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Abstract

A generalised form of the Reynolds equation for two symmetrical surfaces is derived by
considering slip at the bearing surfaces. This equation is then used to study the effects
of velocity-slip for the lubrication of journal bearings using half-Sommerfeld boundary
conditions. Expressions for pressure and load capacity and the coefficient of friction are
obtained and numerically analysed for various parameters. It is found that the load capacity
decreases with slip. This is unfavourable for lubrication. The coefficient of friction
decreases with a high viscous layer and increases with slip.

1. Introduction

A journal bearing is the most common hydrodynamic bearing in use. It is a circular
shaft or journal rotating inside a circular bush, that is, the inmer constituent is a solid
right circular cylinder called a journal and the outer body is in the form of a hollow
right circular cylinder called a bearing. The inner diameter of the bush is between
one and two parts per thousand bigger than the shaft. The gap between the cylinders
is taken to be very small in comparison to the radii of both the cylinders and so
there is a thin fluid layer between these two cylinders, which may be considered as
a lubricant. Much work has been done in journal bearings with various lubricants
[1,2,7,13,15-22,27,29,30, 32, 34,35].

In general, additives are added to the lubricant to improve the bearing character-
istics. Various theories have been proposed for this. These additives are generally
long-chain organic compounds and they may form a high viscous layer near the
surface. It may be proposed that slip-velocity may occur near the surface [2].

Very little attention has been paid to the study of the effects of slip at the surface,
although it may be of importance in the flow behaviour of gases and liquids particularly
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when the film s thin [10, 11, 14], the surface is smooth [8] and at the porous boundary
[3-5,24,25,33]. '

The slip phenomenon also plays an important role in bearings with porous facings.
Beavers and coworkers [3-5] discussed this effect for an incompressible fluid and
demonstrated the existence of slip velocity at the porous surface. This has been
further supported by Saffman [25], Taylor [33] and Richardson [24]. The slip velocity
at the porous surface can be written as

P\ (8u>
Uiip = = (=
P § 92 / yan

where £ is the slip coefficient at the wall and ¢ is the pérmeability of the porous facing.
In this paper, the effects of velocity-slip and viscosity variation in journal bearings
are discussed using half-Sommerfeld boundary conditions.

2. Mathematical analysis

Consider the laminar flow of a fluid between two symmetric surfaces and the
variation of fluid properties across as well as along the film thickness. The basic
equations of motion and equation of continuity in the general form for a Newtonian
fluid can be written as

Du _ aP L2 u av) L2 (3w
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2—‘: + —(pu) + —(pv) + —(pw) =0, 22)

with the following usual assumptions of lubrication theory:

(1) Inertia and body force terms are negligible compared with the pressure and
viscous terms.
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(2) There is no variation of pressure across the fluid film, which means 0 P/3Z = 0.

(3) There is no slip in the fluid-solid boundaries.

(4) No external forces act on the film.

(5) The flow is viscous and laminar.

(6) Due to the geometry of the fluid film the derivatives of 4 and v with respect to z
are much larger than the other derivatives of the velocity components.

(7) The height of the film A is very small compared to the bearing length, I. A
typical value of k/1 is about 1073,

The Navier-Stokes equations (2.1) can be simplified to

9P o[ ou] 9P _ 3 [ dv o3
ax oaz|"az|® By "8z |"ez) '

where P = P(x, y) is the pressure in the film and 7 is the viscosity.
The boundary conditions considering slip at the surfaces [28] are

du 0
u—(u)l—(l)ll: ] + U, v=_v), =(6) [—z] + Vi, atz=H,, .
Ju (2.9)
u—(u)z——(x)z[a :|+U2, v_(v)z——w)z[ ]+vz, atz=H,
b4 9z |,

where ()1, (), denote the value at z = H, and z = H,. Here A and § are the molecular
mean free path for gas lubrication and depend upon lubricant temperature, pressure
and viscosity. In liquid lubrication A and § depend on viscosity and the coefficient
of sliding friction. However, with porous bearings A and § are functions of the slip
coefficient at the wall and the permeability parameter of the porous facing.

Integrating (2.3) and using boundary conditions (2.4), expressions for the fluid film
velocities are obtained:

ZZdZ JdP Uz—Ul F|3P fde
= U +|amH kil [t AL =3
“ ‘+[°“ ‘+/H, . ]ax+[ ) Foax][“'+ —

tzdz| 9P V.-V F!aP fdz
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where Fy = o) + a; + f,z,l dz/n, F{ = fi+ B + f;l dz/n, F, = a\H, + auH, +

f,:f’(z/n) dz, F| = BiH, + BH, + f,ff’(z/n) dz, ay = (M)/(M1, a2 = (A)2/ ()2,
B = (8)1/(); and B, = (8)2/(A),. Integrating the equation of continuity (2.2) w.r.t.
z and taking limits from z = H, to z = H, gives

