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Abstract

We prove a generic smoothness result in rigid analytic geometry over a characteristic
zero non-archimedean field. The proof relies on a novel notion of generic points in rigid
analytic geometry which are well adapted to ‘spreading out’ arguments, in analogy
with the use of generic points in scheme theory. As an application, we develop a six-
functor formalism for Zariski-constructible étale sheaves on characteristic zero rigid
spaces. Among other things, this implies that characteristic zero rigid spaces support a
well-behaved theory of perverse sheaves.
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1. Introduction

In this paper, we prove a new generic smoothness result for morphisms of rigid analytic spaces
(regarded as adic spaces, always), and apply it to set up a six-functor formalism for étale cohomol-
ogy of rigid analytic spaces with coefficients in Zariski-constructible sheaves. Our first geometric
result is the following (see also Remark 1.4 for an alternative approach through [Duc18]).

Theorem 1.1 (Generic smoothness, Theorems 2.21, 2.27 and 2.29). Fix a non-archimedean
field K, and let f : X → Y be a quasicompact map of rigid analytic spaces over Spa K with
Y reduced.

(1) If Y is geometrically reduced (which is automatic from reducedness if K has characteristic 0,
see [Con99, Lemma 3.3.1]), there is a dense open subset U ⊂ Y such that f−1(U)→ U is
flat.

(2) If char K = 0 and X is smooth, there is a dense open subset U ⊂ Y such that f−1(U)→ U
is smooth. If, moreover, f is proper, then the maximal such U is Zariski-open.

In classical algebraic geometry, results like this are easily proved by spreading out from generic
points in Y . In non-archimedean geometry, at least from the point of view of topology, there are
far too many generic points: all rank-1 points of Y , and in particular all classical rigid points,
are generic in the sense of locally spectral spaces. Moreover, at most of these points, spreading
out cannot work naively, due to the subtle mixture of completions and integral closures which
arise when computing the stalks and residue fields of OY and O+

Y . Our main new observation
in the proof of Theorem 1.1 is that there is nevertheless a reasonable rigid analytic analog of
generic points from algebraic geometry, given as follows.

Definition 1.2 (Weakly Shilov points, § 2.1). Fix a non-archimedean field K with a pseudouni-
formizer t ∈ K◦ and residue field k. A rank-1 point x in a rigid space X/K is weakly Shilov if
any one of the following equivalent conditions is satisfied.

(1) There is an open affinoid subset Spa(A, A◦) ⊂ X such that x lies in the Shilov boundary of
Spa(A, A◦).

(2) There is an open affinoid subset Spa(A, A◦) ⊂ X containing x such that the map A◦ → K+
x

identifies1 K+
x with a t-completed localization of A◦.

(3) The transcendence degree of the secondary residue field K+
x /m over k equals the local

dimension of X at x.
(4) (Applicable only if X is quasiseparated and quasi-paracompact.) There exists a formal model

X of X such that the specialization map sp : |X| → |Xk| carries x to the generic point of an
irreducible component of Xk.

Example 1.3. If X = Spa K〈T 〉 is the closed unit disc, the weakly Shilov points are exactly the
points of Type 2 in the usual nomenclature, i.e. the points defined by the Gauss norms on closed
subdisks.

Weakly Shilov points are closely related to divisorial valuations as considered in birational
geometry. For our purposes, the utility of these points arises by combining the characterizations

1 As x is a rank-1 point, the ring K+
x is a rank-1 valuation ring, and identifies with the subring OKx ⊂ Kx of

power bounded elements of the valued field Kx.
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(1) and (2) above: the former implies such points are dense in X, while the latter (roughly)
makes these points amenable to the same commutative algebra arguments as generic points in
algebraic geometry. The proof of Theorem 1.1 proceeds by making this idea precise: indeed, our
arguments show that the subsets U in Theorem 1.1 can be chosen to contain all the weakly
Shilov points of Y .

Remark 1.4 (Obtaining Theorem 1.1 from Ducros’ work). Theorem 1.1 can also be deduced
from Ducros’ [Duc18] if one switches to Berkovich spaces; we indicate the argument for
Theorem 1.1(2) in the proper case (which is the most essential one for this paper) in Remark 2.30.
Note that the idea of using Abhyankar points in [Duc18] seems functionally equivalent to
our idea of weakly Shilov points. On the other hand, our differential approach to a key step
(see Theorem 2.18) differs from the function theoretic approach of the corresponding [Duc18,
Theorem 6.3.7]. We were unaware of [Duc18] when working on Theorem 1.1, and thank Brian
Conrad for bringing [Duc18] to our attention.

