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Abstract. We define a generalization of the Euler characteristic of a perfect complex of modules for
the group ring of a finite group. This is combined with work of Lichtenbaum and Saito to define an
equivariant Euler characteristic f@,, on regular projective surfaces ov&rhaving a free action of

a finite group. In positive characteristic we relate the Euler characteristig,ab the leading terms

of the expansions af-functions ats = 1.
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1. Introduction

A perfect complex of modules for a ring is a bounded complex of finitely gener-
ated projectiveR-modules. The Euler characteristic of a perfect complex lies in the
Grothendieck grouKo(R) of all finitely generated projectiv€-modules. Perfect
complexes and their Euler characteristics have been a basic tool in homological
algebra, topology, algebraic geometry and, more recently, the theory of Galois
module structure.

Suppos&s is afinite group and tha = ZG is the integral group ring afr. The
main object of this paper is to define invariantskip(Z G) associated with certain
complexes oZ G-modules which are of obvious arithmetic interest, but which are
not perfect. Such complexes arise naturally from the cohomology of class field
theory. In Section 2 we define the concept of a ‘nearly perfect compleX'Gof

* Partially supported by NSF grant DMS-9701411.

** Partially supported by NSERC grants
¥ Partially supported by NSF grant DMS-9623269.

https://doi.org/10.1023/A:1001716302575 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001716302575

134 T. CHINBURG ET AL.

modules, and we show in Theorem 2.3 that each such complex has a generalized
Euler characteristic iKo(ZG).

The motivation for this paper is the work of Lichtenbaum [L1] and Saito [Sa] on
the cohomology ofs,, on surfaces< which are proper over Spég). In particular,
Lichtenbaum discovered that for surfaces over a finite field, one could use duality
theorems to assign a numerical Euler characteristi€,to despite the fact that
some of the cohomology groups@f, may not be finitely generated. The cohomo-
logy groups of a perfect complex @iG-modules must be finitely generated, so that
the cohomology ofs,, on X cannot in general be computed by a perfect complex.
The duality theorems used by Lichtenbaum identify the divisible subgroups of the
cohomology groups of,, on X with the Pontryagin duals of finitely generated
groups. Theorem 2.3 arose from the idea that in defining Euler characteristics, one
can compensate for the existence of divisible subgroups in the cohomology of a
complex provided one has a fixed isomorphism between these divisible groups and
the Pontryagin duals of other finitely generated groups.

In Section 3 we describe an arithmetic application to surfatémving a free
action of a finite groups. We assume thaX is regular, geometrically connected
and proper over Spég). We will also assume that Brauer group X¥fis finite,
which is conjectured to always be the case. K&€X) be the function field ofX.

We show how the above work of Lichtenbaum and Saito leads via Theorem 2.3
to an Euler characteristig® (X, G,,) for G,, on X which lies inKq(ZG) if K (X)

has characteristip > 0, and inKo(Z[1/2][G)) if K(X) has characteristic 0. When

K (X) has characteristip, we show how Lichtenbaum’s work on the leading terms
of zeta functions at = 1 leads to a formula of the form

F(xC(X,Gp)) = Ly (1.1)

Here f: Ko(ZG) — Go(ZG) is the forgetful homomorphism to the Grothendieck
group of all finitely generated G-modules. The claséx 1 in Go(ZG) has order

1 or 2, and is defined by the signs of all the conjugates of the totally real algebraic
numbers which are the leading termssat 1 of the L-functions of symplectic
representations of the group of the coverX — X/G. The classLy ; actually
pertains to the difference between an Euler characteriste,dndG,, (c.f. Pro-
position 3.10). One arrives at (1.1) from the fact that; = —Lx 1 and by using
work of Nakajima [N] to show that the class associate@:{dn Go(ZG) is trivial
becauses acts freely onX. In a later paper we will prove a generalization of (1.1)
to the case in whiclt; acts tamely orX in which both multiplicative and additive
Euler characteristics occur.

2. Euler Characteristics of Nearly Perfect Complexes

Let G be a finite group. IfA is an Abelian group, lef\y;, be the subgroup of all
divisible elements ofA, and letAcogiv = A/ Agiv-
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DEFINITION 2.1. A nearly perfect complex af-modules is a tripl€C*, {L;};,
{z;};) of the following kind.

(&) C*is a bounded complex
C':..._)Cnl_)cn1+l_)..._)cn_)... (21)

of cohomologically trivialZ G-modules. If some of th€' are non-zero, we let
m (resp.n) be the smallest (resp. largest) integer for whith 0. If all of the
C' =0, letn = —1 andm = 0. Define length(C*) =n — m + 1.

(b) For each integer, L; is a torsion-free finitely generatedG-module. Let
H'(C*) be thei-th cohomology group of’*. We requirer; to be aG-iso-
morphismz;: Homy (L7, Q/Z) — H'(C*)giv.

(c) For alli, the groupH’ (C*)coquv is finitely generated ovet.

DEFINITION 2.2. Two nearly perfect complexes®, {L;};, {r;};) and(C", {L}};,
{t/};) are quasi-isomorphic if the following is true:

(&) There is an isomorphism betweéf and C” in the derived category of the
homotopy category of G-modules.

(b) There is & G-module isomorphisni; — L; for eachi.

(c) There is a commutative diagram of isomorphisms

Homyz (L', Q/Z) —— H'(C*)gi

/

Homy (L, Q/Z) —— H'(C'*)qy

in which the left vertical isomorphism is induced by (b) and the right one by

).

THEOREM 2.3. Suppos€C®, {L;};, {r;};) is a nearly perfect complex.

(a) One can define an Euler characteristidC®, {L;};, {t;};) € Ko(ZG) which
depends only on the quasi-isomorphism clasgof {L;};, {t:},).
(b) The image o (C*, {L;};, {t:};) in Go(ZG) is equal to

D (=D (LH (C*)coand — [Homz (LY, 2))).

(c) Suppose that the cohomology groui$(C*) are finitely generated agG-
modules, so that thé; and z; are trivial. In this case the usual construction
(cf. [H, Lemma 111.12.3], [M, p. 263])produces a perfect complgx® of ZG-
modules which is quasi-isomorphic €8, and x (C*, {L;};, {t;:};) is the Euler
characteristic inKqo(ZG) of P°.
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Remark. Supposer is a Dedekind ring, and that the fraction fieitdof R is a
number field. One can then replagdy R andQ/Z by F/R in Definitions 2.1 and
2.2 and in Theorem 2.3. This leads to Euler characteristid§oiRG) for nearly
perfect complexes oveRG.

We now outline the construction af(C*®, {L;};,{%;}).