Hy dp i 3 H: 3 4
/ —dz + —(pu)dz + —(pv)dz + (pw)l = 0. .5)
H, at H, 3 H, 3y
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The integrals of (pu) and (pv) are evaluated by partial integration. Introducing the
expressions for (pu) and (pv) and their derivatives in (2.5) gives

3 P 3 P
—(F, + G)— — {(F! + GHy—
ax{( 2+ ')ax}+ay{( 2 ‘)ay}
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Equation (2.6) represents a generalised form of the Reynolds equation for com-
pressible fluid film lubrication considering slip velocities at the bearing surfaces.
The two sets of functions F and G depend upon the variation of fluid properties
both along and across the film and on the slip conditions at the surfaces, that is,
M1 =A)=0)=@)>r=0anda; =0, = =4=0.

The viscosity of the lubricant can vary across the film and may be different near the
bearing surfaces owing to the reaction of additives and surfactants with the surfaces
[2,6,8,9, 12,23, 26].

Considering a reasonable case where the density and viscosity of the lubricant near
the bearing surfaces may be different from the central region, we can have

p=Pl(X,)’), ’7=’71(X,)’), HISZSHl'*_h]y
p=paAx,y), n=nAx,y), Hy+hy <z < Hi + h; + hy,
p=pi(x,y), n=nmx,y), H+h+h <z<H+h+h+h;.
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This introduces the concept of multiple-layer lubrication. By taking Uy = U, U; =
i=Ww=0,a=8,0,=p,00:/3z=0,i =1,2,..., the generalised equation
with slip reduces to the following form:

i[F 3P]+_3_[F23_P]=H2[3(Pu)2+ a(pv»}_Hl{a(pu). REICD)
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Here V; is the resultant velocity towards the film.

To see the effect of slip consider three symmetrical incompressible layers between
two solid boundaries: ny = 12, oy = 0, = 03, HH =0, H, = (h+a) = h,
hy =hy=a/2, hy = (h—a),a) = a, = B = B> = 1/B. The Reynolds equation
applicable to this case can be written from (2.7) as follows:

a aP a opP a
— | F,— —|FR—|=U=—Mm) -V, 28
3x[43x]+3y[48y] Uax() 28

where Fy = (h — a)*/(12n) + (h® — (h — a)*)/(12m,) + h*/(2B), taking B = ni/A
to be the slip parameter.
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Line of centres

FIGURE 1. Journal bearing configuration.

3. Lubrication of two symmetrical cylinders in journal bearings

Consider the flow of an incompressible fluid between two eccentric cylinders in
uniform relative motion. The gap or clearance ¢ (the difference between the two
radii) between the two cylindrical surfaces is small compared with the radius of the
inner cylinder (journal). The journal bearing operates with a constant external load,
W and speed, U. Under the physical conditions imposed, the journal operates at an
eccentricity e as shown in Figure 1.

The one-dimensional form of the equation governing the pressure in the fluid film,
taking n; = ku and n; = p from (2.8), is '

d (R _dP Ud
dj{; 43} = E‘J;(h), 3.1

where
_(1—a/h)3(k—1)+1 s

F .
¢ 24k 4hp

Here S represents the slip parameter, k is the viscous layer parameter, a is the thickness
of the peripheral layer, u is the viscosity of the middle layer and the total film thickness
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of the lubricant is given by h = c(1 + € cos 8).
Integrating once and using (3.1) gives

dpP U pn

dx 2 WF,

(h - hZ)y
where h; is the film thickness corresponding to maximum pressure.
Using the half-Sommerfeld boundary conditions [31]
P=0 at =0 and 6 =m, 3.2)

and putting x = R0, the pressure gradient and the pressure become

dP _ pwUR (h—hy)
deo ~ 2m3 F,

3.3)

and

do

R (°h—h
P@®) = nlU / 2
0

2h3 Fy

respectively. The pressure distribution is put into dimensionless form using H = h/c,
Hy = hy/cand P = P/(uUR/2c?) and becomes

— °*H-H

PO = / 2 do, (3.4)
o H3F,

where

— a3k —
Ez(l a/h)’ (k 1)+1+1

24k 4hp (33)

and @ = a/c, h = h/c, B = ¢B/u. Using the boundary conditions (3.2) we get
7 (H*F,)™ a6
2= T =T
ST (H?F) ™ de
Load components. The load components per unit length along and perpendicular
to the line of centres are obtained by integrating the pressure around the bearing from
6 = 0to @ = m. The load components normal to the line of centres per unit length is

Wep = Wsing = [ Psin6R d6.
Integrating by parts and using (3.3) gives

wUR? /" h—h,
0

> B, cos @ do.