Let us now turn to the application of this result to étale cohomology of rigid spaces. Recall
that for any rigid space X/K, work of Huber [Hub96] and Berkovich [Ber93] shows that the
derived category D(X,Z/n) of étale Z/n-sheaves admits a reasonable six-functor formalism
(at least for n invertible on K). However, unlike in the case of schemes, it is much more subtle
to isolate a reasonable subcategory of ‘constructible’ complexes which are stable under the six
operations.2 In [Han20], the second author proposed that the following notion should yield the
desired theory.

Definition 1.5 (Zariski-constructible sheaves, Definition 3.1). Fix a rigid space X/K and
n > 0. An étale sheaf F of Z/n-modules is called Zariski-constructible if X admits a locally
finite stratification X =

∐
i∈I Xi into Zariski locally closed subsets Xi such that F |Xi is locally

constant with finite stalks for all i. Write D
(b)
zc (X,Z/n) ⊂ D(Xét,Z/n) for the full subcate-

gory of the derived category of Z/n-module sheaves on Xét spanned by complexes that have
Zariski-constructible cohomology sheaves and are locally bounded on X.

The paper [Han20] only showed the stability of Dzc(X,Z/n) by the six operations in some
very limited situations. The techniques in the present paper yield this stability in satisfactory
generality over characteristic zero fields. The resulting formalism, which can be regarded as the
rigid analytic analog of the classical theory of analytically constructible sheaves on complex
analytic spaces (see, e.g. [Ver76, § 2]), is summarized as follows.

Theorem 1.6 (The six-functor formalism for Zariski-constructible sheaves). Let K be a char-
acteristic zero non-archimedean field of residue characteristic p ≥ 0. For an integer n ≥ 1, the

assignment X 	→ D
(b)
zc (X,Z/n) enjoys the following properties.

(1) Pullback: for any map f : X → Y , the pullback f∗ preserves D
(b)
zc (Proposition 3.4).

(2) Proper pushforward: for a proper map f : X → Y , the pushforward Rf∗ preserves D
(b)
zc

(Theorem 3.10).
(3) More pushforwards: for a Zariski-compactifiable map f : X → Y , the pushforwards Rf∗ and

Rf! carry lisse objects in D
(b)
zc into D

(b)
zc (Corollary 3.11).

2 For instance, constructible sheaves in the sense of Huber’s work [Hub96], while having many wonderful categor-
ical properties, do not capture the same geometric intuition as the corresponding notion in algebraic or complex
geometry. Indeed, even the skyscraper sheaf at a classical point, perhaps the simplest example of a proper push-
forward, is not Huber-constructible. Relatedly, analytifications of algebraically constructible sheaves on algebraic
varieties are almost never Huber-constructible.
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(4) !-pullback: given a map f : X → Y , if either f is finite or (n, p) = 1, the pullback Rf !

preserves D
(b)
zc (Corollary 3.12).

(5) Verdier duality: there is a natural dualizing complex ωX ∈ D
(b)
zc (X,Z/n) such that the

functor DX(−) := RH om(−, ωX) induces an anti-equivalence on D
(b)
zc satisfying biduality

(Theorem 3.21).

(6) ⊗ and RH om: given F ∈ D
(b)
zc (X,Z/n) with locally finite Tor dimension (e.g. if n is a

prime), the functors F ⊗L
Z/n (−) and RH om(F ,−) preserves D

(b)
zc (Corollary 3.14).

Moreover, proper base change holds (Theorem 3.15), and all of these operations are compatible
with extensions of the non-archimedean base field and with analytification of algebraic varieties
(Proposition 3.16, Theorem 3.21, Proposition 3.24). Finally, all of these results admit extensions
to Z�-coefficients (Theorem 3.36).

Let us make a couple of remarks. First, we do not assume any conditions on p relative to
the coefficient ring (except in the case of Rf !, but see Remark 3.23), so this result generalizes
some previously known finiteness theorems in p-adic Hodge theory (and uses them as input).
Second, due to the poor behavior of Zariski closures in rigid geometry, it is unreasonable to
expect arbitrary Zariski-constructible sheaves to be stable under pushforward (Warning 3.2(1)),
so one cannot do much better than (3) above (although see Proposition 3.26); similar issues also
occur in complex geometry.