From(C*,{L;};,{r:}) we will construct a nearly perfect compleR*,{L}};, {t/})
with the following properties (cf. Corollaries 2.10 and 2.8). If lengft) = n —
m + 1 = 0, then bothC* and D* are the zero complex. If lengttC*®) = 1, then
C" is the only non-zero term of'®, but C" may not be projective. In this case,
D"~1 will be the only non-zero term ab*, and D"~* will be a finitely generated
projectiveZ G-module. Finally, if lengti(C®) > 1, then length(D*) < length(C*).

If length (C*) < 1 we will definey (C*, {L;};, {r;}) via the class of the project-
ive moduleD" 1 in Ko(ZG), as in Definition 2.11. If lengthC®) > 1, then length
(D*) < length(C*), and we defing (C*,{L;};, {r;}) in terms ofx (D*, {L:}; {t/})
in Definition 2.11. This leads to an inductive definitionyofC*, {L;};, {z:}), which
one must show is independent of the choices involved in construciMg{L;};,
{r/}) from (C*, {L:};, {z:}).

Defines;: C! — C'*! to be theith boundary map irC*, and letZ’ = ker(s;)
be theith cycle group. Thug” = C*, sinceC* has no terms above degreeThe
exact sequence

0> 272"t "t (" - H'(C*)—> 0 (2.2)

defines an extension class= «, € Ext%G(H”(C'), 7Z"~1. The main idea in
the construction ofD*, {L;};, {z/}) is to replace the final terms - — c2 >
ct > crofCc*by--- - C"2 — D" whereD"!is a cohomologically
trivial ZG-module constructed using the extension ctassd the given isomorph-
ismrt,: Homz (L", Q/Z) — H"(C*®)q4y. The first step in this is to ugeto construct
aclassin E>§G(M", Z"~1 for a suitable moduld/™ we now define.

We have an exact diagram of the following kind:

0 0 0
0 —— Homy(L",2) M" N" 0
0 ——— Homz(L", Q) —— Homz(L", Q) &P F" F" 0

|

H"(C*) ———— H"(C®)codiy —> 0

l

0 0 0 (2.3)

0 ——— Homz(L",Q/Z)

https://doi.org/10.1023/A:1001716302575 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001716302575

NEARLY PERFECT COMPLEXES AND GALOIS MODULE STRUCTURE 137

To explain this diagram, note first that EXL", Z) = 0 since in Definition 2.1(b)
L" is a free finitely generated-module. Hence, the left column is exact. In the
bottom row we have identified HomL", Q/Z) with H"(C*®)q4y using the iso-
morphisme, of Definition 2.1(b). Becaus#" (C*)qqiv IS finitely generated, we can
find a finitely generated projective modul¢ along with a homomorphism from
F"to H"(C*) as in the middle column of diagram (2.3) which induces a surjection
from F" to H"(C*)codiv- We Will further require tha#” = {0} if H"(C*)cogiv = 0.
The homomorphism Hog(L", Q) — H"(C*) in the middle column of diagram
(2.3) is the one compatible with the left column and the bottom row. The modules
M" andN" are defined to be the kernels of the vertical homomorphisms, and (2.3)
is exact by the snake lemma.

Applying the functor Homg (x, Z"~1) to the middle column of (2.3) gives a
long exact sequence

oo — Ext (Hom(L", Q) P F", 2" 1) — Ext (M", 2"
(2.4)
By ExR,(H(C*), Z"Y) — ExB,(Hom(L", Q) @ F", Z"1) — -

LEMMA 2.4. The moduleM™ in (2.3) is a finitely generated torsion-fre2G-
module. The boundary map

Extt,(M", 2'~Y) 2 ExB,(H"(C*), Z"Y) (2.5)
in (2.4) is an isomorphism.
Proof. SinceN" and Homy (L", Z) are finitely generated ovet, diagram (2.3)

showsM" is as well. Because HonL", Q) € F” is torsion-free, so i31".
To analyze (2.4) we use the spectral sequence

H? (G, Ext) (D1, D2)) => Exty (D1, Dy) (2.6)

for G-modulesD; and D,. The projective dimension & is 1 (cf. [K, p. 171 and
191]). Therefore

EXt;(Dl, Dy)=0 if q =2 (27)
If D1 is finitely generated and torsion free, then ﬁz@l, D) = 0.1f D;is a
finitely generated projectivé G-module, then Hom(D1, D) is a summand of an
inducedG-module, so Hom(D1, D;) is G-cohomologically trivial. AnyQ-vector
space is als@;-cohomologically trivial.
One finds from (2.6), (2.7) and the above remarks thatif 1 then
Ext},(Hom(L", Q) P F". 2"

= Extl,(Hom(L", Q), Z"™%) @ Ext) (F",Z" 1 =0 (2.8)
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and

Extzg(M", 2" = HY(G, Homz(M", Z")). (2.9)
The homomorphism

Exty, (Hom(L", Q) P F". 2" — Exty,(M", 2" (2.10)

the long exact sequence (2.4) is trivial, since its domairQs\ector space and, by
(2.9), its range is a group annihilated bg #Thus (2.4), (2.9) and (2.10) establish
the isomorphism stated in Lemma 2.4.

COROLLARY 2.5. There is a unique clasg € Ext.(M", Z"~1) which maps
to the extension class < Ext%G(H”(C'), 7Z"~1) of the sequence.2) under the
boundary isomorphism; of Lemma2.4.

DEFINITION 2.6. Let
02"t prl M0 (2.11)

be an exact sequence representing the extensiongtasSorollary 2.5. LetD’ =
C'ifi <n—1,andletD’ =0fori > n — 1. Let

D ..> D" D"t ... 5Dt S50 ...

be the complex such that the boundayyD’ — D*'is as follows. Ifi < n — 2
then; is the boundary map;: C' — C*tof C*. If i > n — 1, theny, is the
zero homomorphism. Finally, if = n — 2, theni,_»: D" 2 = C"2 — D!
is the composition of the boundary map ,: C"~? — Z"~! with the inclusion
7" — D" !in sequenceé2.11).

PROPOSITION 2.7.The moduleD"~1 is cohomologically trivial forG.
Proof. By Corollary 2.5, the cup product ¢f with the extension class of the
middle column

0 —> M" — Homy(L", Q) @ F" — H"(C*) — 0 (2.12)

of (2.3) is+1 times the extension classof sequence (2.2). Therefore splicing
together (2.11) and (2.12) gives an exact sequence

0— 2" — D" — Homy(L". Q)P F' — H"(C) » 0 (213)

which has extension clasa. SinceC"~! and C" in (2.2) were assumed to be
cohomologically trivial forG, cup product witht« induces isomorphisms in Tate
cohomology

H/(T, H"(C*)) — HIT(T, z" 1 (2.14)
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for all integers; and all subgroupE C G. Since Hom (L", Q) €5 F”" in sequence
(2.13) is cohomologically trivial foiG, this implies D"~1 in (2.13) must also be
cohomologically trivial forG.

