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Abstract. We define a generalization of the Euler characteristic of a perfect complex of modules for
the group ring of a finite group. This is combined with work of Lichtenbaum and Saito to define an
equivariant Euler characteristic forGm on regular projective surfaces overZ having a free action of
a finite group. In positive characteristic we relate the Euler characteristic ofGm to the leading terms
of the expansions ofL-functions ats = 1.
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1. Introduction

A perfect complex of modules for a ringR is a bounded complex of finitely gener-
ated projectiveR-modules. The Euler characteristic of a perfect complex lies in the
Grothendieck groupK0(R) of all finitely generated projectiveR-modules. Perfect
complexes and their Euler characteristics have been a basic tool in homological
algebra, topology, algebraic geometry and, more recently, the theory of Galois
module structure.

SupposeG is a finite group and thatR = ZG is the integral group ring ofG. The
main object of this paper is to define invariants inK0(ZG) associated with certain
complexes ofZG-modules which are of obvious arithmetic interest, but which are
not perfect. Such complexes arise naturally from the cohomology of class field
theory. In Section 2 we define the concept of a ‘nearly perfect complex’ ofZG-
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134 T. CHINBURG ET AL.

modules, and we show in Theorem 2.3 that each such complex has a generalized
Euler characteristic inK0(ZG).

The motivation for this paper is the work of Lichtenbaum [L1] and Saito [Sa] on
the cohomology ofGm on surfacesX which are proper over Spec(Z). In particular,
Lichtenbaum discovered that for surfaces over a finite field, one could use duality
theorems to assign a numerical Euler characteristic toGm, despite the fact that
some of the cohomology groups ofGm may not be finitely generated. The cohomo-
logy groups of a perfect complex ofZG-modules must be finitely generated, so that
the cohomology ofGm onX cannot in general be computed by a perfect complex.
The duality theorems used by Lichtenbaum identify the divisible subgroups of the
cohomology groups ofGm on X with the Pontryagin duals of finitely generated
groups. Theorem 2.3 arose from the idea that in defining Euler characteristics, one
can compensate for the existence of divisible subgroups in the cohomology of a
complex provided one has a fixed isomorphism between these divisible groups and
the Pontryagin duals of other finitely generated groups.

In Section 3 we describe an arithmetic application to surfacesX having a free
action of a finite groupG. We assume thatX is regular, geometrically connected
and proper over Spec(Z). We will also assume that Brauer group ofX is finite,
which is conjectured to always be the case. LetK(X) be the function field ofX.
We show how the above work of Lichtenbaum and Saito leads via Theorem 2.3
to an Euler characteristicχG(X,Gm) for Gm onX which lies inK0(ZG) if K(X)
has characteristicp > 0, and inK0(Z[1/2][G]) if K(X) has characteristic 0. When
K(X) has characteristicp, we show how Lichtenbaum’s work on the leading terms
of zeta functions ats = 1 leads to a formula of the form

f (χG(X,Gm)) = LX,1. (1.1)

Heref :K0(ZG)→ G0(ZG) is the forgetful homomorphism to the Grothendieck
group of all finitely generatedZG-modules. The classLX,1 in G0(ZG) has order
1 or 2, and is defined by the signs of all the conjugates of the totally real algebraic
numbers which are the leading terms ats = 1 of theL-functions of symplectic
representations of the groupG of the coverX → X/G. The classLX,1 actually
pertains to the difference between an Euler characteristic ofGa andGm (c.f. Pro-
position 3.10). One arrives at (1.1) from the fact thatLX,1 = −LX,1 and by using
work of Nakajima [N] to show that the class associated toGa in G0(ZG) is trivial
becauseG acts freely onX. In a later paper we will prove a generalization of (1.1)
to the case in whichG acts tamely onX in which both multiplicative and additive
Euler characteristics occur.

2. Euler Characteristics of Nearly Perfect Complexes

Let G be a finite group. IfA is an Abelian group, letAdiv be the subgroup of all
divisible elements ofA, and letAcodiv = A/Adiv.
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NEARLY PERFECT COMPLEXES AND GALOIS MODULE STRUCTURE 135

DEFINITION 2.1. A nearly perfect complex ofG-modules is a triple(C•, {Li}i,
{τi}i) of the following kind.

(a) C• is a bounded complex

C•: · · · → Cm→ Cm+1→ · · · → Cn→ · · · (2.1)

of cohomologically trivialZG-modules. If some of theCi are non-zero, we let
m (resp.n) be the smallest (resp. largest) integer for whichCi 6= 0. If all of the
Ci = 0, letn = −1 andm = 0. Define length(C•) = n−m+ 1.

(b) For each integeri, Li is a torsion-free finitely generatedZG-module. Let
Hi(C•) be thei-th cohomology group ofC•. We requireτi to be aG-iso-
morphismτi :HomZ(L

i,Q/Z)→ Hi(C•)div.
(c) For all i, the groupHi(C•)codiv is finitely generated overZ.

DEFINITION 2.2. Two nearly perfect complexes(C•, {Li}i, {τi}i) and(C ′•, {L′i}i,{τ ′i }i) are quasi-isomorphic if the following is true:

(a) There is an isomorphism betweenC• andC ′• in the derived category of the
homotopy category ofZG-modules.

(b) There is aZG-module isomorphismL′i → Li for eachi.
(c) There is a commutative diagram of isomorphisms

HomZ(L
i,Q/Z)

τi- Hi(C•)div

HomZ(L
′i ,Q/Z)
?

τ ′i- Hi(C ′•)div

?

in which the left vertical isomorphism is induced by (b) and the right one by
(a).

THEOREM 2.3. Suppose(C•, {Li}i, {τi}i) is a nearly perfect complex.

(a) One can define an Euler characteristicχ(C•, {Li}i , {τi}i) ∈ K0(ZG) which
depends only on the quasi-isomorphism class of(C•, {Li}i , {τi}i).

(b) The image ofχ(C•, {Li}i , {τi}i) in G0(ZG) is equal to∑
i

(−1)i · ([Hi(C•)codiv] − [HomZ(L
i,Z)]).

(c) Suppose that the cohomology groupsHi(C•) are finitely generated asZG-
modules, so that theLi and τi are trivial. In this case the usual construction
(cf. [H, Lemma III.12.3], [M, p. 263])produces a perfect complexP • of ZG-
modules which is quasi-isomorphic toC•, andχ(C•, {Li}i , {τi}i) is the Euler
characteristic inK0(ZG) of P •.
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Remark. SupposeR is a Dedekind ring, and that the fraction fieldF of R is a
number field. One can then replaceZ byR andQ/Z byF/R in Definitions 2.1 and
2.2 and in Theorem 2.3. This leads to Euler characteristics inK0(RG) for nearly
perfect complexes overRG.

We now outline the construction ofχ(C•, {Li}i,{τi}).
From(C•,{Li}i,{τi})we will construct a nearly perfect complex(D•,{L′i}i, {τ ′i })

with the following properties (cf. Corollaries 2.10 and 2.8). If length(C•) = n −
m + 1 = 0, then bothC• andD• are the zero complex. If length(C•) = 1, then
Cn is the only non-zero term ofC•, but Cn may not be projective. In this case,
Dn−1 will be the only non-zero term ofD•, andDn−1 will be a finitely generated
projectiveZG-module. Finally, if length(C•) > 1, then length(D•) < length(C•).

