝑁 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

(26)

for some 1-bounded sequence (𝑧𝑁 ,ℎ,𝑠 (𝑛)). Note that if 𝑢 ∈ (0, 1) and 𝑞 ∈ R[𝑡1, . . . , 𝑡𝑘 ], then an
application of the mean value theorem shows that for every 𝜀 > 0, we have

lim
𝑁→∞

sup
𝑐∈[0,1],ℎ∈[𝐿𝑁 ]𝑘 ,𝑛≥𝑁 𝜀

|𝑞(ℎ) ((𝑛 + 𝑐)𝑢 − 𝑛𝑢) | = 0.

It follows that in equation (26), when computing 𝑎𝑖 (ℎ, (𝑛+ 𝑠/𝑝(ℎ))1/𝑑), we can replace 𝑛+ 𝑠/𝑝(ℎ) with
n in the nonlinear monomials; this will lead to some error sequences that are 1-bounded for large enough
N and can be handled by appealing to Lemma 3.6 (and redefining the sequence 𝑧𝑁 ,ℎ (𝑛)). With this in
mind, it follows that in equation (26), we can replace 𝑎𝑖 (ℎ, (𝑛 + 𝑠/𝑝(ℎ))1/𝑑) with 𝑎𝑖 (ℎ, 𝑛1/𝑑) + 𝑝𝑖,𝑟 (ℎ)

𝑝 (ℎ) 𝑠.
Hence, it suffices to get an upper bound for the averages

Eℎ∈[𝐿𝑁 ]𝑘E𝑠∈[𝑝 (ℎ) ]

�����E𝑛∈[𝑁 𝑎𝑑 ] 𝑧𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛1/𝑑)+𝑒𝑖,𝑁 (ℎ,𝑠) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

,

where 𝑒𝑖,𝑁 (ℎ, 𝑠) := 𝑝𝑖,𝑟 (ℎ)
𝑝 (ℎ) 𝑠 + 𝜖𝑖,𝑁 , 𝑖 = 1, . . . , ℓ and 𝜖1,𝑁 , . . . , 𝜖ℓ,𝑁 take finitely many values for 𝑁 ∈ N.

After replacing the average E𝑠∈[𝑝 (ℎ) ] with max𝑠∈[𝑝 (ℎ) ] , we are led to the asserted upper bound in
equation (18). �

4.3. Reduction to averages with polynomial iterates

For the purposes of the next lemma, it will be convenient to slightly enlarge the class of polynomials
with real exponents that we work with to include those with fractional degree equal to 1.

Lemma 4.2. Let 𝑘 ∈ Z+, ℓ ∈ N and 𝑎1, . . . , 𝑎ℓ : N𝑘 × N → R be a nice collection of polynomials
with real exponents and k-parameters of fractional degree at most 1. Then there exist 𝑙, 𝑟 ∈ N and
nonconstant polynomials 𝑃1, . . . , 𝑃𝑟 ∈ R[𝑡1, . . . , 𝑡𝑘+𝑙], with pairwise nonconstant differences, such
that the following holds: If (𝑋, 𝜇, 𝑇) is a system and 𝑓𝑁 ,ℎ,1, . . . , 𝑓𝑁 ,ℎ,ℓ ∈ 𝐿∞(𝜇), ℎ ∈ N𝑘 , 𝑁 ∈ N, are
1-bounded functions, then for every 𝑎 > 0, sequences of real numbers (𝑒1,𝑁 (ℎ)), . . . , (𝑒ℓ,𝑁 (ℎ)) and
1-bounded sequence of complex numbers (𝑐𝑁 ,ℎ (𝑛)), we have

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 𝑎 ] 𝑐𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛)+𝑒𝑖,𝑁 (ℎ) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

𝑘,𝑎1 ,...,𝑎ℓ

Eℎ1∈[𝐿𝑁 ]𝑘 ,ℎ2∈[𝐿𝑁 ]𝑙
���
∫ 𝑟∏

𝑖=0
𝑇 [𝑃𝑖 (ℎ1 ,ℎ2) ]+𝜖𝑖,𝑁 𝐹𝑁 ,ℎ1 ,𝑖

𝑑𝜇
��� + 𝑜𝑁 (1), (27)

where 𝑃0 := 0, 𝐹𝑁 ,ℎ1 ,𝑖
∈ { 𝑓𝑁 ,ℎ1 ,1, 𝑓 𝑁 ,ℎ1 ,1} for 𝑖 = 0, . . . , 𝑟 , ℎ1 ∈ [𝐿𝑁 ]𝑘 , 𝑁 ∈ N, 𝜖0,𝑁 , . . . , 𝜖𝑟 ,𝑁 take

finitely many values for 𝑁 ∈ N, and 𝑜𝑁 (1) is a quantity that converges to 0 when 𝑁 → ∞ and all other
parameters remain fixed.

Proof. We first reduce to the case where 𝑒𝑖,𝑁 (ℎ) = 0 for 𝑖 = 1, . . . , ℓ. To do this, we replace [𝑎𝑖 (ℎ, 𝑛) +
𝑒𝑖,𝑁 (ℎ)] with [𝑎𝑖 (ℎ, 𝑛)] + [𝑒𝑖,𝑁 (ℎ)]; this introduces some error sequences on the exponents that take
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finitely many values. To treat the error sequences, we use Lemma 3.6, redefine the weight (𝑐𝑁 ,ℎ (𝑛)) and
introduce some sequences 𝜖1,𝑁 , . . . , 𝜖ℓ,𝑁 that take finitely many values for 𝑁 ∈ N. Next, we compose
with 𝑇−[𝑒1,𝑁 (ℎ) ]−𝜖1,𝑁 , and we are left with upper-bounding the expression

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 𝑎 ] 𝑐𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛) ] (𝑇 [𝑒𝑖,𝑁 (ℎ) ]−[𝑒1,𝑁 (ℎ) ]+𝜖𝑖,𝑁−𝜖1,𝑁 𝑓𝑁 ,ℎ,𝑖)

�����
𝐿2 (𝜇)

.

If we rename for 𝑖 = 2, . . . , ℓ the functions 𝑇 [𝑒𝑖,𝑁 (ℎ) ]−[𝑒1,𝑁 (ℎ) ]+𝜖𝑖,𝑁−𝜖1,𝑁 𝑓𝑁 ,ℎ,𝑖 as 𝑓𝑁 ,ℎ,𝑖 , we are reduced
to bounding equation (27) when 𝑒𝑖,𝑁 (ℎ) = 0 for 𝑖 = 1, . . . , ℓ.