COROLLARY 2.8. Suppose: = m in sequencé?2.1), so thatC’ = 0if i # n
andC” # 0. ThenD’ = O unlessi = n — 1. The moduleD"~1 = M" is a finitely
generated projectiv& G-module, and

ranks (D" 1)
1
= rankzg(F") + %(rankz(L") — rankz (H" (C*)codiv)) (2.15)

whereC" = H"(C*).

Proof. If m = n, thenZ"~! = 0. Hence, sequence (2.11) sho@$ ! = M".
By Lemma 2.4,M" is a finitely generated torsion-freéG-module, andD" ! is
cohomologically trivial by Proposition 2.7. HencB!~* = M" must be a finitely
generated projectivE G-module. The equality (2.15) follows from"—* = M",
the top row and right column of (2.3), ranttHomz (L", Z)) = rankz (L"), and the
fact that finitely generated projectivdG-modules are locally free.

LEMMA2.9. Ifi < n—1,thenH (D*) = H'(C*).Ifi > n—1,thenH!(D*) = 0.
Finally, there is an exact sequence

0— H"YC*) - H" Y(D*) > M" — 0. (2.16)
Proof. In view of (2.11), the exact sequence (2.16) is
0— zvYp1t - pr-t/p"-t - plyzn=t 0, (2.17)

whereB"~! ¢ z"~1is the group ofr — 1 boundaries of botl'* and D*. The rest
of the Lemma is clear.

COROLLARY 2.10. Suppos€cC®, {L;};, {t;:};) is a nearly perfect complex, as in
Definition2.1. LetL; = L; if i < n —1,and letL; = 0if i > n — 1. Define
v/ = t;:Homyz (L;, Q/Z) — H'(C*)gy = H' (D®)aiy if i <n—1, and letr; =0
ifi >n— 1. Then(D*, {L}};, {t/}) is a nearly perfect complex. #f > m, then

D .. >0—>D"—>...»>D"150->... (2.18)
haslengthD*) < n —m < length(C*) =n —m + 1.
Proof. Since M" is finitely generated by Lemma 2.4, sequence (2.16) gives

an isomorphismH”"~(C*)qy — H" 1(D*)gwv. The Corollary is now clear from
Lemma 2.9.
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DEFINITION 2.11. IflengtiC®*) = n —m + 1 = 0, thenC* andD* are both the
zero complex, and we let

x(C* {Li}i, {wi}i) = 0. (2.19)

Suppose now that lengtf*) = n —m +1 = 1. By Corollary 2.8,0"~! has a class
[D"11in Ko(ZG), so we can let

x(C* L}, {m}) = (=)™ [D" Y+ (=D)" - [F"]. (2.20)

We now assume by induction thag > 1 is an integer such that(C*, {L;};, {t;};)
has been defined whenever len@ih) = n —m + 1 < ng. If length(C*) = ng+ 1
then using Corollary 2.10 we can define

x(C* {Li}i, {t;}i) = x(D*, {L}};, {t/})) + (=D)" - [F,]. (2.21)

PROPOSITION 2.12.The nearly perfect compledD*, {L’};, {t/};) depends on
(C*, {L;};, {r;})), the projective modulgZ” and the homomorphism: F" —
H"(C*) induced by the middle column of diagra@&3). The classy (D*, {L}};,
{t/};) + (=1)" - [F,] does not depend on the choicef or A: F" — H"(C*).
Therefore in Definitior2.11, x (C*, {L;};, {r;};) depends only on the nearly perfect
complex(C*, {L;};, {r;};) and not on further choices.

To begin the proof of this Proposition, we observe that the choicE"oand
A F" — H"(C*®) determines the diagram (2.3). This fixes the long exact sequence
(2.4), so from Corollary 2.5 and Definition 2.6 we see tat, {L}};, {t/};) is also
determined by these choices together with the original nearly perfect cogfiex
{Li}i, {Ti})-

If C* has length O, thew (C*, {L;};, {t;};) = 0 so Proposition 2.12 holds. We
now assum&* has positive length, and that by induction, Proposition 2.12 is true
for all nearly perfect complexes of length less than thatf tf

In the course of the proof, we will show by induction the following

HYPOTHESIS 2.13. Suppose(C3, {L1,}i, {r1:};) and (C3, {L2;}i, {r2;};) are
nearly perfect complexes having the following properties.

(a) The length of each of these complexes is less than th@t. of

(b) There is a morphism of complex€$ — C5 which is a term by term isomorph-
ism.

(c) There are isomorphisms;; — Ly; which are compatible with the cohomo-
logy isomorphismg{‘(C3) — H'(C3) induced by the morphism in (b), the
71; and ther, ;.

Then

x(C3, {Loi}i, {r2,i}i) = x(CI, {Ly;}i, {tviti)s (2.22)

https://doi.org/10.1023/A:1001716302575 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001716302575

NEARLY PERFECT COMPLEXES AND GALOIS MODULE STRUCTURE 141

where the two sides of this equality are well defined because by assumption, Pro-
position2.12 holds for complexes of length less than thaCof

This induction hypothesis is clearly trueGf* has length 1, since thefi; and
C5 have length 0.

LEMMA 2.14. LetX: F" — H"(C*)codiv be the homomorphism induced kyF”
— H"(C*), so that appears in the right column of diagrar®.3). Suppose
At F" — H"(C*) is another homomorphism such that= A’. Then assuming
Hypothesis2.13, A and A’ lead to the same value for(C*, {L;};, {r;};). There-
fore x (C*, {L;}:, {r:};) depends only on the (surjective) homomorphisri” —
H"(C*)codiv-

Proof. From diagram (2.3), we see that there is a homomorphisti” —
Homz (L", Q/Z) such thath = A’ + i o u, wherei: Homz (L", Q/Z) — H"(C*®)
is the inclusion in the bottom row of (2.3). Siné# is projective and the homo-
morphismz: Homz(L", Q) — Homz(L", Q/Z) in the left column of (2.3) is
surjective, we can lifie to a homomorphismy': F* — Homy (L", Q) such that

A=MAN+iomopu. (2.23)

Let T be the automorphism of HoniL", Q) & F”" defined by

T <a @b) = (a + ' (b)) Po. (2.24)

Define (2.3) to be the diagram (2.3) whexi is used instead of. Then we see
that there is a unique isomorphisfhfrom diagram (2.3) to diagram (2/3)hich
fixes the left and right columns and which is the automorphision the module
Homz (L", Q) € F" in the middle of the diagram. Thig induces an automorph-
ism of H"(C*) and an isomorphisnd” — M"™ from M" to the corresponding
module M™ in diagram (2.3) Following through the construction in Definition
2.6, we see that there is a commutative diagram

0 Zn—l Dn—l M" 0

T

0 anl D/nfl M/n 0

in which the left vertical homomorphism is the identity map, the right vertical
homomorphism is the above isomorphigifit — M™, and the middle homo-
morphism is an isomorphism.

