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LIE GROUP VALUED INTEGRATION IN

WELL-ADAPTED TOPOSES

ANDERS KOCK

In the context of synthetic differential geometry, we prove that

group valued 1-forms on the unit interval are exact, provided the

group in question is a Lie group. This exactness is the basic

assumption in a previous paper by the author on differential forms

with values in groups.

0. Introduction.

We consider the standard well adapted topos models for synthetic

differential geometry, and prove the validity here of a fundamental

Theorem of differential geometry, namely that, for G a Lie Group,

* G-valued J-forms on R (or on LO}11) are exact.

(the classical (well known) version of this Theorem has a less simple

formulation, and is stated in the beginning of Chapter 3.) I have

expounded the meaning of * in several articles [ jj], [9], [JO].

The main technical tool for proving validity of * in the topos

models is a generalization of a Theorem of O. Bruno [2] from the 1-

variable case to the n-variable case, and for this generalization, we
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3 9 6 Anders Kock

resort to convenient vector space theory [6], [74], [72].

The well-adapted models we consider are Zj F and G of [4], [75],

whose sites of definition have as objects C -rings C (IR )/I with J

an arbitrary, respectively ^-determined, respectively germ determined

ideal (terminology of [7]). (The arguments and results we present are

independent of which subcanonical Grothendieck topology we consider.)

Any of the three toposes will be denoted E . The category Mf of mani-

folds is embedded into E , in the standard way, M e Mf being represented

by the ring C (M) . We omit the embedding i from the notation, except

that we write R for i(IR) .

1. Congruence modulo ideals.

Let I c_ C°(JM) be an ideal, fixed for this section. Let M be

a manifold (or any other set structured with a C -ring C (M) of

functions M — > IR , in particular, M may be a convenient vector space) .

We let I(M) denote the equivalence relation on C (IP ,M) given by

f = g mod I(M) if and only if for all <f> e C (M),(§ o f-§ o g) e I

or equivalently, if and only if

f*
(1.1) C°(M) I C°(IRP) >

9*
commutes.

This we call weak congruence mod I(M) , or just mod I . If X

is a convenient vector space, we let I(X) denote the linear subspace of

C (IFT,X) spanned (purely algebraically) by functions of the form

d.2) h(t) • k(t) t

with h: IR > I?? in J and k: TK > X arbitary smooth .

Two maps IK > X will be called strongly congruent mod I(X) , or

just mod I , if their difference belongs to I(X) .

To compare the two notions where it makes sense (Proposition 1.3

below) , we shall use the following unsurprising Lemma from convenient

vector space theory.
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LEMMA 1.1. Let G: X > Y be a smooth map between convenient

vector spaces. Then there exists a smooth H: X * X *• IR > Y such

that

(1.3) Gix + X • y) = G(x) + X • H(x,y,\)

for all x, y e X and X e IB .

Proof. Consider the function H defined by

E(x,y,X) = / df^iy) ds .

It will serve in (1.3), by the standard (Hadamard) calculation. It depends

smoothly on (x,y,\) ; for, df (y) depends smoothly on (x3y) (see [14],

Satz p.299, or [6], Theorem 6.2), and integration preserves smoothness

(see for example [72], Proposition 2.6).

Let X and Y again denote convenient vector spaces; then

PROPOSITION 1.2. Let f,g: Up > X be strongly congruent mod

I , and let G: X > Y be smooth. Then G o f and Gog are

strongly congruent mod I .

Proof . By a s sumpt ion , git) = fit) + Z h.(t)k.(t) w i t h h. and
Is t- Is

k. as in (1.2). We may remove one h.(t) • k.(t) summand at a time, so

it suffices to consider the case

git) = fit) + hit) • kit) .

Let H be as in Lemma 1.1. Then since hit) e 17? , we have

Gigit)) = Gifit) + hit) • kit))

= Gifit)) + hit) • Eifit),kit),hit)),

and the last term is in liY) due to the factor hit) ,

PROPOSITION 1.3. Let X be a convenient vector space; then strong

congruence mod I of maps He > X implies weak congruence. For

X finite dimensional, the converse holds.

Proof. The first part is immediate from Proposition 1.2 (let
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weakly congruent mod Kin ) . For each of the n coordinate projections

pro\ .: In > 17? , we therefore have

proj . o g - proj. o f e l .
Is Is

Denote this map by h .: IK > IR . So
Is

git) = fit) + Z h.(t) • e.

where e. is the constant function IK > Up with value e. e In .
—v —i

Since h. e I , this proves strong congruence.