We will prove the statement by induction on ℓ ∈ N. For ℓ = 1, the argument is similar to the one used
in the inductive step, so we only summarise it briefly (for more details; see Steps 1–3 below). We first
use Lemma 4.1, and we are led to upper-bounding the averages

Eℎ∈[𝐿𝑁 ]𝑘
���E𝑛∈[𝑁 𝑎 ] 𝑐𝑁 ,ℎ (𝑛) · 𝑇 [𝑝1 (ℎ)𝑛+𝑞1 (ℎ,𝑛) ] 𝑓𝑁 ,ℎ,1

���
𝐿2 (𝜇)

,

where 𝑝1 ≠ 0 and 𝑞1 is a polynomial with real exponents and f-deg(𝑞1) < 1. We then apply equation
(15) for the average over n, compose with 𝑇−[𝑝1 (ℎ)𝑛+𝑞1 (ℎ,𝑛) ] , use that 𝑞1(ℎ, 𝑛 + ℎ𝑘+1) − 𝑞1 (ℎ, 𝑛) is
negligible for the range of parameters we are interested in and use Lemma 3.6 to treat the finite valued
error sequences that arise. We get an upper bound by the averages

Eℎ∈[𝐿𝑁 ]𝑘 ,ℎ𝑘+1∈[𝐿𝑁 ]

���
∫
𝑇 [𝑝1 (ℎ)ℎ𝑘+1 ]+𝜖𝑁 𝑓𝑁 ,ℎ,1 · 𝑓 𝑁 ,ℎ,1 𝑑𝜇

���,

where 𝜖𝑁 takes finitely many values for 𝑁 ∈ N. This proves equation (27) (with ℓ = 𝑟 = 1).
Suppose that ℓ ≥ 2 and the statement holds for all nice collections of ℓ − 1 polynomials with real

exponents and finitely many parameters.
We have that 𝑎𝑖 (ℎ, 𝑡) :=

∑𝑟
𝑗=1 𝑝𝑖, 𝑗 (ℎ)𝑡𝑑 𝑗 , 𝑖 = 1, . . . , ℓ, where 0 ≤ 𝑑1 < · · · < 𝑑𝑟 = 𝑑 ≤ 1 and

𝑝𝑖, 𝑗 ∈ R[𝑡1, . . . , 𝑡𝑘 ]. Furthermore, we can assume that the polynomial 𝑝1,𝑟 is nonzero, and hence the
fractional degree of 𝑎1 is d.

Step 1 (Linearising the highest-order term). If the fractional degree of 𝑎1 is 1, then we proceed to Step
2. If not, then Lemma 4.1 (for 𝑤𝑁 ,ℎ := 𝑐𝑁 ,ℎ) applies, and we get an estimate of the form equation (18).
Hence, to get an estimate of the form equation (27), it suffices to get a similar estimate for the averages

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 𝑎𝑑 ] 𝑐𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [�̃�𝑖 (ℎ,𝑛) ]+𝑒𝑖,𝑁 (ℎ) 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

,

where (𝑐𝑁 ,ℎ (𝑛)) is another 1-bounded sequence, (𝑒1,𝑁 (ℎ)), . . . , (𝑒ℓ,𝑁 (ℎ)) are sequences of real num-
bers and

�̃�𝑖 (ℎ, 𝑡) := 𝑝𝑖,𝑟 (ℎ) 𝑡 + 𝑞𝑖 (ℎ, 𝑡), where 𝑞𝑖 (ℎ, 𝑡) :=
𝑟−1∑
𝑗=1

𝑝𝑖, 𝑗 (ℎ) 𝑡
𝑑𝑗
𝑑 , 𝑖 = 1, . . . , ℓ. (28)

After composing with 𝑇−𝑒1,𝑁 (ℎ) and redefining the functions 𝑓𝑁 ,ℎ,𝑖 , 𝑖 = 2, . . . , ℓ, we are reduced to the
case where 𝑒𝑖,𝑁 (ℎ) = 0 for 𝑖 = 1, . . . , ℓ. So we only treat this case henceforth. We also remark that
since the collection 𝑎1, . . . , 𝑎ℓ is nice, and �̃�𝑖 (ℎ, 𝑡) = 𝑎𝑖 (ℎ, 𝑡1/𝑑), 𝑖 = 1, . . . , ℓ, the collection �̃�1, . . . , �̃�ℓ
is also nice.
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Step 2 (Reduction of ℓ via vdC). Applying equation (15) for the average over n, we get that it suffices
to obtain an upper bound for the following averages:

E(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1E𝑛∈[𝑁 𝑎𝑑 ]

���
∫ ℓ∏

𝑖=1
𝑇 [�̃�𝑖 (ℎ,𝑛+ℎ𝑘+1) ] 𝑓𝑁 ,ℎ,𝑖

ℓ∏
𝑖=1

𝑇 [�̃�𝑖 (ℎ,𝑛) ] 𝑓 𝑁 ,ℎ,𝑖 𝑑𝜇
���.

We compose with 𝑇−[�̃�1 (ℎ,𝑛) ] , and for 𝑖 = 1, . . . , ℓ, we replace the differences [�̃�𝑖 (ℎ, 𝑛 + ℎ𝑘+1)] −
[�̃�1 (ℎ, 𝑛)], [�̃�𝑖 (ℎ, 𝑛)] − [�̃�1 (ℎ, 𝑛)] with [�̃�𝑖 (ℎ, 𝑛 + ℎ𝑘+1) − �̃�1 (ℎ, 𝑛)], [�̃�𝑖 (ℎ, 𝑛) − �̃�1 (ℎ, 𝑛)], respectively.
To do so, we have to introduce some error sequences that take values on a finite subset of N. We use
Lemma 3.6 to treat the errors that arise, and we are left with upper-bounding averages of the form

E(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1E𝑛∈[𝑁 𝑎𝑑 ]

���
∫ ℓ∏

𝑖=1
𝑇 [�̃�𝑖 (ℎ,𝑛+ℎ𝑘+1)−�̃�1 (ℎ,𝑛) ]+𝜖𝑖,𝑁 𝑓𝑁 ,ℎ,𝑖 ·

ℓ∏
𝑖=1

𝑇 [�̃�𝑖 (ℎ,𝑛)−�̃�1 (ℎ,𝑛) ]+𝜖 ′𝑖,𝑁 𝑓 𝑁 ,ℎ,𝑖 𝑑𝜇
���,

where 𝜖𝑖,𝑁 , 𝜖 ′𝑖,𝑁 , 𝑖 = 1, . . . , ℓ take finitely many values for 𝑁 ∈ N. Note that the fractional degree of
𝑞1, . . . , 𝑞ℓ is strictly smaller than 1. It follows from this and the mean value theorem that

lim
𝑁→∞

max
(ℎ,ℎ𝑘 ) ∈[𝐿𝑁 ]𝑘+1 ,𝑖∈{1,...,ℓ }

|𝑞𝑖 (ℎ, 𝑡 + ℎ𝑘+1) − 𝑞𝑖 (ℎ, 𝑡) | = 0. (29)

Using equations (28) and (29) and then Lemma 3.6, we get that it suffices to get an upper bound for the
averages

E(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1E𝑛∈[𝑁 𝑎𝑑 ] 𝑐𝑁 ,ℎ,ℎ𝑘+1 (𝑛) ·
∫