Next, we briefly comment on the proofs. Preservation under f∗ and ⊗ is straightforward and
is stated for completeness. The first key new result is the preservation of Zariski-constructibility
under Rf∗ for proper f . This was raised as a conjecture in [Han20, Conjecture 1.14]. Here we
reduce it to the known statement that Rf∗ preserves locally constant constructible complexes
when f is both smooth and proper. This reduction relies on Temkin’s embedded resolution of
singularities for quasi-excellent Q-schemes, results of the second author [Han20, Theorem 1.6]
on extending branched covers across Zariski-open immersions (building on previous work of
Bartenwerfer [Bar76] and Lütkebohmert [Lüt93]), and (most crucially) Theorem 1.1(2).

For the remaining stabilities in Theorem 1.6, we largely reduce them to analogous results for
schemes (e.g. by replacing an affinoid Spa(A) with the scheme Spec(A)). The classical results from
SGA4 treat only finite type objects, and are not sufficient for our purposes. However, Gabber’s
work on étale cohomology of excellent schemes [ILO14] is presented in exactly the right amount
of generality, provided we are allowed to localize our questions to affinoids. The latter is possible
thanks to our second key new result (which, in particular, settles [Han20, Conjecture 1.12]).

Theorem 1.7 (Locality of Zariski-constructibility, Theorem 3.5). For abelian sheaves on
characteristic-0 rigid spaces, the property of being Zariski-constructible is an étale-local property.

Using this toolkit, one can imitate many standard constructions with constructible sheaves
found in complex or algebraic geometry. As an example, we show that characteristic zero rigid
spaces support a theory of perverse sheaves which has the same pleasant formal properties as
its algebraic counterpart [BBD82] (except that we need to restrict to qcqs spaces when working
with Q�-coefficients).

Theorem 1.8 (Perverse sheaves in rigid geometry, Theorems 4.2 and 4.11). Let K be a char-
acteristic zero non-archimedean field with residue characteristic p ≥ 0 and let X/K be a rigid
space. Fix a prime � and a coefficient ring Λ ∈ {Z/�nZ,Q�}. If Λ = Q�, then assume that X is

qcqs and define D
(b)
zc (X,Q�) := D

(b)
zc (X,Z�)⊗Z�

Q�.
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There is a naturally defined perverse t-structure on D
(b)
zc (X, Λ), with abelian heart denoted

Perv(X, Λ). This construction has the following stability properties.

(1) Duality: Perv(X, Λ) is Verdier self-dual inside D
(b)
zc (X, Λ).

(2) Finite pushforward: Perv(−, Λ) is stable under f∗ for f : Y → X a finite map.
(3) Intermediate extensions: there is a notion of intermediate extension of lisse sheaves defined

on Zariski-locally closed subsets of X.
(4) Finiteness: if X is quasi-compact, then Perv(X, Λ) is noetherian and artinian.
(5) Nearby cycles: the nearby cycles functor associated with a formal model of X is perverse

t-exact when p 
= �.

Moreover, this construction is compatible with the usual constructions in algebraic geometry
under analytification (in the proper case for Λ = Q�), and is compatible with extensions of the
ground field.

As an application, we can define an intersection cohomology complex on any qcqs char-
acteristic 0 rigid space, and the resulting intersection cohomology groups have reasonable
properties.

Corollary 1.9 (Intersection cohomology of rigid spaces, Theorem 4.13). Let K be a charac-
teristic zero non-archimedean field of residue characteristic p ≥ 0; let C/K be a completed
algebraic closure and let � be any prime. Let X/K be a qcqs rigid space.

(1) Existence of intersection cohomology: there are naturally defined �-adic intersection coho-
mology groups IHn(XC ,Q�). These are finitely generated Q�-modules if � 
= p or if X is
proper.

(2) GAGA: if X = X an for a proper K-scheme X , then IH ∗(XC ,Q�) � IH ∗(XC ,Q�).
(3) Poincaré duality: if X is proper and equidimensional of dimension d and � 
= p, there is a

natural Poincaré duality isomorphism

IHn(XC ,Q�)∗ ∼= IH−n(XC ,Q�)(d).

We end this paper by formulating some conjectures in § 4.5, roughly predicting that deep
known results on the intersection cohomology of algebraic varieties over K carry forth to the
rigid context.

Conventions
We follow the convention that the term ‘nonarchimedean field’ is reserved for valued fields
carrying a rank-1 valuation.

If K is a non-archimedean field, we use the terms K-affinoid algebra and topologically of
finite type (henceforth abbreviated tft) K-algebra synonymously; recall that these are exactly the
Banach K-algebras that can receive a continuous surjection from a Tate algebra K〈x1, . . . , xn〉.
Likewise, we say ‘rigid space over K’ and ‘adic space locally of tft over SpaK’ interchangeably.
If A is a tft K-algebra, we write Ã := A◦/A◦◦ = (A◦/t)red; this is a k-algebra of finite type
[BGR84, Corollary 3, § 6.3.4], where k is the residue field of K and t is a pseudouniformizer (i.e.
any non-zero element of K◦◦ − {0}).