It is clear that strong congruence behaves well with respect to

products: for maps Uf > X- x ... x X {X. convenient), con-
1 71 1*gruence mod I(X^ x ... x X ) is tested coordinatewise, that is by testing

congruence mod I(X.) (i = I3...,n) . As a corollary of Proposition 1.2,
tr

we therefore derive

PROPOSITION 1 .4 . Let ff: ^ x . , . x ^ > y be smooth, and

let f-,g- be maps HT > X. . If (strongly)
3 3 3f. E g. mod I(X.) 3 = I3...,n

J d d

then (strongly)

G o (flt...,fn) = G o (gr...3gn) mod I(Y).

If K is a manifold, the ideal I £ C°°(In ) defines an ideal I*

in C (In x K) , namely the one spanned by functions h(t)k(t3x)

(t e In } x 6 K } and h e I) . Clearly, under the isomorphism

(1.4) C°(IRP }C°(K)) - C 0 0 ^ x K) ,

I(CCO(K)) £ C°°ri7?P ,C°(K)) corresponds to I* .

Suppose now that we have a smooth map (' operator')

(1.5) C°(K)n > C°(L)

with L a manifold. The composite

(1.6) C°(IBP x K)H ~ C°(IRP
yC

a(K))n—^->C°(InP,c'°(L)) ~ C^CZ^ x L) ,
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(where G* , modulo the iden t i f i ca t ion C°°'(IRF',C*'(K))n ^ C°(IX SC°(K)n) ,

i s j u s t "composing with G") should be considered as "applying G

parameterwise in t e In". Let us denote i t by G/lH (or jus t G).

Let f. and g. be elements of C° (In x K) for i = l,...,n> and l e t

G be as above (1.5) . We then have

THEOREM 1.5. Let f. - g. e I* c C°(IFF X K) , for i = l,...,n .

Then

G/X?(f1,...,fn) - G/n?(gr...3gn) e I* £ (fai? x L) .

( F o r n = 1 , t h i s i s i m p l i c i t i n B r u n o ' s Theorem 8 , [ 2 ] . )

P r o o f . The a s s u m p t i o n m e a n s f . = g . mod I(C (K)) Vi ; b y
1s 1s

Proposition 1.4,

G o (fr...,fn) = G o (gr... gn) mod KC^CD)

and again this implies congruence mod J c_C (IFT x L) for the

exponential adjoints, which are the terms appearing in the Theorem.

Even when the ideal I £ C (UT) is (̂ -determined, respectively

germ-determined, the ideal I 5_ C (In x K) may not be, so to get

results about the models F and G (see the introduction), we need to

take the '(/-radical1, respectively 'germ-radial' of J* (terminology of

[7]).

It is known (see, for example D5]) that the (/-radical J of an

ideal J £ C (IR ) is its closure in the Frechet space topology on
m k ~
C (IR ) . An unpublished result of Penon says that the germ-radical J

similarly is the closure of J in a finer topology on C (HT~) , called

the Stone-topology in [2], where this topology is described, and a sketch

of Penon's result is given.

We shall need the following important result. Let K and L be

manifolds, and let G: C^fKjIlf1) >c"'(L) be a smooth operator.

Then

THEOREM. (Frolicher [5 ] ) . G is continuous with respect to the

Frechet topologies.
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THEOREM. (Bruno [2]). G is continuous with respect to the Stone

topologies.

(Frolicher in fact proves that any (plot-) smooth map between

Frechet spaces is continuous. Bruno proves the Theorem quoted only when

K and L are coordinate spaces and n = 1 , but his proof carries over

immediately.)

Using these Theorems in conjunction with Theorem 1.5 leads to the

following result (with notation as in Theorem 1.5):

THEOREM 1.7. Let (f. - g.) e J* (respectively I*) £ d°(E? x K)

for i = 1,... , n. Then

G/IRP(f1,...Jfn) - G/n?(g1,...,gr) e J* (respectively I*) ̂ C°(H? x L)

(For I* and n = 1 3 this is Bruno's Theorem 8, [2] .

Proof. For each i = l,...,n, let (h ) _ be a sequence in

I converging in the relevant topology to g. - f. . For each m ,

Theorem 1.5 applies to the n-tuple

to give

(1.7) G/IRP(fv .. .,fn) - G/B? (fJ +h
1
m,...,fn + h

n
m) e I* .

As m -*• °° , the right hand term converges to G/TB (g~,...,g ) by

continuity of G/IFT (which is a smooth map c"'(Iff * K,IK) >

C (HC x L) , hence continuous by the Theorems quoted). So the difference

is the one in the Theorem, and is a limit of expressions (1.7) in I* 3

hence in I* (respectively I*).