If length (C•) 6 1 we will defineχ(C•, {Li}i, {τi}) via the class of the project-
ive moduleDn−1 in K0(ZG), as in Definition 2.11. If length(C•) > 1, then length
(D•) < length(C•), and we defineχ(C•,{Li}i, {τi}) in terms ofχ(D•, {L′i}i,{τ ′i })
in Definition 2.11. This leads to an inductive definition ofχ(C•, {Li}i, {τi}), which
one must show is independent of the choices involved in constructing(D•, {L′i}i,{τ ′i }) from (C•, {Li}i, {τi}).

Defineδi :Ci → Ci+1 to be theith boundary map inC•, and letZi = ker(δi)
be theith cycle group. ThusZn = Cn, sinceC• has no terms above degreen. The
exact sequence

0→ Zn−1→ Cn−1→ Cn→ Hn(C•)→ 0 (2.2)

defines an extension classα = αn ∈ Ext2ZG(H
n(C•), Zn−1). The main idea in

the construction of(D•, {L′i}i, {τ ′i }) is to replace the final terms· · · → Cn−2 →
Cn−1 → Cn of C• by · · · → Cn−2 → Dn−1, whereDn−1 is a cohomologically
trivial ZG-module constructed using the extension classα and the given isomorph-
ismτn:HomZ(L

n,Q/Z)→ Hn(C•)div. The first step in this is to useα to construct
a class in Ext1ZG(M

n,Zn−1) for a suitable moduleMn we now define.
We have an exact diagram of the following kind:

0 0 0

0 - HomZ (L
n,Z)
?

- Mn
?

- Nn
?

- 0

0 - HomZ (L
n,Q)
?

- HomZ(L
n,Q)

⊕
Fn

?
- Fn
?

- 0

0 - HomZ(L
n,Q/Z)
?

- Hn(C•)
?

- Hn(C•)codiv

?
- 0

0
?

0
?

0
?

(2.3)
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To explain this diagram, note first that Ext1
Z(L

n,Z) = 0 since in Definition 2.1(b)
Ln is a free finitely generatedZ-module. Hence, the left column is exact. In the
bottom row we have identified HomZ(Ln,Q/Z) with Hn(C•)div using the iso-
morphismτn of Definition 2.1(b). BecauseHn(C•)codiv is finitely generated, we can
find a finitely generated projective moduleFn along with a homomorphism from
Fn toHn(C•) as in the middle column of diagram (2.3) which induces a surjection
from Fn toHn(C•)codiv. We will further require thatFn = {0} if Hn(C•)codiv = 0.
The homomorphism HomZ(Ln, Q) → Hn(C•) in the middle column of diagram
(2.3) is the one compatible with the left column and the bottom row. The modules
Mn andNn are defined to be the kernels of the vertical homomorphisms, and (2.3)
is exact by the snake lemma.

Applying the functor HomZG(∗, Zn−1) to the middle column of (2.3) gives a
long exact sequence

· · · → Ext1ZG(Hom(Ln,Q)
⊕
Fn,Zn−1)→ Ext1ZG(M

n,Zn−1)

φ1−→ Ext2ZG(H
n(C•), Zn−1)→ Ext2ZG(Hom(Ln,Q)

⊕
Fn,Zn−1)→ · · ·

(2.4)

LEMMA 2.4. The moduleMn in (2.3) is a finitely generated torsion-freeZG-
module. The boundary map

Ext1ZG(M
n,Zn−1)

φ1−→ Ext2ZG(H
n(C•), Zn−1) (2.5)

in (2.4) is an isomorphism.
Proof.SinceNn and HomZ(L

n,Z) are finitely generated overZ, diagram (2.3)
showsMn is as well. Because HomZ(Ln,Q)

⊕
Fn is torsion-free, so isMn.

To analyze (2.4) we use the spectral sequence

Hp(G,ExtqZ(D1,D2)) => Extp+qZG (D1,D2) (2.6)

for G-modulesD1 andD2. The projective dimension ofZ is 1 (cf. [K, p. 171 and
191]). Therefore

ExtqZ(D1,D2) = 0 if q > 2. (2.7)

If D1 is finitely generated and torsion free, then Ext1
Z(D1,D2) = 0. If D1 is a

finitely generated projectiveZG-module, then HomZ(D1,D2) is a summand of an
inducedG-module, so HomZ(D1,D2) isG-cohomologically trivial. AnyQ-vector
space is alsoG-cohomologically trivial.

One finds from (2.6), (2.7) and the above remarks that ifq > 1 then

ExtqZG(Hom(Ln,Q)
⊕

Fn,Zn−1)

= ExtqZG(Hom(Ln,Q), Zn−1)
⊕

ExtqZG(F
n, Zn−1) = 0 (2.8)
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and

Ext1ZG(M
n,Zn−1) = H 1(G,HomZ(M

n,Zn−1)). (2.9)

The homomorphism

Ext1ZG(Hom(Ln,Q)
⊕

Fn,Zn−1)→ Ext1ZG(M
n,Zn−1) (2.10)

the long exact sequence (2.4) is trivial, since its domain is aQ-vector space and, by
(2.9), its range is a group annihilated by #G. Thus (2.4), (2.9) and (2.10) establish
the isomorphism stated in Lemma 2.4.

COROLLARY 2.5. There is a unique classβ ∈ Ext1ZG(M
n,Zn−1) which maps

to the extension classα ∈ Ext2ZG(H
n(C•), Zn−1) of the sequence(2.2) under the

boundary isomorphismφ1 of Lemma2.4.

DEFINITION 2.6. Let

0→ Zn−1→ Dn−1→ Mn → 0 (2.11)

be an exact sequence representing the extension classβ of Corollary 2.5. LetDi =
Ci if i < n− 1, and letDi = 0 for i > n− 1. Let

D•: · · · → Dm→ Dm+1→ · · · → Dn−1→ 0→ · · ·
be the complex such that the boundaryλi :Di → Di+1 is as follows. Ifi < n − 2
thenλi is the boundary mapδi :Ci → Ci+1 of C•. If i > n − 1, thenλi is the
zero homomorphism. Finally, ifi = n − 2, thenλn−2:Dn−2 = Cn−2 → Dn−1

is the composition of the boundary mapδn−2:Cn−2 → Zn−1 with the inclusion
Zn−1→ Dn−1 in sequence(2.11).

PROPOSITION 2.7.The moduleDn−1 is cohomologically trivial forG.
Proof. By Corollary 2.5, the cup product ofβ with the extension class of the

middle column

0→ Mn→ HomZ(L
n,Q)

⊕
Fn→ Hn(C•)→ 0 (2.12)

of (2.3) is±1 times the extension classα of sequence (2.2). Therefore splicing
together (2.11) and (2.12) gives an exact sequence

0→ Zn−1→ Dn−1→ HomZ(L
n,Q)

⊕
Fn→ Hn(C•)→ 0 (2.13)

which has extension class±α. SinceCn−1 andCn in (2.2) were assumed to be
cohomologically trivial forG, cup product with±α induces isomorphisms in Tate
cohomology

Ĥ j (0,Hn(C•))→ Ĥ j+2(0,Zn−1) (2.14)
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for all integersj and all subgroups0 ⊂ G. Since HomZ(L
n,Q)

⊕
Fn in sequence

(2.13) is cohomologically trivial forG, this impliesDn−1 in (2.13) must also be
cohomologically trivial forG.