Let (D*, {Ly;}i, {r1;};) and(D"*, {L2,};, {t2,;};) be the nearly perfect complex
structures resulting from Definition 2.6 when one usemnd’, respectively. Via
(2.25) we get a morphism of complex& — D’* which is the identity on all
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terms exceptD”~1, and which is the middle vertical isomorphism of (2.25) on
D"~1, This morphism induces a commutative diagram

0 H"Y(C*) — H"Y(D*) M" 0
\ t t (2.26)
0 Hn—l(Co) . Hn—l(D/o) M 0

in which the left and right isomorphisms are those induced by constructiori”
induces the identity isomorphism &8f*~1(C*) gy = H"™* (D*)giv = H"2(D"*)gy.
Hence the identity isomorphisth; ; — L, ; for eachi is compatible withD* —
D'*, 1;; andt,;. It follows now from our induction hypothesis (2.22) that

X(D®, {Lo;}i, {t2i}:) + (=1)" - [F"]
= x(D"*, {L1:}i, {t0i}) + (D" - [F"]. (2.27)

Therefore we get the same value fp¢C*, {L;};, {r;};) whether we use. or 1"
This proves Lemma 2.14.

Proof of Proposition 2.12 and Hypothesis 2.13.et Fj' be another choice
of a projectiveZG-module and a surjective homomorphism F;' — H"(C*®).
Since both of the induced homomorphismsF" — H"(C*)coqiy andiy: F —
H"(C*)codiv @re surjective, we can form a pull back square

F @ Fy Fy
L Fl (2.28)
F" H" (C.)codiv

i

It follows from Lemma 2.14 that to show we get the same valuedfare, {L;};,
{z;};) whether we use. or X;, we can reduce to the case in whizh is the
composition of a surjection: F — F" and . Since the value of (C*, {L;};,
{;};) does not depend on howis lifted to A, we can furthermore assume that
A: Fl — H"(C*) is the composition oft andx: F" — H"(C*).

Define (2.3) to be the diagram (2.3) which results from usinginstead ofi,
and letM7 and N7 be the modules appearing in (2.3) the positions correspond-
ing to M" andN". We have a commutative exact diagram
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0 0 0
0 F> N N" 0
0 F FI F" 0 (2.29)
*1 X
0 0 HH(C.)codiv - HH(C.)codiv —— 0
0 0 0

in which the right columns are the right columns of diagrams (28§ (2.3). The
middlerow of (2.29) splits becaude" is projective. Hence, the top row of (2.29)
also splits, andr; is projective becausg” and F;' are. We thus have compatible
isomorphismsN; = N"@ F, and M} = M" P F,. Using the fact that;, is
projective, we see that the construction of Definition 2.6 leads to an isomorphism
D;™' = D" @ F,, whereD} is the complex which results from using instead
of . The homomorphisnD; ? = D"2 = ¢"2 — D} ' is the composition
of D"~2 — D"~ and the inclusionD"~* — D;~! = D"1@ F, which is the
identity map onto the first summand pf' L. If F, =0, theni = A, and there is
nothing to prove because of Lemma 2.14. So we assume in what followB;tfsat
non-trivial.

We see from this description th&t"~1(D}) = H"~1 (D*) @ F,, and that the
nearly perfect complex structuk®;, {L.};, {t/};) of D3 is the one which results
from (D, {L}};, {t/};) by simply adding the projective modul& to D" 1.

In view of Definition 2.11 and (2.29), the expressions fdIC*, {L;};, {t;};)
which result from using.; anda, respectively, are

x (D3, AL} {7/ }) + (=" - ([F"1+ [F2]) (2.30)
and
x (D {L}};i, {t/}) + (=D" - ([F"]. (2.31)

We will now show (2.30) and (2.31) are equal.

Choose a free modulg; and aG-morphismaiz: F3 — H”"~! (D*®) which in-
duces a surjectiofs — H"™! (D*)cogiv. We further requireFz = {0} if H"~*
(D*)codiv = 0. We computeg D3, {L:};, {t/};) by choosing the projective module
F3 @ F, together with the homomorphism

ra: F3 EB F, — H"Y(D}) = H" Y(D*) EB F,
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which is the identity map on the second summand &ndn the first. From the
diagram of the form (2.3) which results and from Definitions 2.6 and 2.11, we see
that there is a single nearly perfect complds, {L};, {r/'};) of length less than
length(C*) such that

x(D* AL}, {t/}) = x (D3, {L/}:, {7/} + (=Dt [F] (2.32)
and
XD ALY AT = x (D3 ALY At/ }) + ()" [FED F). (2.33)

whereF; = D"~ is projective if lengtiC*) = 1, andF} = F3 if length(C*) > 1.
Here we may use Hypothesis 2.13 to assert g@d3, {L}};, {t/'};) has the same
value on the right sides of (2.32) and (2.33). It follows easily from (2.32) and (2.33)
that (2.30) and (2.31) are equal.

The proof of Proposition 2.12 will now be complete once we show that our
induction hypothesis (2.22) holds for nearly perfect compl&k8s{L1;};, {t1:}:)
and(C3, {L2,;};, {r2;};) of the same length &s*. This may be proved by using the
inductive definition ofy (C3, {Lj:}i, {T)i}) toO reduce to the case of complexes of
length less than that a@f*; we will leave the details to the reader.

The proof of part (a) of Theorem 2.3 is now completed by

PROPOSITION 2.15Suppos€&C®, {L;};, {r;};) and (C", {L}};, {t/};) are quasi-
isomorphic in the sense of Definition 2.2. ThetC*, {L;};, {z:};) = x(C", {L}};,
{Ti/}i)-

Proof. By [HRD, Sect. 1.3], we can reduce to the case in which there is a
morphism of complexe€* — C’* which gives rise to the quasi-isomorphism
in the derived category which is referred to in Definition 2.2(a).

A shift by 1 to either the left or the right of the terms of*, {L;};, {t;:};)
multiplies x (C*, {L;};, {r;};) by —1. Thus we can reduce to the case in which at
least one of”* or C'* is not the zero complex(’ = C" =0ifi < 0, andC® # 0
or C% # 0. Letn’ > 0 (resp.n > 0) be the largest non-negative integer for which
C" # 0 (resp.C" # 0). We wish to reduce to the casé= n, by replacingC*
(resp.C’®) by a quasi-isomorphic longer complexif > n (resp. ifn > n’). We
will treat only the caser’ > n, since the case > n’ is similar. If n’ > n we
can add a non-zero finitely generated free modul both C” andC"™* = 0
and use the identity map — F to construct a perfect comple&xs, {L;};, {z;};)
from (C*, {L;};, {r;};) which has length one greater thé&@*, {L;};, {t;};). Since
H"t1(C5) = 0, we can use the trivial free module surjecting ottt (C3) to
computex (C3, {L;};, {r;};) via the counterpart of diagram (2.3). This leads to
x(C3, {L;}i, {ti};) = x(C*, {L;};, {r;};). In this way we can increase the length of
C* to be able to assume = n.