We warn the reader that A◦ need not be topologically finitely presented (henceforth abbrevi-
ated tfp) over OK even when A is reduced; this pathology does not occur if either K is discrete,
or if K is stable field with |K∗| divisible (if K is algebraically closed); see [BGR84, § 3.6] for the
definition of stability, and [BGR84, § 6.4] for the finiteness properties.

We write SpaA = Spa(A, A◦) for any Huber ring A.
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Say X is an analytic adic space and x ∈ X. We write Kx for the completed residue field
of X at x. This is a non-archimedean field. We shall write | · |x for the associated valuation on
functions, though note that is only well defined up to equivalence. However, if A is a tft K-algebra
and x ∈ Spa A is a rank-1 point, there is a unique R≥0-valued representative of the associated
equivalence class which extends the fixed norm on the base field K, i.e. a unique representative
such that |t|x = |t|K . We always choose this representative.

Given X and x as above, the secondary residue field of X at a point x is the quotient
K̃x = K+

x /mx. Here K+
x is the valuation subring of the residue field Kx defined as the completed

image of the map O+
X,x → Kx; when x is a rank-1 point, the ring K+

x coincides with the subring
OKx ⊂ Kx of power bounded elements. Recall that if y ≺ x is any specialization, then Kx

∼= Ky

and K+
y ⊂ K+

x under this identification.
For any tft K-algebra A, we shall write sp : Spa A→ Spec Ã for the specialization map, given

by taking the center of the valuation. This is a continuous, closed, and spectral map of spectral
spaces.

If f : X → Y is a map of rigid spaces over K, we say f is Zariski-compactifiable if it admits
a factorization f = f̄ ◦ j, where j : X → X ′ is a Zariski-open immersion and f̄ : X ′ → Y is a
proper morphism. We say a rigid space X over K is Zariski-compactifiable if the structure map
f : X → SpaK is so.

2. Generic flatness and generic smoothness

In this section, we introduce the notion of weakly Shilov points, and prove our main geometric
results on generic smoothness.

2.1 Shilov and weakly Shilov points
Fix a complete non-archimedean field K and a pseudouniformizer t ∈ K◦. Recall the following
basic example of a ‘non-classical’ point of a standard K-affinoid.

Example 2.1. If X = Spa K〈T 〉 is the one-dimensional affinoid ball over K, then the Gauss point
X is given by the t-adic norm on K〈T 〉. To describe this norm ring theoretically, recall that the
standard formal for X is given by the formal closed disc X := Spf(OK〈T 〉). The special fibre
Xs = Spec(OK/t[T ]) has a unique a generic point η̄; the t-completed localization of OK〈T 〉 at η̄
is a rank-1 t-complete and t-torsionfree valuation ring V equipped with a map OK〈T 〉 → V . The
resulting valuation on K〈T 〉 is the Gauss point η. Moreover, the canonical map X → X given by
taking the center of the valuation carries η to η̄.

We now isolate a general class of points with properties similar to the Gauss point from
Example 2.1.

Proposition 2.2. Fix a tft K-algebra A and a rank-1 point x ∈ Spa(A, A◦). The following are
equivalent.

(1) sp(x) is the generic point of an irreducible component of Spec Ã.
(2) {x} = sp−1(sp(x)) as subsets of Spa A.
(3) K+

x is a t-completed ind-Zariski localization of A◦. More precisely, K+
x is the t-completed

local ring of Spec A◦ at the point sp(x) ∈ Spec Ã ⊂ Spec A◦.
(4) The seminorm | · |x belongs to the Shilov boundary of A in the sense of K-Banach algebras.
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Proof. We begin with two (well-known) observations on the affinoid adic space Spa(A, A◦); the
first concerns finding suitable rings of definition, while the second concerns a description via
formal models.

First, we claim that there exists an open and bounded tfp OK-subalgebra A0 ⊂ A0 such
that Spec(Ã)→ Spec(A0/tA0) is a universal homeomorphism and such that A◦ is the integral
closure of A0 in A. In fact, the second part follows from [BGR84, Remark following 6.3.4/1].
For the first, using Noether normalization, we can choose a surjective map T → A, where
T = K〈x1, . . . , xn〉 is a Tate algebra. By [BGR84, 6.3.4/2], the map T̃ → Ã is module finite.
Setting A′

0 = im(T ◦ → A◦), we learn that A′
0/(A◦◦ ∩A′

0)→ Ã is module finite and injective,
with A′

0 being open, bounded, and tfp over OK . Enlarging A′
0 inside A◦ by adding finitely topo-

logical generators of Ã over A′
0, we find an open bounded tfp OK-subalgebra A0 ⊂ A◦ such

that A0/(A◦◦ ∩A0)→ Ã is bijective. But we also know that
√

tA0 = A◦◦ ∩A0: any element of
the right side is topologically nilpotent and in A0, and must thus have a large enough power
inside tA0. Thus, we have found the subalgebra A0 indicated at the start of this paragraph.