COROLLARY 2.8. Supposen = m in sequence(2.1), so thatCi = 0 if i 6= n

andCn 6= 0. ThenDi = 0 unlessi = n − 1. The moduleDn−1 = Mn is a finitely
generated projectiveZG-module, and

rankZG(D
n−1)

= rankZG(F
n)+ 1

#G
(rankZ(L

n)− rankZ(H
n(C•)codiv)), (2.15)

whereCn = Hn(C•).
Proof. If m = n, thenZn−1 = 0. Hence, sequence (2.11) showsDn−1 = Mn.

By Lemma 2.4,Mn is a finitely generated torsion-freeZG-module, andDn−1 is
cohomologically trivial by Proposition 2.7. Hence,Dn−1 = Mn must be a finitely
generated projectiveZG-module. The equality (2.15) follows fromDn−1 = Mn,
the top row and right column of (2.3), rankZ(HomZ(L

n, Z)) = rankZ(L
n), and the

fact that finitely generated projectiveZG-modules are locally free.

LEMMA 2.9. If i < n−1, thenHi(D•) = Hi(C•). If i > n−1, thenHi(D•) = 0.
Finally, there is an exact sequence

0→ Hn−1(C•)→ Hn−1(D•)→ Mn→ 0. (2.16)

Proof. In view of (2.11), the exact sequence (2.16) is

0→ Zn−1/Bn−1→ Dn−1/Bn−1→ Dn−1/Zn−1→ 0, (2.17)

whereBn−1 ⊂ Zn−1 is the group ofn− 1 boundaries of bothC• andD•. The rest
of the Lemma is clear.

COROLLARY 2.10. Suppose(C•, {Li}i, {τi}i) is a nearly perfect complex, as in
Definition 2.1. LetL′i = Li if i 6 n − 1, and letL′i = 0 if i > n − 1. Define
τ ′i = τi :HomZ (Li,Q/Z)→ Hi(C•)div = Hi(D•)div if i 6 n− 1, and letτ ′i = 0
if i > n− 1. Then(D•, {L′i}i, {τ ′i }) is a nearly perfect complex. Ifn > m, then

D•: · · · → 0→ Dm→ · · · → Dn−1→ 0→ · · · (2.18)

haslength(D•) 6 n−m < length(C•) = n−m+ 1.
Proof. SinceMn is finitely generated by Lemma 2.4, sequence (2.16) gives

an isomorphismHn−1(C•)div → Hn−1(D•)div. The Corollary is now clear from
Lemma 2.9.
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DEFINITION 2.11. If length(C•) = n−m+ 1= 0, thenC• andD• are both the
zero complex, and we let

χ(C•, {Li}i , {τi}i) = 0. (2.19)

Suppose now that length(C•) = n−m+1= 1. By Corollary 2.8,Dn−1 has a class
[Dn−1] in K0(ZG), so we can let

χ(C•, {Li}i , {τi}i) = (−1)n−1 · [Dn−1] + (−1)n · [Fn]. (2.20)

We now assume by induction thatn0 > 1 is an integer such thatχ(C•, {Li}i , {τi}i)
has been defined whenever length(C•) = n−m+ 16 n0. If length(C•) = n0+ 1
then using Corollary 2.10 we can define

χ(C•, {Li}i , {τi}i) = χ(D•, {L′i}i , {τ ′i }i)+ (−1)n · [Fn]. (2.21)

PROPOSITION 2.12.The nearly perfect complex(D•, {L′i}i, {τ ′i }i) depends on
(C•, {Li}i, {τi}i), the projective moduleFn and the homomorphismλ:Fn →
Hn(C•) induced by the middle column of diagram(2.3). The classχ(D•, {L′i}i,{τ ′i }i) + (−1)n · [Fn] does not depend on the choice ofFn or λ:Fn → Hn(C•).
Therefore in Definition2.11, χ(C•, {Li}i, {τi}i) depends only on the nearly perfect
complex(C•, {Li}i, {τi}i) and not on further choices.

To begin the proof of this Proposition, we observe that the choice ofFn and
λ:Fn→ Hn(C•) determines the diagram (2.3). This fixes the long exact sequence
(2.4), so from Corollary 2.5 and Definition 2.6 we see that(D•, {L′i}i, {τ ′i }i) is also
determined by these choices together with the original nearly perfect complex(C•,
{Li}i, {τi}i).

If C• has length 0, thenχ(C•, {Li}i, {τi}i) = 0 so Proposition 2.12 holds. We
now assumeC• has positive length, and that by induction, Proposition 2.12 is true
for all nearly perfect complexes of length less than that ofC•.

In the course of the proof, we will show by induction the following

HYPOTHESIS 2.13. Suppose(C•1, {L1,i}i, {τ1,i}i) and (C•2, {L2,i}i, {τ2,i}i) are
nearly perfect complexes having the following properties.

(a) The length of each of these complexes is less than that ofC•.
(b) There is a morphism of complexesC•1 → C•2 which is a term by term isomorph-

ism.
(c) There are isomorphismsL1,i → L2,i which are compatible with the cohomo-

logy isomorphismsHi(C•1) → Hi(C•2) induced by the morphism in (b), the
τ1,i and theτ2,i .

Then

χ(C•2, {L2,i}i , {τ2,i}i) = χ(C•1, {L1,i}i , {τ1,i}i), (2.22)
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where the two sides of this equality are well defined because by assumption, Pro-
position2.12 holds for complexes of length less than that ofC•.

This induction hypothesis is clearly true ifC• has length 1, since thenC•1 and
C•2 have length 0.

LEMMA 2.14. Let λ̃:Fn→ Hn(C•)codiv be the homomorphism induced byλ:Fn
→ Hn(C•), so that λ̃ appears in the right column of diagram(2.3). Suppose
λ′:Fn → Hn(C•) is another homomorphism such thatλ̃ = λ̃′. Then assuming
Hypothesis2.13, λ and λ′ lead to the same value forχ(C•, {Li}i, {τi}i). There-
foreχ(C•, {Li}i, {τi}i) depends only on the (surjective) homomorphismλ̃:Fn →
Hn(C•)codiv.

Proof. From diagram (2.3), we see that there is a homomorphismµ:Fn →
HomZ(L

n, Q/Z) such thatλ = λ′ + i ◦ µ, wherei:HomZ(L
n, Q/Z)→ Hn(C•)

is the inclusion in the bottom row of (2.3). SinceFn is projective and the homo-
morphismπ :HomZ(L

n, Q) → HomZ(L
n, Q/Z) in the left column of (2.3) is

surjective, we can liftµ to a homomorphismµ′:Fn→ HomZ (L
n,Q) such that

λ = λ′ + i ◦ π ◦ µ′. (2.23)

Let T be the automorphism of HomZ(Ln,Q)
⊕
Fn defined by

T
(
a
⊕

b
)
= (a + µ′(b))

⊕
b. (2.24)

Define (2.3)′ to be the diagram (2.3) whenλ′ is used instead ofλ. Then we see
that there is a unique isomorphism̃T from diagram (2.3) to diagram (2.3)′ which
fixes the left and right columns and which is the automorphismT on the module
HomZ(L

n,Q)
⊕
Fn in the middle of the diagram. This̃T induces an automorph-

ism ofHn(C•) and an isomorphismMn → M ′n from Mn to the corresponding
moduleM ′n in diagram (2.3)′. Following through the construction in Definition
2.6, we see that there is a commutative diagram

0 - Zn−1 - Dn−1 - Mn - 0

0 - Zn−1
?

- D′n−1
?

- M ′n
?

- 0

(2.25)

in which the left vertical homomorphism is the identity map, the right vertical
homomorphism is the above isomorphismMn → M ′n, and the middle homo-
morphism is an isomorphism.