(𝑇 [𝑝1,𝑟 (ℎ)ℎ𝑘+1 ]+𝜖1,𝑁 𝑓𝑁 ,ℎ,1 · 𝑓 𝑁 ,ℎ,1)·

ℓ∏
𝑖=2

𝑇 [𝑏𝑖 (ℎ,𝑛) ]+𝜖𝑖,𝑁 𝑓𝑁 ,ℎ,ℎ𝑘+1 ,𝑖 𝑑𝜇,

where 𝜖1,𝑁 , . . . , 𝜖ℓ,𝑁 take finitely many values for 𝑁 ∈ N,

𝑏𝑖 (ℎ, 𝑡) := (𝑝𝑖,𝑟 − 𝑝1,𝑟 ) (ℎ) 𝑡 + (𝑞𝑖 − 𝑞1) (ℎ, 𝑡), 𝑖 = 2, . . . , ℓ,

𝑓𝑁 ,ℎ,ℎ𝑘+1 ,𝑖 ∈ 𝐿∞(𝜇), 𝑖 = 2, . . . , ℓ are 1-bounded functions and (𝑐𝑁 ,ℎ,ℎ𝑘+1 (𝑛)) is a 1-bounded sequence.
Without loss of generality, we can assume that 𝑏ℓ has maximal fractional degree within the collection
𝑏2, . . . , 𝑏ℓ (note that some of the polynomials 𝑝𝑖,𝑟 − 𝑝1,𝑟 may vanish). We compose with 𝑇−[𝑏ℓ (ℎ,𝑛) ]

and apply Lemma 3.6 to treat finite-valued error sequences that we get when we replace differences of
integer parts with the integer part of the corresponding differences. After using the Cauchy-Schwarz
inequality, we deduce that it suffices to get an upper bound for the following averages:

Eℎ𝑘+1∈[𝐿𝑁 ]

(
Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 𝑎𝑑 ] 𝑐𝑁 ,ℎ,ℎ𝑘+1 (𝑛)
ℓ−1∏
𝑖=1

𝑇 [�̃�𝑖 (ℎ,𝑛) ]+𝜖 ′𝑖,𝑁 𝑓𝑁 ,ℎ,ℎ𝑘+1 ,𝑖

�����
𝐿2 (𝜇)

)
, (30)

where 𝜖 ′1,𝑁 , . . . , 𝜖
′
ℓ−1,𝑁 take finitely many values for 𝑁 ∈ N,

�̃�𝑖 (ℎ, 𝑡) := (𝑝𝑖,𝑟 − 𝑝ℓ,𝑟 ) (ℎ) 𝑡 + (𝑞𝑖 − 𝑞ℓ) (ℎ, 𝑡), 𝑖 = 1, . . . , ℓ − 1,
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and

𝑓𝑁 ,ℎ,ℎ𝑘+1 ,1 := 𝑇 [𝑝1,𝑟 (ℎ)ℎ𝑘+1 ]+𝜖1,𝑁 𝑓𝑁 ,ℎ,1 · 𝑓 𝑁 ,ℎ,1, (31)

where 𝜖1,𝑁 takes finitely many values for 𝑁 ∈ N.
Note that our assumptions imply that �̃�1, . . . , �̃�ℓ−1, thought of as a collection of polynomials with

real exponents and (𝑘 + 1)-parameters, is nice.

Step 3 (Applying the induction hypothesis). Using the induction hypothesis for the expression in
equation (30) that is inside the parentheses, and the fact that �̃�1, . . . , �̃�ℓ−1 do not depend on the parameter
ℎ𝑘+1, we get that there exist 𝑙, 𝑟 ∈ N and nonconstant polynomials 𝑃1, . . . , 𝑃𝑟 ∈ R[𝑡1, . . . , 𝑡𝑘+𝑙] with
pairwise nonconstant differences, such that the averages in equation (30) are bounded by an 𝑜𝑁 (1) term
plus a constant 𝐶𝑘,𝑎1 ,...,𝑎ℓ (note that �̃�1, . . . , �̃�ℓ−1 are determined by 𝑎1, . . . , 𝑎ℓ) times the expression

E(ℎ1 ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1 ,ℎ2∈[𝐿𝑁 ]𝑙
���
∫ 𝑟∏

𝑖=0
𝑇 [𝑃𝑖 (ℎ1 ,ℎ2) ]+𝜖 ′𝑖,𝑁 𝐹𝑁 ,ℎ1 ,ℎ𝑘+1 ,𝑖 𝑑𝜇

���,

where 𝑃0 := 0, 𝐹𝑁 ,ℎ,ℎ𝑘+1 ,𝑖 ∈ { 𝑓𝑁 ,ℎ,ℎ𝑘+1 ,1, 𝑓 𝑁 ,ℎ,ℎ𝑘+1 ,1} for 𝑖 = 0, . . . , 𝑟 , ℎ1 ∈ [𝐿𝑁 ]𝑘 , ℎ𝑘+1 ∈ [𝐿𝑁 ],
𝑁 ∈ N and 𝜖 ′0,𝑁 , . . . , 𝜖

′
𝑟 ,𝑁 take finitely many values for 𝑁 ∈ N.

Using equation (31) and Lemma 3.6, we can bound this expression by a constant 𝐶𝑟 times the
following average:

E(ℎ1 ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1 ,ℎ2∈[𝐿𝑁 ]𝑙
���
∫

𝑓𝑁 ,ℎ1 ,1 · 𝑇
[𝑝1,𝑟 (ℎ1)ℎ𝑘+1 ]+𝜖 ′0,𝑁 𝑓 𝑁 ,ℎ1 ,1·

𝑟∏
𝑖=1

(
𝑇 [𝑃𝑖 (ℎ1 ,ℎ2)+𝑝1,𝑟 (ℎ1)ℎ𝑘+1 ]+𝜖 ′𝑖,𝑁𝐺𝑁 ,ℎ1 ,ℎ𝑘+1 ,𝑖 · 𝑇

[𝑃𝑖 (ℎ1 ,ℎ2) ]+𝜖 ′𝑟+𝑖,𝑁𝐺𝑁 ,ℎ1 ,ℎ𝑘+1 ,𝑟+𝑖
)
𝑑𝜇

���,

where for 𝑖 = 1, . . . , 2𝑟 , we have 𝐺𝑁 ,ℎ1 ,ℎ𝑘+1 ,𝑖 ∈ { 𝑓𝑁 ,ℎ1 ,1, 𝑓 𝑁 ,ℎ1 ,1}, ℎ1 ∈ [𝐿𝑁 ]𝑘 , ℎ𝑘+1 ∈ [𝐿𝑁 ], 𝑁 ∈ N,
and 𝜖 ′𝑖,𝑁 , 𝑖 = 0, . . . , 2𝑟 take finitely many values for 𝑁 ∈ N. Since the polynomial 𝑝1,𝑟 is nonzero and the
polynomials 𝑃1, . . . , 𝑃𝑟 with 𝑘 + 𝑙 variables are nonconstant and have nonconstant pairwise differences,
the same holds for the 2𝑟+1 polynomials with 𝑘+𝑙+1 variables 𝑝1,𝑟 (ℎ1)ℎ𝑘+1, 𝑃𝑖 (ℎ1, ℎ2)+𝑝1,𝑟 (ℎ1)ℎ𝑘+1,
𝑃𝑖 (ℎ1, ℎ2), 𝑖 = 1, . . . , 𝑟 . This completes the proof. �

4.4. Averages with polynomial iterates

Lemma 4.1 and Lemma 4.2 show that in the case of iterates with sublinear growth, to get good seminorm
estimates for the averages in Theorem 3.1, it suffices to study averages with iterates given by polynomials
in R[𝑡1, . . . , 𝑡𝑘 ] for some 𝑘 ∈ N. This is the context of the next result.