We will prove Proposition 2.15 by induction en= »’. Suppose: = n’ = 0.
Then C” and C° are the only non-zero terms @f* and C*, respectively. The
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morphismC® — C’* must induce an isomorphis@i® = H°(C*) — H%(C"*) =
C”°. Hence, the case = n’ = 0 is treated by Hypothesis 2.13, which was proved
in the course of the proof of Proposition 2.12.

We now suppose = n’ > 0 and that Proposition 2.15 is true for all pairs
of complexes which have trivial terms in negative dimension and highest terms in
dimension less tham. As in the definition ofy (C*, {L;};, {1;};), we choose a free
module F" together with a morphisn#” — H"(C*) inducing a surjectiorF” —
H"(C*)codiv- We now use the isomorphisn#s” (C*) — H"(C'*) andL” — L™
in Definition 2.2 to take the diagram (2.3) used to defy(€"*, {L;};, {t;};) to the
diagram (2.3)used to defing (C™*, {L!};, {t/};). In particular, we have an induced
isomorphismM” — M™. Via Lemma 2.4, Corollary 2.5 and Definition 2.6, this
leads to a diagram

0 anl anl M" 0

]

0 Z/nfl D/nfl M/n 0

in which the right vertical arrow is an isomorphism. The morphism of complexes
C* — ('* together with (2.34) now gives a morphism of complex¥s— D’
which induces cohomology isomorphisi#é(D*) — H (D) if i # n—1.When

i =n — 1, one has a commutative diagram

O anl(co) . Hl”l*l(DO) Mn 0

| | | 29

anl(clo) anl(D/O) M/n 0

0

in which the left and right vertical homomorphisms are isomorphisms, so that the
middle vertical homomorphism is as well. This prou®$ — D’* is a quasi-iso-
morphism. The diagram (2.35) also shows that the nearly perfect complex struc-
tures onD* and D’ which are constructed in Corollary 2.10 are quasi-isomorphic
in the sense of Definition 2.2. Sind@* and D"* have highest non-zero terms in
degree less tham = »’, the proof of Proposition 2.15 now follows by induction.

Completion of the proof of Theorem 2.#s noted before, Proposition 2.15
shows part (a) of Theorem 2.3. We now show parts (b) and (c) of Theorem 2.3 by
induction on lengthC*®) =n — m + 1.

If length(C*®) < 0, thenC* is the zero complex angd(C*, {L;};, {t:};) = 0 by
(2.19), so we are done.

From diagram (2.3) we have

[M"] = [Homz(L", Z)] + [F"] = [H"(C*)codi] N Go(ZG). (2.36)
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Suppose lengit€*) = 1. By Corollary 2.8,C' = 0if i # n, andH"(C*®) =
C" # 0. Furthermorep”~! = M" is a projectiveZ[G]-module, and

X(C* ALY, Am)) = (1" [M"] 4+ (=1)" - [F"] (2.37)
by (2.20). Combining (2.36) and (2.37) showe&C*®, {L;};, {t;};) has the image
(=" [M"T+ (D" - [F"] = (=D" - (H"(C*)coan] — [HOMz(L", Z)])

in Go(ZG) as asserted in Theorem 2.3(b). Suppfg&C*) = C” is finitely gen-
erated as ZG-module. Then.” = 0, and diagram (2.3) showg"] — [M"] =
[H"(C*)] = [C"] in Ko(ZG) when we identifyKo(ZG) with the Grothendieck
group of all finitely generated cohomologically triviad G-modules (cf. [C,
Prop. 4.1(b)]). Thus (2.37) gives(C*, {L;};, {t:};) = (=1)" - [C"] in this case,
which by Schanuel's Lemma is equivalent to the assertion of Theorem 2.3(c).
Finally, suppose lengtic®) > 1, and let(D*®, {L};, {t/};) be a nearly perfect
complex of the kind constructed in Corollary 2.10. By Definition 2.11,

x(C*, {Li}i, {t;}i) = x(D*, {L}};, {t/})) + (=1)" - [F,]. (2.38)

By induction, the image of (D*, {L}};, {t/};) in Go(ZG) is

D (=D ([H (D*)coand — [Homz (L, 2)]).

In view of the construction ofD*, {L’};, {t/};), this equals
(=D)" - ([H" (D) coun] — [Homz ("4, Z)))+

+ ) (=D ([H'(C*)eoand — [Homz (L', 2)]) (2.39)

i<n—1

By the exact sequence (2.16), we have
[H"H(D*)codi] = [H"H(C*)codn] — [M"] (2.40)

since M" is finitely generated. Hence on combining (2.38), (2.39) and (2.40), we
see thaty (C*, {L;};, {t;};) has image irGo(ZG) equal to

D (=D (1H (C*)eoand — [Homg (L', 2)])

as asserted in Theorem 2.3(b).
Suppose now that all the’ (C*) are finitely generated. Then the groups§(D*)
are as well by Lemmas 2.4 and 2.9, atid= 0. By composing the inclusion map
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71 — D! with multiplication by —1, if necessary, we conclude from (2.13)
that there is an exact sequence

0—» 2"t p1t > F" » H"(C*) — 0 (2.41)
which has the same extension class irélgxtH"(C'), 7"~1) as the exact sequence
0—>z"1> s "> H'(C*) = 0.

Let D’* be the complex obtained fro* by putting F” in the nth position and
using the morphisnD"~! — F” of (2.41). It follows thatD’* is isomorphic in the
derived category ta'*.

Using [H, Lemma 111.12.3] and [M, p. 263], we now construct perfect com-
plexesQ*® and P* together with quasi-isomorphism3® — D*® and P* — C°.
We can furthermore assume th@t = 0if i > n — 1, sinceD’ = 0 for such
i. Define Q’* to be the complex obtained from@*® by adjoining F" in degree
n, and by letting the morphisn@”~! — F”" be the one induced by the iso-
morphismQ"~1/7"-1(Q*) = H"™' (Q*) — H"1(D*) followed by the map
H""Y(D*) = D""'/z"-! — F" induced by the boundary map"~! — F" of
D’*. ThenQ' is isomorphic toD’* in the derived category and, hence, als@to
and toP°. It follows that

D =D =) (-DP] (2.42)

in Ko(ZG). However, sinceD® has smaller length thafi*, we know by induction
on the statement of Theorem 2.3(c) that

XD ALY AT)) =D _(-D'1Q'1= ) (-D[Q"] = (-D"[F"]. (2.43)
Now combining (2.38) with (2.43) and (2.42) shows

X(C* ALY {mi}) = ) _(=D'[P]
and this is the assertion of Theorem 2.3(c).