Let (D•, {L1,i}i, {τ1,i}i) and(D′•, {L2,i}i, {τ2,i}i) be the nearly perfect complex
structures resulting from Definition 2.6 when one usesλ andλ′, respectively. Via
(2.25) we get a morphism of complexesD• → D′• which is the identity on all
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terms exceptDn−1, and which is the middle vertical isomorphism of (2.25) on
Dn−1. This morphism induces a commutative diagram

0 - Hn−1(C•) - Hn−1(D•) - Mn - 0

0 - Hn−1(C•)
?

- Hn−1(D′•)
?

- M ′n
?

- 0

(2.26)

in which the left and right isomorphisms are those induced byT̃ . By constructionT̃
induces the identity isomorphism ofHn−1(C•)div = Hn−1 (D•)div = Hn−1(D′•)div.
Hence the identity isomorphismL1,i → L2,i for eachi is compatible withD• →
D′•, τ1,i andτ2,i. It follows now from our induction hypothesis (2.22) that

χ(D•, {L2,i}i , {τ2,i}i)+ (−1)n · [Fn]
= χ(D′•, {L1,i}i , {τ1,i}i)+ (−1)n · [Fn]. (2.27)

Therefore we get the same value forχ(C•, {Li}i, {τi}i ) whether we useλ or λ′.
This proves Lemma 2.14.

Proof of Proposition 2.12 and Hypothesis 2.13.Let Fn1 be another choice
of a projectiveZG-module and a surjective homomorphismλ1:Fn1 → Hn(C•).
Since both of the induced homomorphismsλ̃:Fn → Hn(C•)codiv and λ̃1:Fn1 →
Hn(C•)codiv are surjective, we can form a pull back square

Fn
⊕

Fn1
- Fn1

Fn
?

λ̃

- Hn(C•)codiv

?
λ̃1 (2.28)

It follows from Lemma 2.14 that to show we get the same value forχ(C•, {Li}i,
{τi}i) whether we usẽλ or λ̃1, we can reduce to the case in whichλ̃1 is the
composition of a surjectionh:Fn1 → Fn and λ̃. Since the value ofχ(C•, {Li}i,
{τi}i) does not depend on how̃λ is lifted to λ, we can furthermore assume that
λ1:Fn1 → Hn(C•) is the composition ofh andλ:Fn→ Hn(C•).

Define (2.3)1 to be the diagram (2.3) which results from usingλ1 instead ofλ,
and letMn

1 andNn
1 be the modules appearing in (2.3)1 at the positions correspond-

ing toMn andNn. We have a commutative exact diagram
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0 - 0 - 0

0 - F2

?
- Nn

1

?
- Nn

?
- 0

0 - F2

?
- Fn1

?
- Fn

?
- 0

0 - 0
?

- Hn(C•)codiv

λ̃1?
- Hn(C•)codiv

λ̃
?

- 0

0
?

- 0
?

- 0
?

(2.29)

in which the right columns are the right columns of diagrams (2.3)1 and (2.3). The
middlerow of (2.29) splits becauseFn is projective. Hence, the top row of (2.29)
also splits, andF2 is projective becauseFn andFn1 are. We thus have compatible
isomorphismsNn

1 = Nn
⊕
F2 andMn

1 = Mn
⊕
F2. Using the fact thatF2 is

projective, we see that the construction of Definition 2.6 leads to an isomorphism
Dn−1

1 = Dn−1⊕F2, whereD•1 is the complex which results from usingλ1 instead
of λ. The homomorphismDn−2

1 = Dn−2 = Cn−2 → Dn−1
1 is the composition

of Dn−2 → Dn−1 and the inclusionDn−1 → Dn−1
1 = Dn−1

⊕
F2 which is the

identity map onto the first summand ofDn−1. If F2 = 0, thenλ̃ = λ̃1 and there is
nothing to prove because of Lemma 2.14. So we assume in what follows thatF2 is
non-trivial.

We see from this description thatHn−1(D•1) = Hn−1 (D•)
⊕
F2, and that the

nearly perfect complex structure(D•1, {L′i}i, {τ ′i }i) of D•1 is the one which results
from (D•, {L′i}i, {τ ′i }i) by simply adding the projective moduleF2 toDn−1.

In view of Definition 2.11 and (2.29), the expressions forχ(C•, {Li}i, {τi}i)
which result from using̃λ1 andλ̃, respectively, are

χ(D•1, {L′i}i , {τ ′i }i)+ (−1)n · ([Fn] + [F2]) (2.30)

and

χ(D•, {L′i}i , {τ ′i }i)+ (−1)n · ([Fn]). (2.31)

We will now show (2.30) and (2.31) are equal.
Choose a free moduleF3 and aG-morphismλ3:F3 → Hn−1 (D•) which in-

duces a surjectionF3 → Hn−1 (D•)codiv. We further requireF3 = {0} if Hn−1

(D•)codiv = 0. We compute(D•1, {L′i}i, {τ ′i }i) by choosing the projective module
F3
⊕
F2 together with the homomorphism

λ4:F3

⊕
F2→ Hn−1(D•1) = Hn−1(D•)

⊕
F2
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which is the identity map on the second summand andλ3 on the first. From the
diagram of the form (2.3) which results and from Definitions 2.6 and 2.11, we see
that there is a single nearly perfect complex(D•2, {L′′i }i, {τ ′′i }i) of length less than
length(C•) such that

χ(D•, {L′i}i , {τ ′i }i) = χ(D•2, {L′′i }i , {τ ′′i }i)+ (−1)n−1 · [F ′3] (2.32)

and

χ(D•1, {L′i}i , {τ ′i }i) = χ(D•2, {L′′i }i , {τ ′′i }i)+ (−1)n−1 · [F ′3
⊕

F2], (2.33)

whereF ′3 = Dn−1 is projective if length(C•) = 1, andF ′3 = F3 if length(C•) > 1.
Here we may use Hypothesis 2.13 to assert thatχ(D•2, {L′′i }i, {τ ′′i }i) has the same
value on the right sides of (2.32) and (2.33). It follows easily from (2.32) and (2.33)
that (2.30) and (2.31) are equal.

The proof of Proposition 2.12 will now be complete once we show that our
induction hypothesis (2.22) holds for nearly perfect complexes(C•1, {L1,i}i, {τ1,i}i)
and(C•2, {L2,i}i, {τ2,i}i) of the same length asC•. This may be proved by using the
inductive definition ofχ(C•j , {Lj,i}i, {τj,i}i) to reduce to the case of complexes of
length less than that ofC•; we will leave the details to the reader.

The proof of part (a) of Theorem 2.3 is now completed by

PROPOSITION 2.15.Suppose(C•, {Li}i, {τi}i) and (C ′•, {L′i}i, {τ ′i }i) are quasi-
isomorphic in the sense of Definition 2.2. Thenχ(C•, {Li}i, {τi}i) = χ(C ′•, {L′i}i,{τ ′i }i).

Proof. By [HRD, Sect. I.3], we can reduce to the case in which there is a
morphism of complexesC• → C ′• which gives rise to the quasi-isomorphism
in the derived category which is referred to in Definition 2.2(a).

