Electrum is one of the oldest alloys known to humankind. Homer mentions the silver-gold alloy in the Iliad, and coins made of electrum were minted by the Lydians in seventh century BC. Despite the long history with the alloy, its structure at the nanoscale is still not well characterized. A study recently published in *ACS Nano* (DOI: 10.1021/acsnano.5b05755) utilizes theoretical modeling to show the way electrum reacts under various conditions, yielding surprising results not only for this alloy but also for similar bimetallic alloys.

A phase diagram is one of the first steps in trying to understand the characteristics of the material, says Grégory Guisbiers, a materials scientist at The University of Texas at San Antonio. And while bulk phase diagrams have been developed for electrum, nothing similar has been achieved on the nanoscale due to technical limitations that do not allow for precise calorimetry. Instead, Guisbiers and his team turned to modeling using nanothermodynamics, the thermodynamics of small systems. Building off previous attempts published by others, nanothermodynamics modeling studies of Electrum (Ag-Au alloy) points to two rules for segregation for bimetallic materials. Credit: ACS Nano.

University of Texas at San Antonio. And while bulk phase diagrams have been developed for electrum, nothing similar has been achieved on the nanoscale due to technical limitations that do not allow for precise calorimetry. Instead, Guisbiers and his team turned to modeling using nanothermodynamics, the thermodynamics of small systems. Building off previous attempts published by others,
they hoped to better understand how size, shape, and segregation effects might alter the nanophase diagram of electrum nanoparticles.

Though size and shape had some impact during changes in phase, the modeling showed a particularly unexpected effect in segregation.

“No matter what the temperature was, silver was always on the surface,” Guisbiers says. This was strange, he says, because typically it’s expected that whichever element has the highest melting point would be the most stable and therefore would be segregated to the surface. In the case of electrum, gold should therefore be on the surface because its melting temperature of 1063°C is about 100 degrees higher than silver.

However, says Guisbiers, the fact that the melting temperature did not seem to play a major role had them rethink the mechanism behind segregation. They developed two rules for segregation for bimetallic materials. First, temperature is still the primary driving factor. If two elements have melting temperatures that are fairly far apart, the one with the highest melting temperature will be on the top. However, if their melting temperatures are close together, a different mechanism takes over. The second rule is driven by surface energy. The element with the smaller surface energy will segregate to the surface.

“These rules can apply to other bimetallic alloys,” Guisbiers says. Using this thermodynamic modeling, “we can speed up the fabrication process. We don’t need to make the alloy first and do experiments. We can predict it,” Guisbiers says.

“Thermodynamics is a powerful tool to predict the phase stability even [at the] nanoscale,” says Joonho Lee, a materials scientist at Korea University in Seoul who is unaffiliated with the current research. “This paper is one example [of] how we can predict the phase stability of nanoparticles by considering various factors … although we still need to [continue improving] the thermodynamic model for this type of nanomaterial, [this] model would be a useful guidance.”

Guisbiers agrees that additional studies are needed to more fully flesh out the thermodynamic modeling of nanoalloys. One particular aspect he would like to further investigate is optical properties. The initial modeling with electrum suggests that the optical properties are not affected much by varying particle size and shape. Instead, it appears that the solvent used to fabricate the alloy plays a bigger role. He plans to look at gold-palladium next, an important catalyst used in many applications. In addition, he aims to look at alloys that are used in biomedical applications.

Meg Marquardt
2016 MRS SPRING MEETING SYMPOSIA

CHARACTERIZATION AND MODELING OF MATERIALS
CM1 New Frontiers in Aberration Corrected Transmission Electron Microscopy
CM2 Quantitative Tomography for Materials Research
CM3 Mechanics and Tribology at the Nanoscale—In Situ and In Silico Investigations
CM4 Verification, Validation and Uncertainty Quantification in Multiscale Materials Simulation

ENERGY AND ENVIRONMENT
EE1 Emerging Materials and Phenomena for Solar Energy Conversion
EE2 Advancements in Solar Fuels Generation—Materials, Devices and Systems
EE3 Materials and Devices for Full Spectrum Solar Energy Harvesting
EE4 Electrode Materials and Electrolytes for Lithium and Sodium Ion Batteries
EE5 Next-Generation Electrical Energy Storage Chemistry
EE6 Research Frontiers on Liquid-Solid Interfaces in Electrochemical Energy Storage and Conversion Systems
EE7 Mechanics of Energy Storage and Conversion—Batteries, Thermoelectrics and Fuel Cells
EE8 Grid-Scale Energy Storage
EE9 Hydrogen and Fuel Cell Technologies for Transportation—Materials, Systems and Infrastructure
EE10 Recent Advances in Materials for Carbon Capture
EE11 Caloric Materials for Renewable Energy Applications
EE12 Radiation Damage in Materials—A Grand Multiscale Challenge
EE13 Actinides—Fundamental Science, Applications and Technology
EE14 Titanium Oxides—From Fundamental Understanding to Applications
EE15 Materials for Sustainable Development—Integrated Approaches