Lemma 4.3. Let 𝑘, 𝑟 ∈ N and 𝑃1, . . . , 𝑃𝑟 ∈ R[𝑡1, . . . , 𝑡𝑘 ] be nonconstant polynomials with pairwise
nonconstant differences. Then there exists 𝑠 ∈ N such that the following holds: If (𝑋, 𝜇, 𝑇) is an ergodic
system and 𝑓1, . . . , 𝑓𝑟 ∈ 𝐿∞(𝜇) are such that ||| 𝑓𝑖 |||𝑠 = 0 for some 𝑖 ∈ {1, . . . , 𝑟}, then for every 1-bounded
sequence (𝑐𝑁 (ℎ)), we have

lim
𝑁→∞

Eℎ∈[𝑁 ]𝑘 𝑐𝑁 (ℎ) ·
𝑟∏
𝑖=1

𝑇 [𝑃𝑖 (ℎ) ] 𝑓𝑖 = 0

in 𝐿2 (𝜇).

Proof. The argument is similar to the one used to prove [23, Theorem 1], where the case of polynomials
with integer coefficients and 𝑐𝑁 (ℎ) := 1 is covered, so we only sketch the points in the argument
where one has to deviate slightly because of minor technical complications. The proof proceeds by
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induction on a certain vector, called the weight, that is associated to each polynomial family 𝑃1, . . . , 𝑃𝑟
in R[𝑡1, . . . , 𝑡𝑘 ].

The inductive step is carried out by using a variant of Lemma 3.5 in the form used in equation (16)
that concerns averages over [𝑁]𝑘 (see [23, Lemma 4] for the precise statement). The argument applies
verbatim in our case; the only change is that we need at various instances to replace the differences of
the integer part of polynomials with the integer part of their differences; we do this with the help of
Lemma 3.6, and the use of the constants (𝑐𝑁 (ℎ)) facilitates this task.

The base case of the induction is the case where all the polynomials are linear with respect to all
variables involved. This case is covered using another induction, this time on the number r of linear
functions. The inductive step is proved using [23, Lemma 4]. The only difference in our case, versus the
argument used in [23, Proposition 5], appears in the proof of the estimate

lim sup
𝑁→∞

Eℎ∈[𝑁 ]𝑘 |||𝑔 · 𝑇 [𝐿 (ℎ) ] 𝑓 |||2𝑠𝑠 ≤ 𝐶𝐿 ||| 𝑓 |||2𝑠+1

𝑠+1 (32)

for some 𝐶𝐿 > 0, where 𝑓 , 𝑔 ∈ 𝐿∞(𝜇) and 𝐿(ℎ) =
∑𝑘

𝑗=1 𝛼 𝑗ℎ 𝑗 for some 𝑘 ∈ N and 𝛼1, . . . , 𝛼𝑘 ∈ R.
To obtain this bound, we first use Lemma 3.6 to show that it suffices to replace [

∑𝑘
𝑗=1 𝛼 𝑗ℎ 𝑗 ] with∑𝑘

𝑗=1 [𝛼 𝑗ℎ 𝑗 ], and we remark that the set

{([𝛼1ℎ1], . . . , [𝛼𝑘ℎ𝑘 ]) : (ℎ1, . . . , ℎ𝑘 ) ∈ N𝑘 }

has bounded multiplicity and positive density (as a subset of N𝑘 ). It follows that there exists 𝐶𝐿 > 0
such that

lim sup
𝑁→∞

Eℎ∈[𝑁 ]𝑘 |||𝑔 · 𝑇
∑𝑘

𝑗=1 [𝛼𝑗ℎ 𝑗 ] 𝑓 |||2𝑠𝑠 ≤ 𝐶𝐿 lim sup
𝑁→∞

Eℎ∈[𝑁 ]𝑘 |||𝑔 · 𝑇
∑𝑘

𝑗=1 ℎ 𝑗 𝑓 |||2𝑠𝑠 .

By [23, Lemma 8], the last expression is bounded by a constant multiple of ||| 𝑓 |||2𝑠+1

𝑠+1 . Combining the
above, we get that equation (32) holds. Finally, the base case of the induction (of the linear case) is when
𝑟 = 1 and 𝑃1 = 𝐿 is linear. To cover this case, we again use [23, Lemma 4] and reduce matters to the
task of obtaining an upper bound for the expression

lim sup
𝑁→∞

Eℎ∈[𝑁 ]𝑘
���
∫

𝑓 · 𝑇𝐿 (ℎ) 𝑓 𝑑𝜇
���.

By the 𝑠 = 1 case of equation (32) (recall that ||| 𝑓 |||1 = |
∫
𝑓 𝑑𝜇 |), we get an upper bound by 𝐶𝐿 ||| 𝑓 |||22 for

some 𝐶𝐿 > 0. This completes the proof. �

4.5. Proof of Theorem 3.1 in the sublinear case

We are now ready to combine the ingredients of the previous subsections to complete the goal of this
section, which is to prove the following result:

Proposition 4.4. Theorem 3.1 holds in the case where all 𝑎1, . . . , 𝑎ℓ have fractional degree smaller
than one.

Proof. Combining Lemma 4.1 and Lemma 4.2 (for 𝑓𝑁 ,ℎ,1 := 𝑓1, 𝑁 ∈ N, ℎ ∈ N𝑘 ), we get that there
exist 𝑘, 𝑟 ∈ N and nonconstant polynomials 𝑃1, . . . , 𝑃𝑟 ∈ R[𝑡1, . . . , 𝑡𝑘 ], with pairwise nonconstant
differences, such that the averages in equation (8) are bounded by an 𝑜𝑁 (1) term plus a constant
multiple of

Eℎ∈[𝐿𝑁 ]𝑘
���
∫ 𝑟∏

𝑖=0
𝑇 [𝑃𝑖 (ℎ) ]+𝜖𝑖,𝑁 𝐹𝑖,ℎ 𝑑𝜇

���,
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where 𝑃0 := 0, 𝐹0,ℎ , . . . , 𝐹𝑟 ,ℎ ∈ { 𝑓1, 𝑓 1}, ℎ ∈ N𝑘 and the sequences 𝜖0,𝑁 , . . . , 𝜖𝑟 ,𝑁 take values on a
finite subset S of Z for 𝑁 ∈ N. Since the limsup as 𝑁 → ∞ of the previous average is bounded by

∑
𝜖0 ,..., 𝜖𝑟 ∈𝑆, 𝐹0 ,...,𝐹𝑟 ∈{ 𝑓1 , 𝑓 1 }

lim sup
𝑁→∞

(
Eℎ∈[𝐿𝑁 ]𝑘

���
∫ 𝑟∏

𝑖=0
𝑇 [𝑃𝑖 (ℎ) ]+𝜖𝑖𝐹𝑖 𝑑𝜇

���
)
,

it suffices to show that for all fixed 𝜖0, . . . , 𝜖𝑟 ∈ Z and 𝐹0, . . . , 𝐹𝑟 ∈ { 𝑓1, 𝑓 1}, we have

lim
𝑁→∞

Eℎ∈[𝐿𝑁 ]𝑘
���
∫ 𝑟∏

𝑖=0
𝑇 [𝑃𝑖 (ℎ) ]+𝜖𝑖𝐹𝑖 𝑑𝜇

��� = 0.