A shift by 1 to either the left or the right of the terms of(C•, {Li}i, {τi}i)
multipliesχ(C•, {Li}i, {τi}i) by −1. Thus we can reduce to the case in which at
least one ofC• orC ′• is not the zero complex,Ci = C ′i = 0 if i < 0, andC ′0 6= 0
or C0 6= 0. Letn′ > 0 (resp.n > 0) be the largest non-negative integer for which
C ′n 6= 0 (resp.Cn 6= 0). We wish to reduce to the casen′ = n, by replacingC•
(resp.C ′•) by a quasi-isomorphic longer complex ifn′ > n (resp. ifn > n′). We
will treat only the casen′ > n, since the casen > n′ is similar. If n′ > n we
can add a non-zero finitely generated free moduleF to bothCn andCn+1 = 0
and use the identity mapF → F to construct a perfect complex(C•2, {Li}i, {τi}i)
from (C•, {Li}i, {τi}i) which has length one greater than(C•, {Li}i, {τi}i). Since
Hn+1(C•2) = 0, we can use the trivial free module surjecting ontoHn+1(C•2) to
computeχ(C•2, {Li}i, {τi}i) via the counterpart of diagram (2.3). This leads to
χ(C•2, {Li}i, {τi}i) = χ(C•, {Li}i, {τi}i). In this way we can increase the length of
C• to be able to assumen′ = n.

We will prove Proposition 2.15 by induction onn = n′. Supposen = n′ = 0.
ThenC ′0 andC0 are the only non-zero terms ofC ′• andC•, respectively. The
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morphismC• → C ′• must induce an isomorphismC0 = H 0(C•) → H 0(C ′•) =
C ′0. Hence, the casen = n′ = 0 is treated by Hypothesis 2.13, which was proved
in the course of the proof of Proposition 2.12.

We now supposen = n′ > 0 and that Proposition 2.15 is true for all pairs
of complexes which have trivial terms in negative dimension and highest terms in
dimension less thann. As in the definition ofχ(C•, {Li}i, {τi}i), we choose a free
moduleFn together with a morphismFn → Hn(C•) inducing a surjectionFn →
Hn(C•)codiv. We now use the isomorphismsHn(C•) → Hn(C ′•) andLn → L′n
in Definition 2.2 to take the diagram (2.3) used to defineχ(C•, {Li}i, {τi}i) to the
diagram (2.3)′ used to defineχ(C ′•, {L′i}i, {τ ′i }i). In particular, we have an induced
isomorphismMn → M ′n. Via Lemma 2.4, Corollary 2.5 and Definition 2.6, this
leads to a diagram

0 - Zn−1 - Dn−1 - Mn - 0

0 - Z′n−1
?

- D′n−1
?

- M ′n
?

- 0

(2.34)

in which the right vertical arrow is an isomorphism. The morphism of complexes
C• → C ′• together with (2.34) now gives a morphism of complexesD• → D′•
which induces cohomology isomorphismsHi(D•)→ Hi(D′•) if i 6= n−1. When
i = n− 1, one has a commutative diagram

0 - Hn−1(C•) - Hn−1(D•) - Mn - 0

0 - Hn−1(C ′•)
?

- Hn−1(D′•)
?

- M ′n
?

- 0

(2.35)

in which the left and right vertical homomorphisms are isomorphisms, so that the
middle vertical homomorphism is as well. This provesD• → D′• is a quasi-iso-
morphism. The diagram (2.35) also shows that the nearly perfect complex struc-
tures onD• andD′• which are constructed in Corollary 2.10 are quasi-isomorphic
in the sense of Definition 2.2. SinceD• andD′• have highest non-zero terms in
degree less thann = n′, the proof of Proposition 2.15 now follows by induction.

Completion of the proof of Theorem 2.3.As noted before, Proposition 2.15
shows part (a) of Theorem 2.3. We now show parts (b) and (c) of Theorem 2.3 by
induction on length(C•) = n−m+ 1.

If length(C•) < 0, thenC• is the zero complex andχ(C•, {Li}i, {τi}i) = 0 by
(2.19), so we are done.

From diagram (2.3) we have

[Mn] = [HomZ(L
n,Z)] + [Fn] − [Hn(C•)codiv] in G0(ZG). (2.36)
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Suppose length(C•) = 1. By Corollary 2.8,Ci = 0 if i 6= n, andHn(C•) =
Cn 6= 0. Furthermore,Dn−1 = Mn is a projectiveZ[G]-module, and

χ(C•, {Li}i , {τi}i) = (−1)n−1 · [Mn] + (−1)n · [Fn] (2.37)

by (2.20). Combining (2.36) and (2.37) showsχ(C•, {Li}i, {τi}i) has the image

(−1)n−1 · [Mn] + (−1)n · [Fn] = (−1)n · ([Hn(C•)codiv] − [HomZ(L
n,Z)])

in G0(ZG) as asserted in Theorem 2.3(b). SupposeHn(C•) = Cn is finitely gen-
erated as aZG-module. ThenLn = 0, and diagram (2.3) shows[Fn] − [Mn] =
[Hn(C•)] = [Cn] in K0(ZG) when we identifyK0(ZG) with the Grothendieck
group of all finitely generated cohomologically trivialZG-modules (cf. [C,
Prop. 4.1(b)]). Thus (2.37) givesχ(C•, {Li}i, {τi}i) = (−1)n · [Cn] in this case,
which by Schanuel’s Lemma is equivalent to the assertion of Theorem 2.3(c).

Finally, suppose length(C•) > 1, and let(D•, {L′i}i, {τ ′i }i) be a nearly perfect
complex of the kind constructed in Corollary 2.10. By Definition 2.11,

χ(C•, {Li}i , {τi}i) = χ(D•, {L′i}i , {τ ′i }i)+ (−1)n · [Fn]. (2.38)

By induction, the image ofχ(D•, {L′i}i, {τ ′i }i) in G0(ZG) is∑
i

(−1)i · ([Hi(D•)codiv] − [HomZ(L
′i ,Z)]).

In view of the construction of(D•, {L′i}i, {τ ′i }i), this equals

(−1)n−1 · ([Hn−1(D•)codiv] − [HomZ(L
n−1,Z)])+

+
∑
i<n−1

(−1)i · ([Hi(C•)codiv] − [HomZ(L
i,Z)]) (2.39)

By the exact sequence (2.16), we have

[Hn−1(D•)codiv] = [Hn−1(C•)codiv] − [Mn] (2.40)

sinceMn is finitely generated. Hence on combining (2.38), (2.39) and (2.40), we
see thatχ(C•, {Li}i, {τi}i) has image inG0(ZG) equal to∑

i

(−1)i · ([Hi(C•)codiv] − [HomZ(L
i,Z)])

as asserted in Theorem 2.3(b).
Suppose now that all theHi(C•) are finitely generated. Then the groupsHi(D•)

are as well by Lemmas 2.4 and 2.9, andLn = 0. By composing the inclusion map
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Zn−1 → Dn−1 with multiplication by−1, if necessary, we conclude from (2.13)
that there is an exact sequence

0→ Zn−1→ Dn−1→ Fn→ Hn(C•)→ 0 (2.41)

which has the same extension class in Ext2
ZG (H

n(C•),Zn−1) as the exact sequence

0→ Zn−1→ Cn−1→ Cn→ Hn(C•)→ 0.

Let D′• be the complex obtained fromD• by puttingFn in the nth position and
using the morphismDn−1→ Fn of (2.41). It follows thatD′• is isomorphic in the
derived category toC•.