Consider more generally a smooth operator

c"'(K)n > C°(L,M),

with KjL and M manifolds. Replacing the codomain in (1.6) by

C°(IHP ,C°(L,M)) = C^Of? x L,M)

yields a smooth map G/HC :
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L,M) .

With • denoting closure for any of the three topologies under consider-

ation (discrete, Frechet, Stone), and with f., g. e C°(Hr X K) as before

we have

THEOREM 1.71. If f.-g.e I* (i = l,...,n), we have

(1.8) G/sP (fr...,fn) E G/m
9 (g13...gn) mod I*(M) .

Proof. The conclusion (1.8) means 'weak congruence1 of course. So

let (j>; M -*• IR be smooth, and apply Theorem 1.5 (for the discrete case)

or Theorem 1.7 to the smooth operator

2. The functor E.

Recall that E denotes any of the well adapted toposes Z, F and

G mentioned in the introduction. If M is a manifold and I £ (f (M) ,

we let J denote its closure in any of the three topologies (discrete,

Frechet, Stone), according to whether we read Z, F or G, for E.

Similarly, & denotes coproduct in the sites of definition of either; if

A is in the site, A e E denotes the object it represents. Thus

A x B = (A 0 B)~ .

Let J £ C°(Ur) be a closed ideal, J = J . For any manifold K ,

we have

\Z.i.) L [IK )/v & L [KJ ^ o (IK x K.//d j

this requires a small argument, which we shall not reproduce here (and I

thank E. Dubuc for convincing me of its truth in the G case), since we

shall only need the result for K = IR , where it is evidently true.

If M and L are manifolds, the exponential object AT e E goes

by the global sections functor r to the set C (L,M) of smooth maps.

So a map ('operator')
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in E goes by r to an operator

oo r (d) oo
C (K3N)

 iiUJ > C (L,M)

which evidently is (plot-) smooth. A main result in Bruno [2] is that

this process can be reversed when N = 17? (he also has some inessential

restrictions on K, L, M) . From Theorem 1.7' we get a generalization of

this result to the case N = JR (obtained independently also by Moerdijk

and Reyes):

THEOREM 2.1. Let K, L and M be manifolds. To any smooth

operator G:

C°(K,mn) = C°(K)n > C°(L,M) ,

there is a unique map in E

with T(E(G)) = G .

Proof. Let A = C°(IFf)/J be an object in the site of definition

of E (so J = J) . we must produce a set theoretic map

n a t u r a l in ^ . An element b on the l e f t corresponds, by Yoneda,

exponent ia l ad jo in tness , and (2 .1) , to an rz-tuple of elements

b. € C^OFp x K)/J* . Let 3. e C^dJT x K) be a representa t ive of b.,

so t h a t we have a smooth map B = C3 J J . . . J B ) : I^1 * K > sf1 .

Consider

(2.2) Y ••= G/UF re; e d°uiP x L3M) .

We get a C -a lgebra map ' composing with y'

C°(M) > C°(H? x L) .

If we choose different representatives 3-' for b. , (so 3.' -3. e J*) ,

we get immediately from Theorem 1.7' that y' = Y m o d J*(M) (here

J* <= C°°(ln x L)) ; expressing this fact in the style of (1.1), and then

taking the corresponding 'dual' diagram in E , yields commutativity of
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_p Y r
> R x L > M ,

y'

so that b well-defines a map J x t > M , or, equivalenty, an element

of M(A) , as desired. Naturality in A is straightforward (at least,

the construction was not un-natural). So the map E(G) in E is now

declared to be the natural transformation with components e. •

It is clear that Y(E(G)) is just G : put A = C°°(IR ) = IR , and

use G/m° = G and (2.2) .

The uniqueness assertion yet to be proved we separate out as a

separate, slightly more general 'faithfulness' assertion, Proposition 2.2

below.

Recall that the unit interval 10,11 is represented in E by the

ring c"(IR)/H , where H is the ideal of functions IR — > IR that

vanish on [.0,11.

PROPOSITION 2.2. Let K and M be vepvesentable (in particular

they may be manifolds), and let L be a manifold, or 10,11 . Then any

two maps 1)/-^ tfp :

with T(tyJ = T(\i> ) are equal.