The last average is equal to

Eℎ∈[𝐿𝑁 ]𝑘 𝑐𝑁 (ℎ) ·
∫ 𝑟∏

𝑖=0
𝑇 [𝑃𝑖 (ℎ)+𝜖𝑖 ]𝐹𝑖 𝑑𝜇

for some 1-bounded sequence (𝑐𝑁 (ℎ)). The result now follows from Lemma 4.3. �

5. Seminorm estimates – induction step

The goal of this section is to finish the proof of Theorem 3.1 using a PET-induction argument. The basis
of the induction was covered in the previous section, and the induction step will be carried out in this
section.

5.1. An example

To better illustrate our method, we first explain the details in a simple case. We take ℓ = 2 and
𝑎1 (𝑡) := 𝑡1.5, 𝑎2 (𝑡) = 𝑡1.5 + 𝑡1.1, 𝑡 ∈ R+. Then {𝑎1, 𝑎2} is a nice family, and our aim is to show that if
||| 𝑓1 |||𝑠 = 0 for some 𝑠 ∈ N, then

lim
𝑁→∞

E𝑛∈[𝑁 ] 𝑤𝑁 (𝑛) · 𝑇 [𝑛1.5 ] 𝑓1 · 𝑇 [𝑛1.5+𝑛1.1 ] 𝑓2 = 0,

where 𝑤𝑁 (𝑛) = Λ′(𝑛) · 𝑐𝑁 (𝑛) for some 1-bounded sequence (𝑐𝑁 (𝑛)).
We start by using equation (15), compose with 𝑇−[𝑛1.5+𝑛1.1 ] , use Lemma 3.6 to dispose the error

sequence that arises when we replace the difference of integer parts with the integer part of the difference
and use the Cauchy-Schwarz inequality. We deduce that it suffices to prove convergence to zero of the
averages

Eℎ1∈[𝐿𝑁 ]

���
���E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ1 (𝑛) · 𝑇 [ (𝑛+ℎ1)1.5−𝑛1.5−𝑛1.1 ] 𝑓1·

𝑇 [ (𝑛+ℎ1)1.5+(𝑛+ℎ1)1.1−𝑛1.5−𝑛1.1 ] 𝑓2 · 𝑇 [−𝑛1.1 ] 𝑓 1

���
���
𝐿2 (𝜇)

,

where 𝑤𝑁 ,ℎ1 (𝑛) := (Δℎ1Λ
′) (𝑛) · 𝑐𝑁 ,ℎ1 (𝑛) for some 1-bounded sequence (𝑐𝑁 ,ℎ1 (𝑛)). Using the mean

value theorem and Lemma 3.6, we get that for the range of ℎ1, 𝑛 we are working with, we can replace
(𝑛 + ℎ1)1.5 − 𝑛1.5 with 1.5 ℎ1𝑛

0.5 and (𝑛 + ℎ1)1.1 − 𝑛1.1 with 1.1 ℎ1𝑛
0.1, which for notational simplicity

we replace with ℎ1𝑛
0.5 and ℎ1𝑛

0.1, respectively. We thus arrive at the problem of proving convergence
to zero of the averages

Eℎ1∈[𝐿𝑁 ]

���E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ1 (𝑛) · 𝑇 [−𝑛1.1+ℎ1𝑛
0.5 ] 𝑓1 · 𝑇 [ℎ1𝑛

0.5+ℎ1𝑛
0.1 ] 𝑓2 · 𝑇 [−𝑛1.1 ] 𝑓 1

���
𝐿2 (𝜇)

.
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Performing one more time the previous operation (we compose with 𝑇−[ℎ1𝑛
0.5+ℎ1𝑛

0.1 ] after applying
equation (15)), we arrive in a similar fashion at the following averages:

Eℎ1 ,ℎ2∈[𝐿𝑁 ]

���
���E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ1 ,ℎ2 (𝑛) · 𝑇 [−𝑛1.1−ℎ2𝑛

0.1 ] 𝑓1 · 𝑇 [−𝑛1.1−ℎ1𝑛
0.5−(ℎ1+ℎ2)𝑛0.1 ] 𝑓 1·

𝑇 [−𝑛1.1−ℎ1𝑛
0.1 ] 𝑓 1 · 𝑇 [−𝑛1.1−ℎ1𝑛

0.5−ℎ1𝑛
0.1 ] 𝑓1

���
���
𝐿2 (𝜇)

,

where 𝑤𝑁 ,ℎ1 ,ℎ2 (𝑛) := (Δℎ1 ,ℎ2Λ
′) (𝑛) · 𝑐𝑁 ,ℎ1 ,ℎ2 (𝑛) for some 1-bounded sequence (𝑐𝑁 ,ℎ1 ,ℎ2 (𝑛)). Af-

ter one more iteration of the previous operation (this time we compose with the transformation
𝑇 [𝑛1.1+ℎ1𝑛

0.5+ℎ1𝑛
0.1 ] after applying equation (15)), we arrive at the averages

Eℎ1 ,ℎ2 ,ℎ3∈[𝐿𝑁 ]

���
���E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ1 ,ℎ2 ,ℎ3 (𝑛) · 𝑇 [ (ℎ1−ℎ2−ℎ3)𝑛0.1+ℎ1𝑛

0.5 ] 𝑓1 · 𝑇 [−(ℎ2+ℎ3)𝑛0.1 ] 𝑓 1·

𝑇 [−ℎ3𝑛
0.1+ℎ1𝑛

0.5 ] 𝑓 1 · 𝑇 [−ℎ3𝑛
0.1 ] 𝑓1 · 𝑇 [ (ℎ1−ℎ2)𝑛0.1+ℎ1𝑛

0.5 ] 𝑓 1 · 𝑇 [−ℎ2𝑛
0.1 ] 𝑓1 · 𝑇 [ℎ1𝑛

0.5 ] 𝑓1

���
���
𝐿2 (𝜇)

,

where 𝑤𝑁 ,ℎ1 ,ℎ2 ,ℎ3 (𝑛) := (Δℎ1 ,ℎ2 ,ℎ3Λ
′) (𝑛) · 𝑐𝑁 ,ℎ1 ,ℎ2 ,ℎ3 (𝑛) for some 1-bounded sequence

(𝑐𝑁 ,ℎ1 ,ℎ2 ,ℎ3 (𝑛)). We have now reduced to the case of fractional polynomials with 3-parameters and
fractional degree smaller than 1. This case was dealt in the previous section, where we showed in Propo-
sition 4.4 that there exists 𝑠 ∈ N such that if ||| 𝑓1 |||𝑠 = 0, then the last averages converge to zero as 𝑁 → ∞.

5.2. The van der Corput operation and reduction of type

In this subsection, we define the type of a family of polynomials with real exponents and finitely many
parameters and the van der Corput operation that reduces the type.

Definition. We say that two polynomials 𝑎, 𝑏 with real exponents and finitely many parameters are
equivalent, and write 𝑎 � 𝑏, if the (integral) degree of 𝑎 − 𝑏 is strictly smaller than the degree of a and
b.9

We define the type of a family 𝑎1, . . . , 𝑎ℓ of polynomials with real exponents and finitely many
parameters to be the vector that consists of the maximal degree d of the family (in the first coordinate)
and the number of nonequivalent classes of degree d, 𝑑 − 1,. . ., 0 in the other coordinates (we ignore
polynomials that are identically 0).