Using [H, Lemma III.12.3] and [M, p. 263], we now construct perfect com-
plexesQ• andP • together with quasi-isomorphismsQ• → D• andP • → C•.
We can furthermore assume thatQi = 0 if i > n − 1, sinceDi = 0 for such
i. DefineQ′• to be the complex obtained fromQ• by adjoiningFn in degree
n, and by letting the morphismQn−1 → Fn be the one induced by the iso-
morphismQn−1/Zn−1(Q•) = Hn−1 (Q•) → Hn−1(D•) followed by the map
Hn−1(D•) = Dn−1/Zn−1 → Fn induced by the boundary mapDn−1 → Fn of
D′•. ThenQ′• is isomorphic toD′• in the derived category and, hence, also toC•
and toP •. It follows that∑

i

(−1)i[Q′i] =
∑
i

(−1)i[P i] (2.42)

in K0(ZG). However, sinceD• has smaller length thanC•, we know by induction
on the statement of Theorem 2.3(c) that

χ(D•, {L′i}i , {τ ′i }i) =
∑
i

(−1)i[Qi] =
∑
i

(−1)i[Q′i] − (−1)n[Fn]. (2.43)

Now combining (2.38) with (2.43) and (2.42) shows

χ(C•, {Li}i , {τi}i) =
∑
i

(−1)i[P i]

and this is the assertion of Theorem 2.3(c).

3. Arithmetic Applications

In this section we will suppose thatX is a regular two-dimensional scheme which
is proper over Spec(Z), geometrically connected, and for which the Brauer group
Br(X) is finite. LetG be a finite group acting freely onX, which by definition
means that the inertia group inG of each point ofX is trivial. This implies that the
quotient mapX → X/G is étale. LetK(X) be the function field ofX. There are
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two cases; the geometric one, when char(K(X)) > 0 and the arithmetic one, when
char(K(X)) = 0. LetG′m = Gm (resp.G′m = Gm ⊗Z Z[1/2]) in the geometric
(resp. arithmetic) case. The cohomology groups ofG′m have been computed by
Lichtenbaum [L1] in the geometric case, and by Saito [Sa] in the arithmetic case. In
Section 3.1 and Section 3.2 we will show how their results lead naturally to a nearly
perfect complex structure associated to the hypercohomology ofG′m. One may thus
use the Euler characteristic construction of the previous section to define an Euler
characteristicχ(X,G′m) forG′m onX which lies inK0(ZG) (resp.K0(Z[1/2][G]))
in the geometric (resp. arithmetic) case.

Let f :K0(ZG) → G0(ZG) be the forgetful map. In Section 3.3 we will use
work of Lichtenbaum to prove:

THEOREM 3.1.SupposeK(X) has positive characteristic. Thenf (χ(X,Gm)) =
LX,1 whereLX,1 is defined in Proposition 3.11. The classLX,1 has order 1 or 2,
and is determined by the signs of all the conjugates of the totally real algebraic
numbers which are the leading terms ats = 1 of the ArtinL-series associated to
symplectic representations of the Galois group of the coverX→ X/G.

As mentioned in Section 1, Theorem 3.1 is deduced from a result (Proposi-
tion 3.11) which involves Euler characteristics of bothGm andGa. In a later paper
we will prove generalizations of these results to tame actions ofG on X. In the
arithmetic case, one could presumably develop a counterpart to Theorem 3.1 using
a form of the conjecture of Birch and Swinnerton-Dyer.

3.1. THE COHOMOLOGICAL TRIVIALITY OF HYPERCOHOMOLOGY

PROPOSITION 3.2.Let U be an integral scheme, and letG be a finite group
acting freely onU . The quotient mapU → V = V/G is étale. SupposeR is a ring
and thatF • is a complex of sheaves ofR-modules for the étale topology ofV which
is bounded below. Suppose that for each subgroupH of G, only finitely many of
the cohomology groupsHi(U/H,F •) are non-trivial. Then the hypercohomology
H∗(U, F •) is isomorphic in the derived category of the homotopy category ofR-
modules to a bounded complexC• of RG-modules which are cohomologically
trivial for G.

Proof.Let

I •: I0→ I1→ I2→ I3→ · · · (3.1)

be a complex of injective sheaves ofR-modules for the étale topology onV for
which there is a quasi-isomorphismF • → I •. Then

0(U, I •):0(U, I0)→ 0(U, I1)→ 0(U, I2)→ · · · (3.2)

is a complex ofRG-modules which is isomorphic toH∗(U, F •) in the derived
category of the homotopy category ofRG-modules.
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Let K be the function field ofV , and letj : Spec(K) → V be the natural
morphism. Fix a separable closureKs of K containing the function fieldN of
U . BecauseG acts freely onU , N/K is a finite Galois extension, and we have
a natural identification ofG with Gal(N/K). For eachRG-moduleM, letMs be
the inflation ofM from G to Gal(Ks/K). Viewing Ms as a sheaf on the étale
topology of Spec(K), we have an étale sheafj∗(Ms) on V . The functor which
sendsM to j∗(Ms) is an exact fully faithful functor from the category ofRG-
modules to that of étale sheaves ofR-modules onV . Furthermore, ifJ is any étale
sheaf ofR-modules onV , 0(U, J ) is anRG-module, and HomR(j∗(Ms), J ) =
HomRG (M,0(U, J )). It follows that if J is injective, then0(U, J ) is an injective
RG-module. In particular, the terms of (3.2) are injectiveRG-modules.

Let n be a positive integer such thatHi(U/H,F •) = 0 if i > n andH is a
subgroup ofG. DefineMn = ker(0(U, In)→ 0(U, In+1)). Then

0(U, I0)→ · · ·0(U, In−1)→ Mn (3.3)

is isomorphic toH∗(U, F •) in the derived category, and

0→ Mn→ 0(U, In)→ 0(U, In+1)→ · · · (3.4)

is exact. It will suffice to show thatMn is a cohomologically trivialG-module.
An injective G-moduleM is cohomologically trivial, since we can split the

inclusion of suchM into the inducedG-moduleM⊗Z ZG, and inducedG-modules
are cohomologically trivial. Hence, (3.4) gives a resolution ofMn by cohomolo-
gically trivial G-modules. Therefore for each subgroupH of G, the cohomology
groups of the complex

0(U, In)
H → 0(U, In+1)

H → · · · (3.5)

beginning in degree 0 give theH -cohomology groups ofMn. However, since
U → V is an étaleG-cover,0(U, Ij )H = 0(U/H, Ij). Hence, if i > n, the
(i−n)th cohomology group of (3.5) equalsHi(U/H,F •), and this is 0 ifi > n by
assumption. Thus (3.5) has trivial cohomology in dimensions greater than 0, and
we conclude thatMn is a cohomologically trivialG-module.

3.2. THE COHOMOLOGY OFGm ON SURFACES

The following result is shown in [L1, sect. 3.4 and sect. 4] in the geometric case
and in [Sa] in the arithmetic case.

THEOREM 3.3 (Lichtenbaum–Saito).LetX be a regular two-dimensional scheme
which is proper overSpec(Z), geometrically connected, and for which the Brauer
groupBr(X) is finite. DefineR = Z in the geometric case, and letR = Z[1/2]
in the arithmetic case. LetG′m = R ⊗Z Gm. One hasHi(X,G′m) = 0 if i > 4.
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The groupH 0(X,G′m) if finite (resp. finitely generated overR) in the geometric
(resp. arithmetic) case by the Dirichlet unit Theorem. The groupH 2(X,G′m) is
finite by assumption. The groupH 1(X,G′m) is finitely generated overR by the
Mordell–Weil Theorem. Fori = 0,1, there is a natural pairingHi(X,G′m) ×
H 4−i(X,G′m)→ Q/R which induces an isomorphism betweenH 4−i(X,G′m) and
HomR(H

i(X,G′m), Q/R).