Next, we also recall an alternative description of the locally ringed space (Spa(A, A◦),O+).
Consider the category of all proper maps fi : Xi → Spec(A0) of schemes which are isomorphisms
after inverting t. For each fi, let Xi,t=0 ⊂ Xi be the special fibre (regarded merely as a closed
subset). Set Z = limi Xi,t=0, so Z is a spectral space. Let πi : Z → Xi be the structure map,
and define the structure sheaf OZ of Z via OZ := colimi π−1

i OXi . Then it is a basic fact that
Spa(A, A◦) = Z as topological spaces, and O+ identifies with the t-adic completion of OZ . For
future use, we remark that, by passing to a cofinal subsystem, we may (and do) assume that
each Xi is OK-flat, i.e. OXi is t-torsionfree. This condition implies that the generic fibre Xi[1/t]
is dense in each Xi, and thus all the transition maps Xi → Xj in the system are surjective: their
image is a closed set containing a dense open. In particular, OZ is t-torsionfree. By spectrality,
the maps πi : Z → Xi,t=0 are also surjective for all i. Finally, we also remark that OZ is integrally
closed in OZ [1/t] by generalities on blowups.

Using the preceding two observations, we prove the equivalences.
(1)⇒ (2): Fix x ∈ Spa(A) with sp(x) ∈ Spec Ã being a generic point. Using a suitable

Noether normalization, we then learn that Ãsp(x) is a rank-1 valuation ring with pseudouni-
formizer t: this ring is the integral closure of a rank-1 t-complete valuation ring in a finite
extension of its fraction field. Any point y ∈ sp−1(sp(x)) is represented by an equivalence
class of maps A0 → V where V is a t-complete t-torsionfree valuation ring with the property
that the closed point of Spec(V ) is carried to sp(x). But any such map factors uniquely as
A0 → Ãsp(x) → V . Thus, taking V to be the t-completion of Ãsp(x) gives the unique such map
up to equivalence, showing that y = x.

(2)⇒ (3): Write xi ∈ Xi for the image of x, so O+
Spa(A,A+),x

and colimOXi,xi identify

after t-completion. Now if x = sp−1(sp(x)), then xi = f−1
i (sp(x)) is the unique preimage of

sp(x). The map A0,sp(x) → OXi,xi is then integral (by properness of Xi → Spec(A0), base
changed to Spec(A0,sp(x)) and an isomorphism after inverting t. Taking a colimit, we learn that
A0,sp(x) → colimiOXi,xi is integral and an isomorphism after inverting t. But the target is also
integrally closed in its t-localization, so it must coincide with A◦

sp(x); here we implicitly use that

Spec(Ã) � Spec(A0/t) to identify sp(x) with a point of Spec(A◦), as well as the fact that A◦ is
the integral closure of A0. Thus, we have shown that the t-completion of A◦

sp(x) → O+
Spa(A,A+),x

is an isomorphism. As the t-completion of the target is K+
x , the claim follows.

(3)⇒ (2): This is clear from the description of points of Spa(A, A◦) as equivalence classes of
maps A◦ → V to t-complete and t-torsionfree valuation rings.
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(2)⇒ (1): Assume that x is the unique preimage of sp(x) and yet that sp(x) ∈ Spec(Ã) is
not a generic point; we shall obtain a contradiction. Let ȳ ∈ Spec(Ã) be a generic point of an
irreducible component Y ⊂ Spec(Ã) containing sp(x). Applying the implications (1)⇒ (3) to a
lift y ∈ Spa(A, A+) of ȳ, we learn that ȳ has a unique lift y ∈ Spa(A, A+), and that K+

y is the
t-completed local ring of A◦

y. In particular, the residue field of K+
y identifies with function field

K(Y ) of the irreducible component Y . Choose a valuation subring V̄ ⊂ K(Y ) that is a Ã-algebra
and has center sp(x) ∈ Spec(Ã); this valuation has rank ≥ 1 as ȳ 
= sp(x). Let V ⊂ K+

y be the
preimage of V̄ . Then V is a t-complete valuation ring of rank ≥ 2, is an A◦-algebra, and has
center sp(x) on Spec(Ã). The resulting map A◦ → V then gives a point x′ ∈ Spa(A, A◦) with
rank ≥ 2 and image sp(x) in Spec(Ã). But x is the unique preimage of sp(x), so x = x′. We now
obtain a contradiction as x had rank 1 by assumption, while x′ has rank ≥ 2 by construction.