ELECTRONICS AND PHOTONICS
EP1 Organic Excitonic Systems and Devices
EP2 Silicon Carbide—Substrates, Epitaxy, Devices, Circuits and Graphene
EP3 Perovskite-Based Photovoltaics and Optoelectronic Devices
EP4 Emerging Silicon Science and Technology
EP5 Metal Oxide Hetero-Interfaces in Hybrid Electronic Platforms
EP6 Integration of Heterovalent Semiconductors and Devices
EP7 Material and Device Frontiers for Integrated Photonics
EP8 Resonant Optics—Fundamentals and Applications
EP9 Materials and Processes for Nonlinear Optics
EP10 Optoelectronic Devices of Two-Dimensional (2D) Materials
EP11 Novel Materials for End-of-Roadmap Devices in Logic, Power and Memory
EP13 Tailoring Superconductors—Materials and Devices from Basic Science to Applications
EP14 Materials for Next-Generation Displays
EP15 Diamond Power Electronic Devices

MATERIALS DESIGN
MD1 Materials, Interfaces and Devices by Design
MD2 Tuning Properties by Elastic Strain Engineering—From Modeling to Making and Measuring
MD3 Functional Oxide Heterostructures by Design
MD4 Phase-Change Materials and Applications
MD5 Fundamentals of Organic Semiconductors—Synthesis, Morphology, Devices and Theory
MD6 Electronic Textiles
MD7 Advances in Lanthanide Materials for Imaging, Sensing, Optoelectronics and Recovery/Recycling
MD8 Multiscale Behavior of Materials in Extreme Environments
MD9 Magnetic Materials—From Fundamentals to Applications
MD10 Micro-Assembly Technologies

NANOTECHNOLOGY
NT1 Functional Nanostructures and Metamaterials for Solar Energy and Novel Optical Phenomena
NT2 Oxide and Chalcogenide-Based Thin Films and Nanostructures for Electronics and Energy Applications
NT3 Carbon Nanofibers
NT4 Emerging Non-Graphene 2D Materials
NT5 Nanodiamonds—Fundamentals and Applications
NT6 Colloidal Nanoparticles—From Synthesis to Applications
NT7 Nanoparticle Characterization and Removal
NT8 Silicon Nanostructures—Doping, Interface Effects and Sensing

SOFT MATERIALS AND BIOMATERIALS
SM1 Liquid Crystalline Materials—Displays and Beyond
SM2 Bioinspired Dynamic Materials—Synthesis, Engineering and Applications
SM3 Soft Materials for Compliant and Bioinspired Electronics
SM4 Engineering BioInterfaces with Nanomaterials
SM5 Surfaces and Interfaces for Biomaterials
SM6 Transient and Biologically-Inspired Electronics
SM7 Future Healthcare Needs through Biomaterials, Bioengineering and the Cellular Building Block
SM8 Bioinspired Metal Nanoparticles—Synthesis, Properties and Application
SM9 Structure and Properties of Biological Materials and Bioinspired Designs
SM10 Biofabrication-Based Biomaterials and Tissues

www.mrs.org/spring2016

Meeting Chairs
Christopher A. Bower X-Celeprint Ltd.
Andrew M. Minor University of California, Berkeley
Lawrence Berkeley National Laboratory
Roger Narayan UNC/NC State Joint Department of Biomedical Engineering
Izabela Szuflarska University of Wisconsin-Madison
Osamu Ueda Kanazawa Institute of Technology

Don’t Miss These Future MRS Meetings!
2016 MRS Fall Meeting & Exhibit
November 27 – December 2, 2016
Boston, Massachusetts
2017 MRS Spring Meeting & Exhibit
April 17 – 21, 2017
Phoenix, Arizona

MATERIALS RESEARCH SOCIETY™
Aging Mater. Improving the quality of life.
506 Keystone Drive • Warrendale, PA 15086-7573
Tel 724.779.3000 • Fax 724.779.8313
info@mrs.org • www.mrs.org