We now apply Proposition 3.2 toX = U andF • the complex havingG′m in
dimension 0 and the zero sheaf in other dimensions. This showsH∗(U, F •) is
isomorphic to a complex of the kind in Definition 2.1(a). Thus Theorems 3.3 and
2.3 show:

COROLLARY 3.4. Let Li = H 4−i(X,G′m)/H 4−i (X,G′m)tor for i ∈ {3,4}.
Let τi :HomR (Li,Q/R) → Hi(X,G′m)div be the isomorphism induced by The-
orem 3.3. DefineLi = 0 andτi = 0 if i 6∈ {3,4}. Then(C•, {Li}i, {τi}i) is a nearly
perfect complex ofR[G]-modules. By Theorem 2.3 of Section 2, and the Remark
following it, we have an Euler characteristicχ(C•, {Li}i, {τi}i) ∈ K0(RG); call
this invariantχG(X,G′m). The image ofχG(X,G′m) in G0(RG) is the class

[H 0(X,G′m)] − [H 1(X,G′m)] + [H 2(X,G′m)]+
+[HomR(H

1(X,G′m),R)] − [HomR(H
1(X,G′m)tor,Q/R)]−

−[HomR(H
0(X,G′m),R)] + [HomR(H

0(X,G′m)tor,Q/R)].

3.3. LEADING TERMS OFL-FUNCTIONS ATs = 1

In this section we will suppose thatX is a smooth projective geometrically connec-
ted surface over a finite field, and thatBr(X) is finite. As before,G will be a finite
group acting freely onX. Our goal is to prove Theorem 3.1 relating the image of
χ(X,Gm) in G0(ZG) to the signs at infinity of the leading terms ats = 1 of the
L-functions of symplectic representations ofG.

The strategy of the proof is to work in the finer Grothendieck groupG0T (ZG)
all finite ZG-modules, in which one can define refined Euler characteristicsχGT (X,
Gm) andχGT (X,Ga) of Gm and the additive sheafGa (cf. Definition 3.5). We will
use work of Lichtenbaum to show in Theorem 3.9 that the difference ofχGT (X,Ga)−
χGT (X,Gm) is determined by the leading terms ofL-functions ats = 1. To carry
out this calculation, we use a ‘Hom-description’ ofG0T (ZG) due to Queyrut (cf.
Proposition 3.7) which makes it possible to idenfity classes inG0T (ZG) via suit-
able functions on the characters ofG. The proof of Theorem 3.1, then follows
from Theorem 3.9, Queyrut’s ‘Hom-description’ of the forgetful homomorphism
G0T (ZG) → G0(ZG), and a result of Nakajima which showsχGT (X,Ga) has
trivial image inG0(ZG).

As in [L1], H 1(X,Gm) = Pic(X) and the intersection pairing on divisors in-
duces a pairingH 1(X,Gm) × H 1(X,Gm) → Z which is non-degenerate when
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tensored withQ. Let λ:H 1(X,Gm) → HomZ (H
1(X,Gm),Z) = H 1(X,Gm)D

be theG-homomorphism induced by this pairing. Thenλ has finite kernel and
cokernel. SinceH 1(X,Gm)D is torsion-free, this implies Ker(λ) = H 1(X,Gm)tor.
Recall that ifA is an abelian group, thenAcodiv = A/Adiv, whereAdiv is the
subgroup of divisible elements ofA.

DEFINITION 3.5. Define classesχGT (X,Gm) andχGT (X,Ga) in G0T (ZG) by

χGT (X,Gm) = [H 0(X,Gm)] − [H 1(X,Gm)tor] + [H 2(X,Gm)] +
+[H 1(X,Gm)D/λH 1(X,Gm)] −
−[H 3(X,Gm)codiv] + [H 4(X,Gm)]

and

χGT (X,Ga) = [H 0(X,OX)] − [H 1(X,OX)] + [H 2(X,OX)].

DEFINITION 3.6. Supposev is a place ofQ. DefineQv to be an algebraic closure
of Qv containing an algebraic closureQ of Q. LetRG (resp.RG,v) be the character
group ofG overQ (resp.Qv). Define�F = Gal(F/F) for F = Q andF = Qv.
If v is a finite place ofQ, let Zv be the integral closure of thev-adic integersZv in
Qv. LetHv be the group of character functionsf ∈ Hom�Qv

(RG,v,Q
∗
v) such that

f (χ) is a unit ifχ is the character of a projectiveZvG-module. Ifv is the infinite
place ofQ, let Hv be the group of character functionsf ∈ Hom�Qv

(RG,v,Q
∗
v)

such thatf (χ) is real and positive ifχ ∈ RG,v is the character of a simpleQvG-
module of Schur index 2. For allv, define(Q)v = Q⊗Q Qv. Choosing a place of
Q overv gives rise to an isomorphism Hom�Qv

(RG,v,Q
∗
v)→ Hom�Q(RG, (Q)

∗
v).

DefineH(v) to be the image ofHv under this isomorphism. LetJ (Q) (resp.Jf (Q)
be the group of ideles (resp. finite ideles) ofQ. DefineHA = Hom�Q(RG, J (Q))∩
(
∏
v H(v)) andHA,f = Hom�Q(RG, Jf (Q))∩ (

∏
v finiteH(v)).

PROPOSITION 3.7 (Queyrut [Q]).Let v be a finite place ofQ with residue field
k(v). There is a unique isomorphism

τv:Hom�Qv
(RG,v,Q

∗
v)/Hv → G0(k(v)G) (3.6)

which sendsDetv(αv) to [ZvG/(ZvG · αv)] for αv ∈ (QvG)
∗ ∩ ZvG, whereDetv:

(QvG)
∗ → Hom�Qv

(RG,v,Q
∗
v) is the usualv-adic determinant map. The direct

sum of these isomorphisms gives an isomorphism

τ :Hom�Q(RG, Jf (Q))/HA,f → G0T (ZG) =
⊕
v finite

G0(k(v)G). (3.7)
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Let G̃0(ZG) be the kernel of the homomorphismG0(ZG)→ G0(QG) induced by
tensoringZG-modules withQ over Z. The natural mapG0T (ZG) → G0(ZG)
together withτ give an isomorphism

τ stab: Hom�Q(RG, J (Q))

Hom�Q(RG,Q
∗
) ·HA

→ G̃0(ZG). (3.8)

DEFINITION 3.8. LetV be a representation ofG over Q. DefineL(t, V ) to be
the Artin L-function of V as a representation of the Galois group of the cover
X → X/G of smooth surfaces, wheret = q−s if q is the order of the field of
constants ofX ands is a complex variable. LetrV be the order of zero ofL(t, V )
at t = q−1, corresponding tos = 1. (In fact,rV 6 0, since the poles ofL(t, V )
arise from terms associated toH 2(X,Ql) in the l-adic formula forL(t, V ) whenl
is a prime not dividingq andX = Fq ⊗Fq X.) Define

cV = lim
t→q−1

(1− qt)−rV L(t, V ).

Let cX,G ∈ Hom(RG, Q
∗
) be the function which sends the characterχV of V to cV .

Defineif : Q
∗ → Jf (Q) to be the diagonal embedding into the finite ideles.

THEOREM 3.9. The functioncX,G lies inHom�Q(RG,Q
∗
). One has

τ(if (cX,G)) = χGT (X,Ga)− χGT (X,Gm) (3.8)

in G0T (ZG).
Proof. From the definition of ArtinL-functions, one hasL(t, V α) = L(t, V )α

as power series int whenα ∈ Aut(C/Q). SinceL(t, V ) is a rational function
in t by the Weil conjectures, it follows thatcV α = (cV )

α. HencecX,G lies in
Hom�Q(RG,Q

∗
).