We order the set of all possible types lexicographically, meaning (𝑑, 𝑘𝑑 , . . . , 𝑘0) > (𝑑 ′, 𝑘 ′𝑑 , . . . , 𝑘
′
0)

if and only if in the first instance where the two vectors disagree, the coordinate of the first vector is
larger than the coordinate of the second vector.

We caution the reader that 𝑡2.5 � 𝑡2.5 + 𝑡2.1 (but 𝑡2.5 � 𝑡2.5 + 𝑡1.1). Also, if 𝑎1 (ℎ, 𝑡) = ℎ𝑡2.5 + ℎ2𝑡2.1,
𝑎2 (ℎ, 𝑡) = ℎ𝑡2.5, 𝑎3 (ℎ, 𝑡) = ℎ𝑡2.5 + ℎ2𝑡2.1 + ℎ𝑡1.5, 𝑎4 (ℎ, 𝑡) = 𝑡0.5, then 𝑎1 � 𝑎2, 𝑎2 � 𝑎3, 𝑎1 � 𝑎3 and the
family 𝑎1, 𝑎2, 𝑎3, 𝑎4 has type (2, 2, 0, 1).

Recall that 𝐿𝑁 = [𝑒
√

log 𝑁 ], 𝑁 ∈ N. We introduce a class of sequences that often occur as errors that
can be eliminated using Lemma 3.6.

Definition. We say that 𝑒 : N𝑘 × R+ → R is negligible if

lim
𝑁→∞

max
ℎ∈[𝐿𝑁 ]𝑘 ,𝑡 ∈[

√
𝑁 ,𝑁 ]

|𝑒(ℎ, 𝑡) | = 0.

If 𝑎(𝑡) is a fractional polynomial, then 𝑎(𝑡 + 𝑐) is also a fractional polynomial modulo negligible
terms. This is the context of the next lemma, which is proved in a more general form that is better suited
for our purposes.

9We do not choose to identify functions with the same fractional degree because if we did so, then the vdC operation that will
be described shortly would not necessarily lead to families with smaller type (see the example given after the relevant definition).
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Lemma 5.1. Let 𝑎(ℎ, 𝑡) be a polynomial with real exponents and k-parameters and degree d. Then
modulo negligible terms, 𝑎(ℎ, 𝑡 + ℎ𝑘+1) is a polynomial with real exponents and (𝑘 + 1)-parameters. In
fact, we have

𝑎(ℎ, 𝑡 + ℎ𝑘+1) = �̃�(ℎ, ℎ𝑘+1, 𝑡) + 𝑒(ℎ, ℎ𝑘+1, 𝑡), (33)

where (below 𝑎 ( 𝑗) denotes the jth derivative of a with respect to the variable t)

�̃�(ℎ, ℎ𝑘+1, 𝑡) :=
𝑑∑
𝑗=0

ℎ
𝑗
𝑘+1
𝑗!

𝑎 ( 𝑗) (ℎ, 𝑡) (34)

and 𝑒 : N𝑘+1 × R→ R is negligible.

Proof. Using the Taylor expansion of 𝑎(ℎ, 𝑡), we get that equation (33) holds with

𝑒(ℎ, ℎ𝑘+1, 𝑡) :=
ℎ𝑑+1
𝑘+1

(𝑑 + 1)! 𝑎
(𝑑+1) (ℎ, 𝜉ℎ,ℎ𝑘+1 ,𝑡 )

for some 𝜉ℎ,ℎ𝑘+1 ,𝑡 ∈ [𝑡, 𝑡 + ℎ𝑘+1]. Since the fractional degree of a is 𝑑 + 𝑐 for some 𝑐 ∈ (0, 1), we have

max
(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1 ,𝑡 ∈[

√
𝑁 ,𝑁 ]

|𝑒(ℎ, ℎ𝑘+1, 𝑡) | ≺
𝐿𝐴
𝑁

𝑁
1−𝑐

2

for some 𝐴 > 0 that depends on d and the maximum degree of the coefficient polynomials of 𝑎(ℎ, 𝑡).
Since 𝐿𝑁 ≺ 𝑁 𝜀 for every 𝜀 > 0, it follows that

lim
𝑁→∞

max
(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1 ,𝑡 ∈[

√
𝑁 ,𝑁 ]

|𝑒(ℎ, ℎ𝑘+1, 𝑡) | = 0,

completing the proof. �

For example, if 𝑎(ℎ, 𝑡) = ℎ𝑡𝑎 for some 𝑎 ∈ (2, 3), then modulo negligible terms (in the sense defined
above), we have that �̃�(ℎ, 𝑡 + ℎ1) is equal to ℎ𝑡𝑎 + 𝑎ℎ1ℎ𝑡

𝑎−1 + 𝑎 (𝑎−1)
2 ℎ2

1ℎ𝑡
𝑎−2.

Next we define an operation that we later show preserves nice families of polynomials and reduces
their type.

Definition. Let A = {𝑎1, . . . , 𝑎ℓ } be a family of polynomials with real exponents and k-parameters and
𝑎 ∈ A. We define a new family of polynomials with real exponents and (𝑘 + 1)-parameters vdC(A, 𝑎)
as follows: We start with the family

{�̃�𝑖 (ℎ, ℎ𝑘+1, 𝑡) − 𝑎(ℎ, 𝑡), 𝑎𝑖 (ℎ, 𝑡) − 𝑎(ℎ, 𝑡), 𝑖 = 1, . . . , ℓ},

where for 𝑖 = 1, . . . , ℓ, the polynomial with real exponents and (𝑘 + 1)-parameters �̃�𝑖 is as in equation
(34) (so it is equal to 𝑎𝑖 (ℎ, 𝑡 + ℎ𝑘+1) modulo negligible terms), and we remove all functions that are
constant in the variable t.

Suppose for example that we start with the nice family

A = {𝑡1.5, 𝑡1.5 + 𝑡1.1, 𝑡1.5 + 𝑡1.2}.

The type of this family is (1, 3, 0), and the family vdC(A, 𝑡1.5 + 𝑡1.2) is

{−𝑡1.2 + 1.5ℎ𝑡0.5,−𝑡1.2 + 𝑡1.1 + 1.5ℎ𝑡0.5, 1.5ℎ𝑡0.5 + 1.2ℎ𝑡0.2,−𝑡1.2,−𝑡1.2 + 𝑡1.1}
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(note that the first and fourth functions can be identified, and the same holds for the second and the fifth),
which is also nice and has smaller type, namely (1, 2, 1). We remark that if we had chosen to identify
functions that have the same fractional degree, then the original family would have type (1, 1, 0) and
the family vdC(A, 𝑡1.5 + 𝑡1.2) would have larger type, namely (1, 2, 1).

Lemma 5.2. LetA = {𝑎1, . . . , 𝑎ℓ } be a nice family of polynomials with real exponents and k-parameters
such that f-deg(𝑎1) > 1. Then there exists 𝑎 ∈ A such that the family vdC(A, 𝑎), ordered so that the first
function is �̃�1 − 𝑎, is nice and has smaller type. Furthermore, if A consists of fractional polynomials
with k-parameters, then vdC(A, 𝑎) consists of fractional polynomials with (𝑘 + 1)-parameters.