3. Arithmetic Applications

In this section we will suppose that is a regular two-dimensional scheme which
is proper over SpéZ), geometrically connected, and for which the Brauer group
Br(X) is finite. LetG be a finite group acting freely oi, which by definition
means that the inertia group @ of each point ofX is trivial. This implies that the
guotient mapX — X/G is étale. LetK (X) be the function field ofX. There are
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two cases; the geometric one, when ¢&&rX)) > 0 and the arithmetic one, when
charkK (X)) = 0. LetG,, = G, (resp.G,, = G,, ®z Z[1/2]) in the geometric
(resp. arithmetic) case. The cohomology group<zOf have been computed by
Lichtenbaum [L1] in the geometric case, and by Saito [Sa] in the arithmetic case. In
Section 3.1 and Section 3.2 we will show how their results lead naturally to a nearly
perfect complex structure associated to the hypercohomoloGy, oDne may thus
use the Euler characteristic construction of the previous section to define an Euler
characteristig (X, G),) for G/, on X which lies inKo(ZG) (resp.Ko(Z[1/2][G]))
in the geometric (resp. arithmetic) case.

Let f: Ko(ZG) — Go(ZG) be the forgetful map. In Section 3.3 we will use
work of Lichtenbaum to prove:

THEOREM 3.1. SupposeX (X) has positive characteristic. Thef(x (X, G,,)) =
Lx .1 whereLy ; is defined in Proposition 3.11. The class ; has order 1 or 2,
and is determined by the signs of all the conjugates of the totally real algebraic
numbers which are the leading termssa&= 1 of the Artin L-series associated to
symplectic representations of the Galois group of the céves X/G.

As mentioned in Section 1, Theorem 3.1 is deduced from a result (Proposi-
tion 3.11) which involves Euler characteristics of b& andG,. In a later paper
we will prove generalizations of these results to tame actionS oh X. In the
arithmetic case, one could presumably develop a counterpart to Theorem 3.1 using
a form of the conjecture of Birch and Swinnerton-Dyer.

3.1. THE COHOMOLOGICAL TRIVIALITY OF HYPERCOHOMOLOGY

PROPOSITION 3.2.Let U be an integral scheme, and lét be a finite group
acting freely orly. The quotientmapy — V = V/G is étale. Supposg is aring
and thatF* is a complex of sheaves Bfmodules for the étale topology Bfwhich
is bounded below. Suppose that for each subgriupf G, only finitely many of
the cohomology group&i(U/H, F*) are non-trivial. Then the hypercohomology
H*(U, F*) is isomorphic in the derived category of the homotopy categom-of
modules to a bounded compléX of RG-modules which are cohomologically
trivial for G.

Proof. Let

I Ip—>0L—>1L—> 13— - (3.1)

be a complex of injective sheaves Bfmodules for the étale topology on for
which there is a quasi-isomorphisft — [°. Then

rWw,1°:rw,lp) -TWW, L) - TWU, L) — - (3.2)

is a complex ofRG-modules which is isomorphic tbl*(U, F*) in the derived
category of the homotopy category BtG-modules.
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Let K be the function field ofV, and letj: Spe¢K) — V be the natural
morphism. Fix a separable closuke’ of K containing the function fieldv of
U. BecauseG acts freely onlU, N/K is a finite Galois extension, and we have
a natural identification o& with Gal(N/K). For eachRG-module M, let M* be
the inflation of M from G to GakK*/K). Viewing M* as a sheaf on the étale
topology of Spe¢K), we have an étale shegf(M*) on V. The functor which
sendsM to j,(M*) is an exact fully faithful functor from the category &G-
modules to that of étale sheavesi®imodules orV. Furthermore, if/ is any étale
sheaf ofR-modules onV, I'(U, J) is an RG-module, and Horp(j.(M*), J) =
Homgg (M, T'(U, J)). It follows that if J is injective, therT" (U, J) is an injective
RG-module. In particular, the terms of (3.2) are injectR&-modules.

Let n be a positive integer such that'(U/H, F*) = 0ifi > nandH is a
subgroup ofG. DefineM,, = ker(I'(U, I,,) — T'(U, I,11)). Then

raw,lp) —---I'(U, I,-1) —> M, (3.3)
is isomorphic taH*(U, F*) in the derived category, and
O—->M,—-TIWU,I)—>TWU,IL)— - (3.4)

is exact. It will suffice to show tha¥Z,, is a cohomologically trivialG-module.

An injective G-module M is cohomologically trivial, since we can split the
inclusion of suchVf into the induceds-moduleM ®7Z G, and induced>-modules
are cohomologically trivial. Hence, (3.4) gives a resolutiomff by cohomolo-
gically trivial G-modules. Therefore for each subgrotpof G, the cohomology
groups of the complex

rw, )" - T, L™ — - (3.5)

beginning in degree 0 give thH-cohomology groups of\f,. However, since

U — V is an étaleG-cover,I'(U, I.,-)H = I'(U/H, I;). Hence, ifi > n, the

(i —n)th cohomology group of (3.5) equals’ (U/H, F*), and thisis 0 ifi > n by
assumption. Thus (3.5) has trivial cohomology in dimensions greater than 0, and
we conclude tha¥,, is a cohomologically trivialG-module.

3.2. THE COHOMOLOGY OFG,, ON SURFACES

The following result is shown in [L1, sect. 3.4 and sect. 4] in the geometric case
and in [Sa] in the arithmetic case.

THEOREM 3.3 (Lichtenbaum-Saitd)et X be a regular two-dimensional scheme
which is proper oveSpecZ), geometrically connected, and for which the Brauer
group Br(X) is finite. DefineR = Z in the geometric case, and I& = Z[1/2]
in the arithmetic case. Le&/, = R ®; G,,. One hasH'(X,G)) = 0if i > 4.
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The groupH®(X, G!) if finite (resp. finitely generated oveR) in the geometric
(resp. arithmetic) case by the Dirichlet unit Theorem. The gréifiX, G)) is

finite by assumption. The groui'(X, G)) is finitely generated oveR by the
Mordell-Weil Theorem. Foi = 0, 1, there is a natural pairingH’ (X, G, x

H*(X,G,) — Q/R which induces an isomorphism betwegf (X, G, ) and
Homg(H'(X,G.,), Q/R).