Wn/2 =

The load W is put into dimensionless form using the relation

W

V= rupa
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and hence

— "H_H
Wy = / —2cos 6 do,
o H?3

4
where F, is given by (3.5). '
The load component per unit length along the line of centres is given by
b4 T dP )
Wo = Wcos¢ = — Pcos9Rd9=R/ —sin 6 db.
0 o db

The corresponding dimensionless form is

— H-H
Wo-—./ 2sin0d9
o H3F,

4
and the dimensionless load is given by
W= (W2, + W 3.6)

Coefficient of friction. The shear stress along the surface [18] is

o (Y [V, h aP
~"\%) "R ox
where Fy = a; + o + foh dz/n.

At z = 0, the shear stress on the joumal is Ty = U/Fy + (—h/2)(d P/0x), and at
z = h,wehave 1, = U/Fy + (h/2)(3P/dx). Now the frictional force is

h dp U
= = - dx.
F /rxdx /(; <2dx+ )

"(hdP U
F= R do,
[ Gz
where Fo = (h —a)/u +af(ku) + 2/B.
Since it is assumed that the pressure gradient is zero beyond § = 7, the contribution

to the frictional drag beyond 6 = s will be due only to the surface velocity. The
frictional drag F per unit length is thus given by

*(h dP 2
F=R/ (———+U)d9+R/ Fud(). 3.7
0 n

Therefore

2R db 0
Substituting d P/d8 from (3.3) into (3.7) gives

F_ MUR ”(h—hz)d9+2/‘2” do
~ 2c¢ o 2m2F, o (h—a)+alk+2u/8)
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FIGURE 2. Variation of P versus  for various values of @ with k = 2.0, ¢ = 0.4 and B =25.0.
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FIGURE 3. Variation of W versus & for various values of @ with 8 = 10.0 and e = 0.4.

This is put into dimensionless form using F = F/(wUR /2c¢) and becomes

b4 _ 27
F=l ud9+2/ ___ 4 _
2Jo H?F, o (h—a)+a/k+2/B

where Fj is given by (3.5).
The friction coefficient, uy , is obtained by dividing the frictional drag by the load:

us(R/C)=F/W. . (3.8)

4. Results and discussion

(I) Dimensionless parameters. The bearing characteristics depend on the parame-
ters B, k and a.
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FIGURE 4. Variation of W versus & for various values of k with f = 10.0 and ¢ = 0.4.
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FIGURE 5. Variation of W versus 8 for various values of k with @ = 0.1 and € = 0.4.

(a) Slip parameter. The slip parameter is represented by 8. As S tends to infinity, this
indicates no-slip at the surface. As 8 tends to zero, the slip will be maximum, that is,
as B increases, the slip decreases. So lower values of B indicate high slip and higher
values of g indicate less slip.
(b) Viscous layer parameter. We mentioned earlier that the viscosity near the surface
is different to the viscosity at the middle layer. This is taken into account by the
parameters k and a. When & > 1, the viscosity near the periphery is more than the
viscosity of the middle layer. If k = 1, this indicates that the viscosity is the same
everywhere. When &k < 1, the viscosity at the periphery is less than the viscosity
of the middle region. Thus the difference between the viscosity of the middle and
peripheral regions is indicated by the parameter k.

Another key parameter is a, which indicates the thickness of the peripheral layer
due to the presence of additives. When a = 0, there is no peripheral layer. As the
peripheral layer thickness is small, normally the values of @ would be small.

(IT) Bearing characteristics. Equations (3.4), (3.6) and (3.8) have been analysed
numerically and appropriate graphs have been plotted with these parameters. In
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FIGURE 6. Variation of W versus B for various values of @ withk = 1.5and ¢ = 0.4.
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FIGURE 7. Variation of (R/C) s versus B for various values of € with k = 1.0 and @ = 0.0.

Figure 2 the pressure P is plotted against 6 for various values of a. In this figure, we
find that the pressure increases as 6 increases and reaches a maximum pressure which
occurs at @ = 2.2. It is independent of the parameters B, @ and k. It is also observed
that the pressure is increased for higher values of a for ¥ > 1 and decreases as a
increases for k < 1 and it is also observed that the pressure increases as B increases,
that is, as the slip parameter decreases.

The load capacity W versus various parameters has been plotted in Figures 3-6.
It can be seen from Figure 3 that the load capacity increases as k increases, that is,
the viscosity of the peripheral layer increases and it is higher for higher values of a.
It may also be seen from Figure 4 that W increases as a increases for k > 1 and
decreases as a increases for k < 1 and it is parallel to the x-axis when k = 1, that is,
when the thickness of the peripheral layer is greater than that of the middle layer. The
load capacity increases as its thickness increases and also from Figures 5-6, we find
that the load decreases as the slip increases.

The friction coefficient parameter (R/C)pu, is plotted against B in Figure 7. Itis
found that (R/ C) s decreases as B increases, that is, as the slip decreases the friction
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coefficient decreases and it is lower for low values of .
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