(1)⇐⇒ (4): This is proven in [Ber90, 2.4.4]. �
Remark 2.3. One may ask if the equivalences proven in Proposition 2.2 continue to hold true for
the affinoid adic space Spa(A, A+) attached to any complete Tate ring (A, A+). Inspection of
the proof shows that the equivalence of (2) and (3) and the implication (2)⇒ (1) hold true in
general. On the other hand, there is a perfectoid affinoid algebra where (1)⇒ (2) and (1)⇒ (3)
in Proposition 2.2 fail, as we explain next. We are not aware of a broader class of algebras (than
the K-affinoid ones) where the Proposition 2.2 holds true.

Take a complete and algebraically closed extension C/Qp whose algebraically closed residue
field k has transcendence degree ≥ 1 over Fp. Write V = OC , and let W ⊂ V be the preimage
of Fp ⊂ k. Then W is a p-complete and p-torsionfree local ring that is integrally closed in
W [1/p] = V [1/p]. Moreover, we have

√
pW =

√
pV with W/

√
pW → V/

√
pV identifying with the

map Fp ⊂ k. A lift x ∈ V ⊂W [1/p] of any element of k − Fp has the property that x, x−1 /∈W ,
so W is not a valuation ring. Endowing W with the p-adic topology, we obtain a complete uniform
Tate ring (W [1/p], W ) with W perfectoid. The special fibre W̃ [1/p] = W/

√
pW identifies with

Fp, so Spec(W̃ [1/p]) has a unique point which is thus a generic point. On the other hand, the
local ring of Spec(W ) at this point is simply W , which is not a valuation ring. This shows that
the implication (1)⇒ (3) in Proposition 2.2 fails in this example. To show that (1)⇒ (2) also
fails in this example, one calculates that Spa(W [1/p], W ) identifies with the Riemann–Zariski
space of k, which has more than one element; we omit the argument.

Definition 2.4. Let A be a tft K-algebra. A Shilov point x ∈ Spa A is any point satisfying the
equivalent conditions of Proposition 2.2.

Recall that in an analytic adic space, every rank-1 point is generic in the sense of spectral
spaces. For algebraic purposes, the following class of points is more relevant.

Definition 2.5. Let X be any rigid space over a non-archimedean field K. A point x ∈ X is
weakly Shilov if there is an open affinoid subset x ∈W ⊂ X such that x is a Shilov point of W .
In particular, such a point has rank 1.

Example 2.6. For X = Spa(K〈T 〉) the closed unit disc, the weakly Shilov points are exactly the
points of type 2 (see [Sch12, Example 2.20] for the classification of points on X). This follows
from the characterization in Proposition 2.9, since the secondary residue field of x is algebraic
over K when x has type 1, 3 or 4 (and x of type 5 have rank 2, so they are not Shilov).

Remark 2.7. The valuations isolated in Definition 2.5 are sometimes also called divisorial
valuations in birational geometry (see Proposition 2.9(3)).
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Lemma 2.8. Let X be a rigid space over a non-archimedean field K. Then weakly Shilov points
are dense in X.

Proof. By definition, any open affinoid U ⊂ X contains a weakly Shilov point. �
We also have the following alternative characterization of weakly Shilov points.

Proposition 2.9. Let X be a rigid space over a non-archimedean field K and let x ∈ X be a
rank-1 point. The following are equivalent.

(1) x is weakly Shilov.
(2) The transcendence degree of the secondary residue field K̃x over K◦/m equals the local

dimension dimx X of X at x.
(3) (Applicable only when X is quasiseparated and quasi-paracompact.) There exists a for-

mal model X such that x maps to the generic point of an irreducible component
of Xs.