Proof. We first remark that if A consists of fractional polynomials with k-parameters and a is any
fractional polynomial with k-parameters, then equation (34) implies that vdC(A, 𝑎) consists of fractional
polynomials with (𝑘 + 1)-parameters.

For 𝑖 = 1, . . . , ℓ, let �̃�𝑖 be the polynomial with real exponents and (𝑘 + 1)-parameters given by
equation (34). We choose 𝑎 ∈ A as follows:

1. If 𝑎1, . . . , 𝑎ℓ do not have the same fractional degree, we let 𝑎𝑖0 be a function in the family {𝑎2, . . . , 𝑎ℓ }
that has minimal (positive) fractional degree and set 𝑎 = 𝑎𝑖0 .

2. If 𝑎1, . . . , 𝑎ℓ have the same fractional degree, we let 𝑖0 ∈ {1, . . . , ℓ} be so that �̃�1 − 𝑎𝑖0 has maximal
degree within the family �̃�1 − 𝑎1, . . . , �̃�1 − 𝑎ℓ and set 𝑎 = 𝑎𝑖0 .

Claim 1. The family vdC(A, 𝑎) is nice.

By construction, all functions in vdC(A, 𝑎) are nonconstant (we have removed constant functions).
We first show that independently of the choice of a, the difference of �̃�1−𝑎 with a function in vdC(A, 𝑎)
is always nonconstant (in the variable t); in the process, we also show that f-deg(�̃�1 − 𝑎) > 0. Suppose
that such a difference has the form �̃�1 − 𝑎𝑖 for some 𝑖 ∈ {1, . . . , ℓ}. It follows from Lemma 5.1 that �̃�1
contains the term ℎ𝑘+1𝑎

′
1 (𝑡), which depends nontrivially on the parameter ℎ𝑘+1 (note also that 𝑎1, . . . , 𝑎ℓ

do not depend on this parameter). It follows from this and our assumption f-deg(𝑎1) > 1 that

f-deg(𝑎1 − 𝑎𝑖) ≥ f-deg(𝑎′1) = f-deg(𝑎1) − 1 > 0, 𝑖 = 1, . . . , ℓ.

It remains to cover the case where the difference of �̃�1 − 𝑎 with a function in vdC(A, 𝑎) has the form
�̃�1 − �̃�𝑖 for some 𝑖 ∈ {2, . . . , ℓ}. Then using Lemma 5.1 and our assumption that A is nice, we get

f-deg(�̃�1 − �̃�𝑖) ≥ f-deg(𝑎1 − 𝑎𝑖) > 0, 𝑖 = 2, . . . , ℓ.

Next we show that �̃�1 − 𝑎 has maximal fractional degree within the family vdC(A, 𝑎). Suppose first
that we are in Case (𝑖). Since f-deg(𝑎𝑖0) < f-deg(𝑎1), we have that �̃�1 − 𝑎𝑖0 has the same fractional
degree as 𝑎1, which by assumption has maximal fractional degree within the family {𝑎1, . . . , 𝑎ℓ }. We
deduce that �̃�1 − 𝑎𝑖0 has maximal fractional degree within the family vdC(A, 𝑎). Suppose now that we
are in Case (𝑖𝑖) and let 𝑖 ∈ {1, . . . , ℓ}. Since 𝑎𝑖 − 𝑎𝑖0 = (𝑎𝑖 − �̃�1) + (�̃�1 − 𝑎𝑖0) and by the choice of 𝑖0 we
have f-deg(�̃�1 − 𝑎𝑖0 ) ≥ f-deg(�̃�1 − 𝑎𝑖), we deduce that

f-deg(�̃�1 − 𝑎𝑖0 ) ≥ f-deg(𝑎𝑖 − 𝑎𝑖0), 𝑖 = 1, . . . , ℓ. (35)

Moreover, note that �̃�𝑖 − 𝑎𝑖0 = (�̃�𝑖 − 𝑎𝑖) + (𝑎𝑖 − 𝑎𝑖0 ) and

f-deg(�̃�1 − 𝑎𝑖0 ) ≥ f-deg(�̃�1 − 𝑎1) = f-deg(𝑎1) − 1 ≥ f-deg(𝑎𝑖) − 1 = f-deg(�̃�𝑖 − 𝑎𝑖), (36)

where the two identities follow from Lemma 5.1, and the first estimate follows from the choice of 𝑖0 and
the second since the family A is nice. We deduce from equations (35) and (36) that

f-deg(�̃�1 − 𝑎𝑖0 ) ≥ f-deg(�̃�𝑖 − 𝑎𝑖0), 𝑖 = 1, . . . , ℓ. (37)
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Combining equations (35) and (37), we get that �̃�1 −𝑎𝑖0 has maximal fractional degree within the family
vdC(A, 𝑎).
Claim 2. The family vdC(A, 𝑎) has smaller type.

Using Lemma 5.1 and the definition of the degree, it is easy to verify that if for some 𝑖 ∈ {1, . . . , ℓ},
we have 𝑎𝑖 � 𝑎𝑖0 , then deg(𝑎𝑖 − 𝑎𝑖0 ) = deg(�̃�𝑖 − 𝑎𝑖0 ) = deg(𝑎𝑖) and 𝑎𝑖 − 𝑎𝑖0 � �̃�𝑖 − 𝑎𝑖0 , while if 𝑎𝑖 � 𝑎𝑖0 ,
then deg(𝑎𝑖−𝑎𝑖0) < deg(𝑎𝑖) and deg(�̃�𝑖−𝑎𝑖0 ) < deg(𝑎𝑖). Using these facts, we easily get the following:

If we are in Case (𝑖), we have that the type of A has the form (𝑑, 𝑘𝑑 , . . . , 𝑘𝑙 , 0, . . . , 0), where
𝑙 = deg(𝑎𝑖0 ), 𝑘𝑙 ≥ 1, and 𝑑 ≥ 1. Then the type of vdC(A, 𝑎) is (𝑑, 𝑘𝑑 , . . . , 𝑘𝑙 − 1) if 𝑙 = 0, and
(𝑑, 𝑘𝑑 , . . . , 𝑘𝑙 − 1, 𝑘𝑙−1, . . . , 𝑘0) for some 𝑘0, . . . , 𝑘𝑙−1 ∈ Z+ if 𝑙 ≥ 1.

If we are in Case (𝑖𝑖), we have that the type of A has the form (𝑑, 𝑘𝑑 , 0, . . . , 0), where 𝑑 ≥ 1
and 𝑘𝑑 ≥ 1. Then for every 𝑎 ∈ A, the type of vdC(A, 𝑎) is (𝑑, 𝑘𝑑 − 1, 𝑘𝑑−1 . . . , 𝑘0) for some
𝑘0, . . . , 𝑘𝑑−1 ∈ Z+.

In both cases, the type of the family vdC(A, 𝑎) is smaller than the type of the family A, completing
the proof of Claim 2. �

5.3. Proof of Theorem 3.1

We will now use a PET-induction technique to prove Theorem 3.1. The base case of the induction
was covered in the previous section, and the inductive step will be proved using equation (15) and
Lemma 5.2.