We now apply Proposition 3.2 t§ = U and F* the complex havings/, in
dimension 0 and the zero sheaf in other dimensions. This slkbw&, F*) is
isomorphic to a complex of the kind in Definition 2.1(a). Thus Theorems 3.3 and
2.3 show:

COROLLARY 3.4. LetL; = H*(X,G,)/H*" (X,G ) for i € {3,4}.

Let 7;: Homg (L;,Q/R) — H'(X, G4y be the isomorphism induced by The-
orem 3.3. Defind.; = 0andr; = 0ifi & {3,4}. Then(C*, {L;};, {r;};) is a nearly
perfect complex oR[G]-modules. By Theorem 2.3 of Section 2, and the Remark
following it, we have an Euler characteristic(C®, {L;};, {t:};) € Ko(RG); call

this invariantx © (X, G,,). The image o ° (X, G,,) in Go(RG) is the class

[H°(X, G,)] — [HY (X, G,)] + [H*(X, G,)]+
+[H0mR(Hl(X’ G;}’l)’ R)] - [HomR(Hl(Xv G;n)tor’ Q/R)]_

—[Homg (H°(X, G/,), R)] + [Homg(H°(X, G )tor, Q/R)]1.

3.3. LEADING TERMS OFL-FUNCTIONS ATs = 1

In this section we will suppose thatis a smooth projective geometrically connec-
ted surface over a finite field, and thaik (X) is finite. As beforeG will be a finite
group acting freely orX. Our goal is to prove Theorem 3.1 relating the image of
x (X, G,) in Go(ZG) to the signs at infinity of the leading termssat= 1 of the
L-functions of symplectic representations@®f

The strategy of the proof is to work in the finer Grothendieck gréyf (ZG)
all finite ZG-modules, in which one can define refined Euler characterigfias,
Gn) andx£ (X, G,) of G,, and the additive shed}, (cf. Definition 3.5). We will
use work of Lichtenbaum to show in Theorem 3.9 that the differengé’ ok, G,,)—
x%(X,G,,) is determined by the leading terms bffunctions ats = 1. To carry
out this calculation, we use a ‘Hom-description’ @§7 (ZG) due to Queyrut (cf.
Proposition 3.7) which makes it possible to idenfity classeS¢i (ZG) via suit-
able functions on the characters Gf The proof of Theorem 3.1, then follows
from Theorem 3.9, Queyrut’s ‘Hom-description’ of the forgetful homomorphism
GoT(ZG) — Go(ZG), and a result of Nakajima which shows’ (X, G,) has
trivial image inGo(ZG).

As in [L1], HY(X,G,,) = Pic(X) and the intersection pairing on divisors in-
duces a pairingd'(X, G,,) x HY(X,G,,) — Z which is non-degenerate when
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tensored withQ. Let »: H*(X, G,,) — Hom; (HY(X,G,,).Z) = HYX, G,)?
be the G-homomorphism induced by this pairing. Therhas finite kernel and
cokernel. Sinced(X, G,,)? is torsion-free, this implies K¢x) = HX(X, G,,)or-
Recall that if A is an abelian group, theA.gv = A/Agv, Where Agy is the
subgroup of divisible elements df.

DEFINITION 3.5. Define classeg? (X, G,,) andxZ (X, G,) in GoT (ZG) by
X2 (X,G,) = [HX,G,)] — [HYX, Gl + [H*(X, G,,)] +
+[HY(X, G’ /AHYX, G,)] —
—[H3(X, Gp)eodi] + [HH(X, G,)]

and
xZ(X,G,) = [H°X, 0x)] — [HY(X, Ox)] + [H?*(X, Ox)].

DEFINITION 3.6. Suppose is a place oRQ. DefineQ, to be an algebraic closure
of Q, containing an algebraic closu@of Q. Let R (resp.Rg.,) be the character
group of G overQ (resp.Q,). DefineQr = Gal(F/F) for F = QandF = Q,.
If vis a finite place of), letZ, be the integral closure of theadic integer<Z, in
Q,. Let H, be the group of character functiorfse Homg,, (Rg.y, Q,) such that
f(x) is a unit if x is the character of a projectii&,G-module. Ifv is the infinite
place ofQ, let H, be the group of character functionfs e HomQQU(RG,U,ﬁz)
such thatf (x) is real and positive ify € Rg., iS the character of a simpl@,G-
module of Schur index 2. For all, define(Q), = Q ®q Q,. Choosing a place of
Q overv gives rise to an isomorphism Hem (Re.v, Gj) — Homg, (Rg, (G)j).
Define H,, to be the image off, under this isomorphism. Let(Q) (resp.Jf(ﬁ)
be the group of ideles (resp. finite ideles)@fDefine Ha = Homg, (R, J(Q)N

(IT, Hw) andHa s = Homgy, (Rg. J Q)N ([T, finite Hw))-

PROPOSITION 3.7 (Queyrut [Q]Letv be a finite place of) with residue field
k(v). There is a unique isomorphism

7,: HoMgy, (Rg.0. Q,)/Hy — Go(k(v)G) (3.6)
which send®et, («,) to [ZUQZ(ZUG -ay)] for o, € (Q,G)* N Z,G, whereDet,:

(QuG)* — Homg, (Rg.», Q,) is the usualk-adic determinant map. The direct
sum of these isomorphisms gives an isomorphism

7:Homg, (Rg, J£(Q))/Ha.f — GoT (ZG) = @ Gok(v)G). (3.7)

vfinite
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Let Go(ZG) be the kernel of the homomorphisia(ZG) — Go(QG) induced by
tensoringZ G-modules withQ over Z. The natural mapGo7T (ZG) — Go(ZG)
together withr give an isomorphism

_stah Homg, (Rg. J(Q))
Homay (R, Q) - Ha

— Go(ZG). (3.8)

DEFINITION 3.8. LetV be a representation @ over Q. DefineL(z, V) to be

the Artin L-function of V as a representation of the Galois group of the cover
X — X/G of smooth surfaces, whete= ¢~ if ¢ is the order of the field of
constants ofX ands is a complex variable. Let, be the order of zero af.(z, V)
att = g1, corresponding te = 1. (In fact,ry < 0, since the poles af.(¢, V)
arise from terms a3500|atedltb2(x Q) in thel-adic formula forL(z, V) when!

is a prime not dividing; andX = F ®r, X.) Define

cy = lim (1 qt)""VL(t, V).

t%q

Letcx ¢ € HOm(Rg, 6*) be the function which sends the charagterof V tocy .
Definei;: Q — J;(Q) to be the diagonal embedding into the finite ideles.

THEOREM 3.9. The functiorry ¢ lies inHomg, (R, 6*). One has

T(if(ex.)) = x2 (X, G,) — xS(X, G,,) (3.8)

in GoT (ZG).