Proof. Since A? is a subob ject of some R , we reduce immediately

to the case M = R , and it suffices to prove that a map <|J: (K) > «

with T(i\>) = 0 is itself 0 . Let A be a representable object, and

b: A > (R ) . Consideration of the exponential adjoint of b , and

representability of K (and thus of A x K) leads to the extension of

b to some a: K > (H) , and it suffices to prove \f> o a = 0 . Now

iji o e: it > K corresponds to a map <j>: FT x L > R , such that

§(x,-): L > R is the zero map for all (global) points x e JK , by

assumption on T(ty) . In particular, for any (global) point y e L,

t>(x,y) = 0 , so <t> has T($) = 0 , and since manifolds are fully embedded

into E , <|> has to be 0 , for the case when L is a manifold.
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If L is the unit interval, we argue as follows: extend

<j>: H x L > Ft into a $: FT x R > R . The smooth function

*.• Ur x Hi > IT? has the property that for each a; e JUT , <b(x,-)

belongs to the ideal H , that is <&(x,t) = 0 fe e ]RP , Vt e [0,1],

But by a deep result of Calderon-Que-Reyes 06], this implies that <J> e R*,

so in particular $ e H* , which is equivalent to saying cj> = 0 .

(The Proposition holds (with the same proof) for any L which is

represented by an ideal with line determined extensions in the sense of

Bruno [3], which by [3] is a Frechet closed ideal I such that also all

I* are Frechet closed)

3. Application to integration in the topos models.

Let G be a Lie group, and LG i ts tangent space at the neutral

element e e G . Consider the pair of operators

c (m,LG) c (m,G) }
s

where T is the 'differentiation' operator which to g: IR > G

associates / given by

d
(3.1) g(t+s) - git)-1

"° s=0

and where S to /: IR > LG associates the unique g satisfying

(3.1) and g(0) = e . (It is a classical result that this 5 exists

and is smooth in parameters. In fact, if G is a matrix group, g is

the solution of a linear homogeneous differential (matrix-) equation with

variable coefficients f .)

The result of the previous section apply to S since LG - IE (but

not to T ) . By Theorem 2.1, we get a map 0 = E(S) with V(a) = S . We

also have a T in the other direction

namely 'synthetic differentiation', given by the synthetic analogue of

(3.1), that is i(g) = f with / given by
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(3.2) f(t)(d) = g(t+d) • git)'1 Vd e D .

A standard argument, as in [7] III Theorem 3.2, shows that Tir) = T

Thus

FCT o a) = T(T)O Via) = T o S = id ,

By the 'Faithfulness' Proposition 2.2, T o a is the identity map on

LC*.

Let us identify the Kernel pair of T by a synthetic argument.

Suppose g, h e U have Tig) = rCh) . Define g • h e Gr by

(3.3) (g'1 • h)(t) = g(t)'1 • h(t) .

405

Then

h-)(t)(d) = g(t+d) 2 • h(t+d) • hit)'1 • git)

= gft+df1 - x(h)(t)(d) • g(t)

= g(t+d)~2 • i(g)(t)(d) • git)

= g(t-hd)'1 • g(t+d) • g(t)'1 • git) = e ,

. -1 , .
so \(g • h) = e or

(g'1 • h) (t+d) = (g~2 • h) (t) ft e. R , d e D .

From Proposition 3.1 below it follows that g • h is constant, that is

there is a unique a £ G so that

(3.4) hit) = g(t) • a .

(Conversely, if (3.4) holds, then clearly T(g) = x(h).)

PROPOSITION 3.1. Let M be a manifold. If f t / has

f(t+d) = fit) Vt £ R Vd e D , then fit) = fiO) Vt e R .

Proof. Since there exists a monic M > > R for some m ,

one quickly reduces the question to the case M = R . Let

b: A > FT be an element at stage A , and extend it, as in the proof

of Proposition 2.2 to an element c: K > K . Taking exponential
adjoints gives an actual map in

H x R > R,
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and the assumption gives -r^x^t) 5 0 . The external map T(y)

ou

corresponding to y then has the same property, so T (y) = V (y) (x30).

But T is faithful on the subcategory Mf c E , so y(x3t) = y(x,0) Vt

holds internally.

With G a Lie group, and LG its Lie algebra, as above, we derive

the following Theorem about G-valued integration:

THEOREM 3.2. In H we have

Vf e IA? 3!g e C? with g(0) = e and

(3.5) g(t+d) • g(t)'1 = f(t)(d) Vt e E, d e D .

Proof. The (internal) map E(S) = o , together with the fact that

T o a is the identity, gives the existence. The uniqueness is immediate

from the above identification of the kernel pair of T .

The Theorem can be reformulated in terms of differential forms with

values in the group G , in the sense of [#]:

THEOREM 3.2. In E we have that any G-valued 1-form on R is

exact (with primitive unique modulo right multiplication by a unique

constant from G).