Proof of Theorem 3.1. Our goal is to show that there exists 𝑠 ∈ N such that if 𝑓𝑁 ,ℎ,1 = 𝑓1, ℎ ∈
[𝐿𝑁 ]𝑘 , 𝑁 ∈ N, ||| 𝑓1 |||𝑠 = 0 and all other functions below are assumed to be 1-bounded, then

lim
𝑁→∞

Eℎ∈[𝐿𝑁 ]𝑘

�����E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ (𝑛) ·
ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛) ] 𝑓𝑁 ,ℎ,𝑖

�����
𝐿2 (𝜇)

= 0,

where 𝑤𝑁 ,ℎ (𝑛) := (ΔℎΛ′) (𝑛) · 𝑐𝑁 ,ℎ (𝑛), ℎ ∈ [𝐿𝑁 ]𝑘 , 𝑛 ∈ [𝑁], 𝑁 ∈ N and the sequence (𝑐𝑁 ,ℎ (𝑛)) is
1-bounded.

We prove this using induction on the type of the nice family of fractional polynomials A :=
{𝑎1, . . . , 𝑎ℓ } with finitely many parameters. If f-deg(𝑎1) < 1 (then also f-deg(𝑎 𝑗 ) < 1 for 𝑗 = 2, . . . , ℓ),
then the result follows from Proposition 4.4.

Suppose that the family A := {𝑎1, . . . , 𝑎ℓ } has type (𝑑, 𝑘𝑑 , . . . , 𝑘0), where 𝑑 ≥ 1, 𝑘𝑑 ≥ 1,
𝑘𝑑−1, . . . , 𝑘0 ∈ Z+, and the statement holds for all families of fractional polynomials with finitely
many parameters and type strictly smaller than (𝑑, 𝑘𝑑 , . . . , 𝑘0). Since deg(𝑎1) ≥ 1 and 𝑎1 is a fractional
polynomial, we have that f-deg(𝑎1) > 1.

By Lemma 5.2, there exists 𝑎 ∈ A such that the family vdC(A, 𝑎), ordered so that the first function is
�̃�1−𝑎 (where �̃�1 is as in equation (34)), consists of fractional polynomials with finitely many parameters
and satisfies the following:

vdC(A, 𝑎) is nice and has type strictly smaller than (𝑑, 𝑘𝑑 , . . . , 𝑘0). (38)

We use equation (15) for the average E𝑛∈[𝑁 ] , compose with 𝑇−[𝑎 (ℎ,𝑛) ] and then use the Cauchy-
Schwarz inequality. We get that it suffices to show the following (recall that (Δℎ𝑢) (𝑛) = 𝑢(𝑛+ ℎ) ·𝑢(𝑛)):

lim
𝑁→∞

E(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1

���
���E𝑛∈[𝑁 ] (Δℎ𝑘+1𝑤𝑁 ,ℎ) (𝑛) ·

ℓ∏
𝑖=1
𝑇 [𝑎𝑖 (ℎ,𝑛+ℎ𝑘+1) ]−[𝑎 (ℎ,𝑛) ] 𝑓𝑁 ,ℎ,𝑖 ·

ℓ∏
𝑖=1

𝑇 [𝑎𝑖 (ℎ,𝑛) ]−[𝑎 (ℎ,𝑛) ] 𝑓 𝑁 ,ℎ,𝑖

���
���
𝐿2 (𝜇)

= 0.
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We replace the differences of integer parts on the iterates with the integer part of their differences and
also replace 𝑎𝑖 (ℎ, 𝑛+ ℎ𝑘+1) with �̃�𝑖 (ℎ, ℎ𝑘+1, 𝑛), where �̃� 𝑗 is associated to 𝑎 𝑗 by equation (34) of Lemma
5.1. To make these substitutions, we introduce some error sequences that take finitely many values; as
usual, these sequences can be handled after we apply Lemma 3.6 (which applies without a problem
since the values of n that are smaller than

√
𝑁 contribute negligibly in the average). After completing

these maneuvers, we see that it suffices to show the following:

lim
𝑁→∞

E(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1

�����E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ,ℎ𝑘+1 (𝑛) ·
2ℓ∏
𝑖=1

𝑇 [𝑏𝑖 (ℎ,ℎ𝑘+1 ,𝑛) ]+𝜖𝑖,𝑁 𝑔𝑁 ,ℎ,ℎ𝑘+1 ,𝑖

�����
𝐿2 (𝜇)

= 0,

where 𝜖1,𝑁 , . . . , 𝜖2ℓ,𝑁 take finitely many values for 𝑁 ∈ N,

𝑤𝑁 (ℎ, ℎ𝑘+1, 𝑛) := (Δ (ℎ,ℎ𝑘+1)Λ
′) (𝑛) · 𝑐𝑁 ,ℎ,ℎ𝑘+1 (𝑛)

for some 1-bounded sequence (𝑐𝑁 ,ℎ,ℎ𝑘+1 (𝑛)) and

𝑏𝑖 (ℎ, ℎ𝑘+1, 𝑡) := �̃�𝑖 (ℎ, 𝑡 + ℎ𝑘+1) − 𝑎(ℎ, 𝑡), 𝑖 = 1, . . . , ℓ,
𝑏ℓ+𝑖 (ℎ, ℎ𝑘+1, 𝑡) := 𝑎𝑖 (ℎ, 𝑡) − 𝑎(ℎ, 𝑡), 𝑖 = 1, . . . , ℓ

and 𝑔𝑁 ,ℎ,ℎ𝑘+1 ,𝑖 are 1-bounded functions in 𝐿∞(𝜇) such that 𝑔𝑁 ,ℎ,ℎ𝑘+1 ,1 := 𝑓1 for all (ℎ, ℎ𝑘+1) ∈ [𝐿𝑁 ]𝑘+1,
𝑁 ∈ N. We compose with 𝑇−𝜖1,𝑁 inside the 𝐿2 (𝜇)-norm and set ℎ𝑁 ,ℎ,ℎ𝑘+1 ,𝑖 := 𝑇 𝜖𝑖,𝑁−𝜖1,𝑁 𝑔𝑁 ,ℎ,ℎ𝑘+1 ,𝑖 ,
𝑖 = 1, . . . , 2ℓ (then ℎ𝑁 ,ℎ,ℎ𝑘+1 ,1 = 𝑓1). We get that it suffices to show that

lim
𝑁→∞

E(ℎ,ℎ𝑘+1) ∈[𝐿𝑁 ]𝑘+1

�����E𝑛∈[𝑁 ] 𝑤𝑁 ,ℎ,ℎ𝑘+1 (𝑛) ·
2ℓ∏
𝑖=1

𝑇 [𝑏𝑖 (ℎ,ℎ𝑘+1 ,𝑛) ]ℎ𝑁 ,ℎ,ℎ𝑘+1 ,𝑖

�����
𝐿2 (𝜇)

= 0. (39)

Finally, we can remove all functions associated with iterates that do not depend on the variable n
(note that by Lemma 5.2, the function 𝑏1 is not one of them), and thus we arrive at an average with
iterates given by the family vdC(A, 𝑎), ordered so that the first function is �̃�1 − 𝑎. By the choice of a,
we have that equation (38) holds. Hence, the induction hypothesis applies for this family and gives that
there exists 𝑠 ∈ N such that if ||| 𝑓1 |||𝑠 = 0, then equation (39) holds. This completes the induction step
and the proof. �
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