Proof. From the definition of ArtinL-functions, one had.(r, V%) = L, V)*
as power series in whena € Aut(C/Q). SinceL(z, V) is a rational function
in ¢ by the Weil conjectures, it follows thaty,« = (cy)*. Hencecy ¢ lies in
Homg, (Rg. Q).

Let v be a finite place of) corresponding to the rational prinigsok(v) =
Z /1. Fix an embedding,: Q — Q,. Let proj,: GoT (ZG) — Go(k(v)G) be the
natural projection. The compositigno cy ¢ lies in Homy, (Rg v, Q ). To prove
Theorem 3.9, it will suffice to show for all, [ andi, as above that

7,(iy 0 cx.6) = Proj, (x5 (X, G,) — x5 (X, G,)), (3.10)

wherer, is the homomorphism defined in (3.6). By the theory of Brauer characters,
two classes it (k(v)G) are equal if they have the same restrictions to every cyclic
subgroupI’ of G of order prime tol. The restriction map res Go(k(v)G) —
Go(k(v)T") is induced by the induction map ifidRr, — Rg., relative to the
isomorphism (3.6). Since Artih-functions respect induction, we are thus reduced
to proving (3.10) wherG = T is a cyclic group of order prime th which we
assume is the case for the rest of the proof.
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Define R to be the ring of integers of the maximal unramified extension of
Q =Q,inQ,.Lety:G — 6* be a one-dimensional character®fso thaty’ =
i, o ¥ is a character o with values inR*. The group ringR[G] is semisimple;
let e, be the central idempotent associatedyto If M is a finite ZG-module,
let length, (M) be the length of a composition series for the finkemodule
ey (R ®z M). There is a uniqgue homomorphism @rdGo7(ZG) — Q* which
sends the clasgM] of a finite moduleM to /'®"9" () By applying the exact
functor N — ey (R ®z N) to each of the modules appearing in Lichtenbaum’s
proof of [L1, Thm. 4.8], one finds an equality of non-zero fractioRaildeals

_ ordy (6 (X, Ga))
ordy (x5 (X, Gy))

i(cy)R (3.11)

In fact, Theorem 4.8 of [L1] for a projective surface is equivalent to (3.11) when
¥ is the trivial character of the trivial groug. (Lichtenbaum’s proof of [L1,
Thm. 4.8] relies on [L2], which in turn depends on work of Tate and Milne on
geometric counterparts of the Birch and Swinnerton—-Dyer conjecture.) Unwinding
the definitions in Proposition 3.7, we see (3.11) is equivalent to (3.10), so the proof
is complete.

LEMMA 3.10. There is a unique character functidgne Homg,, (R, J(Q)) with
the following properties.

(a) For all x, the finite components @f(x) are equal tol, and the infinite com-
ponent isl if x is not symplectic.

(b) Supposey is symplectic, and leto be the infinite place of. Let oy, €
Qs = Q ®q Q. be the infinite component of an idalee J(Q). Under
eachQ. -algebra map(Q). — Q. = C, the image ofi(x) is =1 and the
image of(cx.¢(x) - h(x)) IS real and positive.

Proof. Since symplectic characters are real-valuegdg (x) must be a totally
real algebraic number if is symplectic. We then defing(x)., via the signs
of all the conjugates ofy ¢(x). One has: € Homg, (Rg, J(Q)) sincecx ¢ €

Homg, (Rg, Q).

PROPOSITION 3.11DefineLx 1 € Go(ZG) to be the image of the functignof
Lemma3.10 under the homomorphisiomg, (R, J(Q)) — Go(ZG) resulting
from (3.8) of Proposition3.7. ThenL x 1 has order one or two, and is determined by

the signs of the conjugates of the totally real algebraic numbgrs as V ranges
over the symplectic representations@fOne has

Lx1=z(xZ(X,G,) — x£(X,Gn)), (3.12)

wherez: GoT (ZG) — Go(ZG) is the forgetful homomorphism.
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Proof. View the finite idelesJ;(Q) as the subgroup of (Q) having trivial
infinite components. Then Theorem 3.9 shows that

% 1 (cx.6)) = 2(x§ (X, G,) — x£ (X, Gy)) (3.13)

where 5 js the homomorphism resulting from (3.8). LetQ — J(Q) be

the diagonal embedding, and I&t,,):Q — (Q). be the natural embedding
into ideles with trivial finite components. Thép(cx.¢) = i(cx.6) - io)(cx.G) 7

From Lemma 3.10 and Proposition 3.7, we see that the character function
ico)(cx.g)t - k71 lies in the subgroupH, appearing in (3.8), whilg(cx. )

lies in Homy, (R, Q"). Thus

i 1 (cx.6)) = TM™i(ex.6) - Ty (cx.6) LA™Y - 58%R)
=1-1-Ly;.

Combining (3.13) and (3.14) shows Proposition 3.11.

Proof of Theorem 3.1We wish to show that

F(xX°(X,Gp) = Ly, (3.15)

wherex ¢ (X, G,,) € Ko(ZG) is defined in Corollary 3.4f: Ko(ZG) — Go(ZG)
is the forgetful homomorphism, aridy ; is defined in Proposition 3.11.
By Theorem 3.3,

H3(X, G,p)codv = HOM(HY (X, G,)tor, Q/Z)
and
H*X,G,) = Hom(H°(X, G,,), Q/Z) = Hom(H°(X, G,))tor, Q/Z).

Substituting the right sides of these expressions into Corollary 3.4 \RhenZ
gives

F(x% (X, Gp))
= [H°(X,G,)] — [HY(X,G,)] + [H*(X, G,)]+
+HHYX, G,)P] — [H3(X, G)eodn] + [HH(X, G,)], (3.16)

since Hom (H°(X, G,,), Z) = 0 becausé?®(X, G,,) is finite. As noted just prior
to Definition 3.5, the kernel of the homomorphism#*(X, G,,) — H(X, G,,)?

[HY(X,G,)] = [LHYX, G,)]+ [HY(X, G,)tor] (3.17)
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in Go(ZG). On substituting (3.17) into (3.16), we see from the definition of
x%(X,G,,) in Definition 3.5, that

(X, G) = z(x5 (X, G)). (3.18)
By Proposition 3.11,
2(XZ(X,Gp)) — 2(x£(X,G,)) = —Lx1=Lx1 (3.19)

sinceLx ; has order 1 or 2. Thus (3.18) and (3.19) show that to prove (3.15), it will
suffice to show

2(xf (X, G,)) = 0. (3.20)

Since G acts freely onX, it is a Theorem of Nakajima [N] that the class
x5 (X, G,) = [HYX, Ox)] — [HY(X, Ox)] + [HA(X, Ox)] € Go((Z/p2)G) is
the class of a fre€Z/pZ)G-module, wherep is the characteristic of the function
field K (X). Hence (3.20) holds, which completes the proof.
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