Let v be a finite place ofQ corresponding to the rational primel, so k(v) =
Z/ l. Fix an embeddingiv:Q → Qv. Let projv :G0T (ZG) → G0(k(v)G) be the
natural projection. The compositioniv ◦ cX,G lies in Hom�Qv

(RG,v,Q
∗
v). To prove

Theorem 3.9, it will suffice to show for allv, l andiv as above that

τv(iv ◦ cX,G) = projv(χ
G
T (X,Ga)− χGT (X,Gm)), (3.10)

whereτv is the homomorphism defined in (3.6). By the theory of Brauer characters,
two classes inG0(k(v)G) are equal if they have the same restrictions to every cyclic
subgroup0 of G of order prime tol. The restriction map res0G:G0(k(v)G) →
G0(k(v)0) is induced by the induction map indG0 :R0,v → RG,v relative to the
isomorphism (3.6). Since ArtinL-functions respect induction, we are thus reduced
to proving (3.10) whenG = 0 is a cyclic group of order prime tol, which we
assume is the case for the rest of the proof.
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DefineR to be the ring of integers of the maximal unramified extension of
Ql = Qv in Qv. Letψ :G→ Q

∗
be a one-dimensional character ofG, so thatψ ′ =

iv ◦ ψ is a character ofG with values inR∗. The group ringR[G] is semisimple;
let eψ ′ be the central idempotent associated toψ ′. If M is a finite ZG-module,
let lengthψ ′(M) be the length of a composition series for the finiteR-module
eψ ′(R ⊗Z M). There is a unique homomorphism ordψ ′ :G0T (ZG) → Q∗ which
sends the class[M] of a finite moduleM to l lengthψ′ (M). By applying the exact
functorN → eψ ′(R ⊗Z N) to each of the modules appearing in Lichtenbaum’s
proof of [L1, Thm. 4.8], one finds an equality of non-zero fractionalR-ideals

i(cψ)R = ordψ ′(χTG(X,Ga))
ordψ ′(χTG(X,Gm))

· R (3.11)

In fact, Theorem 4.8 of [L1] for a projective surface is equivalent to (3.11) when
ψ is the trivial character of the trivial groupG. (Lichtenbaum’s proof of [L1,
Thm. 4.8] relies on [L2], which in turn depends on work of Tate and Milne on
geometric counterparts of the Birch and Swinnerton–Dyer conjecture.) Unwinding
the definitions in Proposition 3.7, we see (3.11) is equivalent to (3.10), so the proof
is complete.

LEMMA 3.10. There is a unique character functionh ∈ Hom�Q(RG, J (Q)) with
the following properties.

(a) For all χ , the finite components ofh(χ) are equal to1, and the infinite com-
ponent is1 if χ is not symplectic.

(b) Supposeχ is symplectic, and let∞ be the infinite place ofQ. Let α∞ ∈
(Q)∞ = Q ⊗Q Q∞ be the infinite component of an ideleα ∈ J (Q). Under
eachQ∞ -algebra map(Q)∞ → Q∞ = C, the image ofh(χ)∞ is±1 and the
image of(cX,G(χ) · h(χ))∞ is real and positive.

Proof. Since symplectic characters are real-valued,cX,G(χ) must be a totally
real algebraic number ifχ is symplectic. We then defineh(χ)∞ via the signs
of all the conjugates ofcX,G(χ). One hash ∈ Hom�Q(RG, J (Q)) sincecX,G ∈
Hom�Q(RG,Q

∗
).

PROPOSITION 3.11.DefineLX,1 ∈ G0(ZG) to be the image of the functionh of
Lemma3.10 under the homomorphismHom�Q(RG, J (Q)) → G0(ZG) resulting
from(3.8) of Proposition3.7. ThenLX,1 has order one or two, and is determined by
the signs of the conjugates of the totally real algebraic numberscX,V asV ranges
over the symplectic representations ofG. One has

LX,1 = z(χGT (X,Ga)− χGT (X,Gm)), (3.12)

wherez:G0T (ZG)→ G0(ZG) is the forgetful homomorphism.
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Proof. View the finite idelesJf (Q) as the subgroup ofJ (Q) having trivial
infinite components. Then Theorem 3.9 shows that

τ stab(if (cX,G)) = z(χGT (X,Ga)− χGT (X,Gm)) (3.13)

where τ stab is the homomorphism resulting from (3.8). Leti:Q → J (Q) be
the diagonal embedding, and leti(∞):Q → (Q)∞ be the natural embedding
into ideles with trivial finite components. Thenif (cX,G) = i(cX,G) · i(∞)(cX,G)−1.

From Lemma 3.10 and Proposition 3.7, we see that the character function
i(∞)(cX,G)−1 · h−1 lies in the subgroupHA appearing in (3.8), whilei(cX,G)
lies in Hom�Q(RG,Q

∗
). Thus

τ stab(if (cX,G)) = τ stab(i(cX,G)) · τ stab(i(∞)(cX,G)−1 · h−1) · τ stab(h)

= 1 · 1 · LX,1.
Combining (3.13) and (3.14) shows Proposition 3.11.

Proof of Theorem 3.1.We wish to show that

f (χG(X,Gm)) = LX,1, (3.15)

whereχG(X,Gm) ∈ K0(ZG) is defined in Corollary 3.4,f :K0(ZG)→ G0(ZG)
is the forgetful homomorphism, andLX,1 is defined in Proposition 3.11.

By Theorem 3.3,

H 3(X,Gm)codiv = Hom(H 1(X,Gm)tor,Q/Z)

and

H 4(X,Gm) = Hom(H 0(X,Gm),Q/Z) = Hom(H 0(X,Gm)tor,Q/Z).

Substituting the right sides of these expressions into Corollary 3.4 whenR = Z
gives

f (χG(X,Gm))

= [H 0(X,Gm)] − [H 1(X,Gm)] + [H 2(X,Gm)]+
+[H 1(X,Gm)D] − [H 3(X,Gm)codiv] + [H 4(X,Gm)], (3.16)

since HomZ(H
0(X,Gm),Z) = 0 becauseH 0(X,Gm) is finite. As noted just prior

to Definition 3.5, the kernel of the homomorphismλ:H 1(X,Gm)→ H 1(X,Gm)D
isH 1(X,Gm)tor. Thus

[H 1(X,Gm)] = [λH 1(X,Gm)] + [H 1(X,Gm)tor] (3.17)
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in G0(ZG). On substituting (3.17) into (3.16), we see from the definition of
χGT (X,Gm) in Definition 3.5, that

f (χG(X,Gm)) = z(χGT (X,Gm)). (3.18)

By Proposition 3.11,

z(χGT (X,Gm))− z(χGT (X,Ga)) = −LX,1 = LX,1 (3.19)

sinceLX,1 has order 1 or 2. Thus (3.18) and (3.19) show that to prove (3.15), it will
suffice to show

z(χGT (X,Ga)) = 0. (3.20)

Since G acts freely onX, it is a Theorem of Nakajima [N] that the class
χGT (X,Ga) = [H 0(X,OX)] − [H 1(X,OX)] + [H 2(X,OX)] ∈ G0((Z/pZ)G) is
the class of a free(Z/pZ)G-module, wherep is the characteristic of the function
fieldK(X). Hence (3.20) holds, which completes the proof.
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