Proof. (1)⇐⇒ (2): This follows by combining Lemme 4.4 and Corollaire 4.15 in [Poi13].
(3)⇒ (1): If there exists a formal model X as in (3), then taking W ⊂ X be the preimage of

any formal affine open X containing the image of x shows that x is weakly Shilov.
(1)⇒ (3): Assume x ∈ X is weakly Shilov. We can then find an affinoid open Spa(R) ⊂ X

containing x such that x ∈ Spa(R) is Shilov. By Raynaud, there is a formal model X of X such
that Spa(R) ⊂ X is the preimage of a formal affine open Spf(R0) ⊂ X, cf. [Bos14, Theorem 8.4.3].
By passing to a refinement, we can assume that the map R0/t→ R̃ gives a homeomorphism of
spectra; see first paragraph of the proof of Proposition 2.2. As x is weakly Shilov, its image
in Spec(R̃) is a generic point. But then its image in Spec(R0/t) is also a generic point since
Spec(R̃)→ Spec(R0/t) is a homeomorphism by construction. As Spf(R0) ⊂ X is a formal open
immersion, it follows that x gives a generic point of Xs as well �
Corollary 2.10. Say X is a rigid space over a non-archimedean field K, and Z ⊂ X is a
nowhere dense Zariski closed set. Then Z does not contain any weakly Shilov point of X.
In particular, if X is reduced, then any weakly Shilov point of X lies in the regular locus
of X.

Proof. As Z ⊂ X is a nowhere dense Zariski closed set, we have dimx(Z) < dimx(X) for all
x ∈ X. The first statement now follows from the characterization of weak Shilov points in
Proposition 2.9(2). The second statement follows from the first statement applied to the locus
Z ⊂ X of points that are not regular, which is a nowhere dense Zariski closed set by excellence
considerations. �

2.2 Tools involving the cotangent complex
To prove our generic smoothness result, it will be convenient to use the analytic cotangent
complex as this provides a homologically well-behaved object detecting smoothness in non-
noetherian situations (such as topologically finitely presented algebras over non-discrete valuation
rings). In this subsection, we recall some results on this object.

Notation 2.11. Fix a complete non-archimedean field K with valuation ring V ⊂ K and a
pseudouniformizer t ∈ V . For any map A→ B of V -algebras, write Lan

B/A for the derived
t-completion of LB/A. A tft (or topologically finite type) V -algebra is a V -algebra A of the
form V [x1, . . . , xn]∧/I (where the completion is t-adic). If moreover I is finitely generated,
we say that A is tfp. The class of tfp V -algebras has good properties such as coherence and
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classical t-adic completeness, see [GR03, Proposition 7.1.1]. Moreover, any tft V -algebra which
is t-torsion-free is in fact tfp, see [FGK11, Corollary 7.3.6].

Theorem 2.12 (Gabber–Ramero). Say A→ B is a map of tfp V -algebras. Then the following
hold true.

(1) Lan
B/A is a pseudocoherent B-complex.

(2) Assume that A→ B induces a smooth map of relative dimension n on taking adic generic
fibres. Then Lan

B/A[1/t] is a finite projective B[1/t]-module of rank n.

(3) If A→ B is surjective, then LB/A � Lan
B/A.

Proof. Part (1) is [GR03, Theorem 7.1.31].
Part (2) is the key assertion checked in the proof of [GR03, Theorem 7.2.39].
Part (3) is [GR03, Theorem 7.1.29]. �
Lemma 2.13. Let R be a finitely presented flat V -algebra.

(1) LR/V is a pseudocoherent R-complex.
(2) If R is also V -finite, then LR/V is derived t-complete.

Proof. For (1), by noetherian approximation, we can write V → R as the base change of a
finitely presented flat map V0 → R0 of finitely generated Z-algebras along some map V0 → V .
Then LR0/V0

is pseudocoherent, and LR0/V0
⊗L

R0
R � LR/V by Tor independent base change, so

LR/V is also pseudocoherent.
For (2), observe that if R is V -finite, then R is a finite free V -module (as any finitely presented

flat V -module is finite free). In particular, a pseudocoherent R-complex is also pseudocoherent
as a V -complex. The claim now follows as any pseudocoherent V -complex is derived t-complete
(since V itself is so). �
Corollary 2.14. Let E/K be a finite extension, and let W0 ⊂ E◦ be an open tfp V -subalgebra.

(1) LW0/V is pseudocoherent so LW0/V � Lan
W0/V , whence LE/K � Lan

W0/V [1/t].
(2) Hi(Lan

W0/V [1/t]) = 0 for i 
= 0, 1.

Proof. For (1), we argue as follows. Since W0 ⊂ E◦, choosing monic equations defining generators
of W0 shows that any such W0 is a finitely presented flat V -algebra. Lemma 2.13 then implies
that LW0/V is pseudocoherent and thus already derived t-complete, so LW0/V � Lan

W0/V . The last
part of (1) follows by inverting t and noting that formation of cotangent complexes commutes
with localization.