Proof. The i-form w associates with any neighbour pair (x,y) of

R an element w(x,y) e G , with w(x,x) = e Vx . Now (x3y) is of the

form (x,x+d) for a unique d e D , so

d -| > w(x,x+d)

defines for each x e R a tangent vector at e e G . So the information

of W is equivalent to that of a curve R > LG . The equation (3.5)

equivalent to

g(y) • g(x)~ = w(x,y)

for x and y = x+d any neighbour pair of R . So g is the primitive,

witnessing exactness of W . The uniqueness assertion is clearly

equivalent to the previous identification of the kernel pair of T . This

proves the Theorem.

We next consider the more important case of Lie group valued

integration of functions, defined on the unit interval [0,11 . Let G

and LG be a Lie group and its Lie algebra, as in Theorem 3.2.
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THEOREM 3 . 3 . In E we have

Vf e LGL0'n 3!g e G^-0'1^ with g(0) = e and

g(t+d) -g(t)'1 = f(t)(d) Vt e 10,11 Vd e D;

equivalently, G-valued 1-forms on 10,11 are exact, with primitive unique

modulo right multiplication by a unique constant from G.

Proof. The restr ic t ion map LCT > LG ' i s epic, since

LG - K and 10,11? > R is a representable subobject. Equivalently,

in a synthetic argument, we may assume that every L0,ll > LG may be

extended to R > LG , and then the existence assertion follows

immediately from the existence assertion in Theorem 3.2. To prove the

uniqueness, i t suffices to prove that if g,h e u have

= T(h) , with T the d i f f e ren t i a t ion process of (3 .2) ,
10,11 10,11

then the function g • h , defined in (3.3) i s constant on L0,ll . The

same calculation as before yields

-1
x(g • h) = e

so the result will follow from the analogue of Proposition 3.1:

PROPOSITION 3 . 4 . Let M be a manifold. If f e / has

f(t+d) = fit) Vt e 10,11 fd e D , then fit) = f(0) Vt e 10,11 .

Proof. As in the proof of Proposition 3.1, i t suffices to consider

the case M = R , and again, to consider a generalized element f of

IT at stage A = K , f: K > R . The exponential adjoint

y: K x R > if satisfies by assumption

jf:te,t) = 0 Vx, Vt e 10,11 ,

so for IYYJ: UT x jR > JJ? , w e have, for a l l x £

V(y)(x,t) - T(y)(x,0) = 0 Vt € 10,11 .

This means that the composite of / with the restriction map

(3.6) / >/ >*[ '*«
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has the property that r takes it to the zero map. By Proposition 2.2

(which here is really the Calderon-Qu^-Reyes result!), the map (3.6)

itself is the zero map, and the validity of f(t) = f(0) Vt e 10,11 follows.

We remark that specializing Theorem 3.3 to the case G = (R,+)

gives the validity of the usual "integration axiom" of [73]. The validity

of this for the topos F was first proved in Belair [7] , and for the

topos G was known to Reyes, Dubuc and Penon. For the "Cahiers topos"

C (terminology of [7]), the arguments of the present article require

some modifications, since L0}ll in no longer representable; but the

category of manifolds with boundary is neverthless fully embedded in C

which should make the modification of the arguments easy. Anyway, for C,

we gave an independent proof of .ff-valued integration in [73], and this

argument may be extended to give G-valued integration for C , as pointed

out in 181.

Let us also remark that the 'lifting" of smooth operators

C°(K,N) > C°(LtM)

to the Cahiers topos, in the case where N and M are vector spaces IR

(or convenient vector spaces) alternatively may be seen as an immediate

consequence of the full embedding of convenient vector spaces into C ,

[77].

We finish by proving the validity of a simple comprehensive form of

the Frobenius Theorem. Recall [S] that a G-valued i-form w on a

manifold M is a law which to each neighbour pair x3y of M associates

an element w(x3y) e G with w(xtx) = e , and that w is called closed

if

w(y,z) • w(x,y) = w(x,z)

whenever x,y and Z are mutual neighbours. If f: M > G is a

function, df is the J-form on M given by

df(x,y) = f(y) • f(x)-1 ,

and df is clearly closed; J-forms of form df are called exact, and

f is called a primitive of f .

Let E be any of the well adapted topos models mentioned in the

introduction.
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THEOREM 3.5 . Let G be a Lie group, and M a connected, simply

connected manifold*. Then any closed G-valued 1-form on M is exact

(with primitive unique modulo a unique constant e G ) .

Proof. By Theorem 3 .3 , the group G "admits in tegra t ion" in the

sense of [&] (.6.1). The re su l t then follows from l o c . c i t Theorem 7.2 .
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Added in Proof: The arguments for Proposi t ions 3.1 and 3.4 are not qu i t e

complete.
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