Part (2) follows from (1) and a general fact: the cotangent complex of any extension of fields
only has homology in degrees 1 and 0. Indeed, this follows from transitivity triangles and the
fact that any field is ind-smooth over its prime subfield (which is perfect) by generic smoothness
in algebraic geometry. �

We need the following result later.

Theorem 2.15 (Quillen). Fix a noetherian ring A and a maximal ideal m with residue field
k = A/m. If Lk/A is concentrated in degree −1, then A is regular at m.

Proof. [Qui, Corollary 10.5] shows that m is generated by a regular sequence if H2(Lk/A) = 0.
As the maximal ideal of a noetherian local ring is generated by a regular sequence exactly when
the ring is regular, the claim follows. �

The following lemma will be useful later as well.
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Lemma 2.16. Say A is a reduced Jacobson noetherian ring. Let M → N be a map of finitely
generated A-modules such that M/mM → N/mN is injective for every maximal ideal m. If
M is a locally free A-module, then M → N is injective.

Proof. The question is local, so we can assume M = A⊕n is a free module. Let x = (x1, . . . , xn) ∈
M lie in the kernel of M → N . The hypothesis implies that xi ∈ m for every maximal ideal m ⊂ A.
But the intersection of all maximal ideals of A is its nilradical (as A is Jacobson) which is 0
(as A is reduced). So x = 0, as wanted. �

2.3 Regularity of Shilov fibers
In this subsection, we establish the key technical ingredient behind our generic smoothness result,
using the analytic cotangent complex.

Notation 2.17. Fix a complete non-archimedean field C with valuation ring OC ⊂ C and a
pseudouniformizer t ∈ OC .3

Our goal is the following.

Theorem 2.18. Let T → R be a map of tfp OC-algebras. Assume Spa(R[1/t]) is smooth over C.
Let V denote the t-completed Zariski local ring of T at a generic point η ∈ Spec(T/t) ⊂ Spec(T ),
and set RV = R⊗̂T V . Then RV [1/t] is regular.

Proof. Our strategy is to first simplify T , and then argue that RV [1/t] is regular using the
cotangent complex.

First, observe that the statement of the theorem is Zariski local around η ∈ Spf(T ), so
we may shrink Spf(T ) around η to assume Spec(T/t) is irreducible with generic point η. If
T ′ = OC〈x1, . . . , xn〉 → T is a finite injective map, then Spec(T/t)→ Spec(T ′/t) is finite and
surjective. As both these schemes are irreducible, the image of the generic point η ∈ Spec(T/t)
is the generic point η′ ∈ Spec(T ′/t), and η is the unique preimage of η′. In particular, we must
have T ⊗̂T ′V ′ � V by base change. But then R⊗̂T ′V ′ � RV . Thus, we may replace T with T ′

to assume that T is a standard Tate algebra over OC . In particular, T is formally smooth over
OC . In this case, we have T = T [1/t]◦, so V is actually a t-complete and t-torsionfree rank-1
valuation ring (either by explicit calculation, or as explained in Proposition 2.2).

Next, we describe Lan
V/OC

. By definition, the ring V is a t-completed ind-Zariski localization
of T . As the formation of the t-completed cotangent complex is compatible with t-completed
localizations and t-completed filtered colimits, we learn that Lan

V/OC
� Lan

T/OC
⊗̂L

T V . But T/OC is
formally smooth, so Lan

T/OC
is a finite projective T -module placed in degree 0, whence Lan

V/OC
is

a finite free V -module placed in degree 0.
We now begin proving the theorem. Since V is a t-complete and t-torsionfree rank-1 valuation

ring, the ring K := V [1/t] is a nonarchimedean field extension of C with K◦ = V . As RV is a
tfp V -algebra, we can (and will) regard RV [1/t] as an affinoid K-algebra. To show regularity
of RV [1/t], it is enough to show that the local rings of RV [1/t] at all closed points are regular:
the regular locus in RV [1/t] is open (as affinoid K-algebras are noetherian and excellent) and
the maximal ideals are dense (as affinoid K-algebras are Jacobson). A closed point is given by
a quotient RV [1/t]→ E where E/K is a finite extension; fix such a point. By Theorem 2.15, it
suffices to show that LE/RV [1/t] has homology only in degrees 0, 1. (In fact, there is no H0 as
RV [1/t]→ E is surjective, but it will be convenient to formulate things this way.) Let W0 ⊂ E◦ be

3 Contrary to modern notational conventions, we are not assuming C is algebraically closed. We hope this causes
no confusion.
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the image of RV under this map. As E◦ is the integral closure of V in E, the ring W0 is a finitely
presented finite flat V -algebra. Since the map RV →W0 is a surjection of tfp V -algebras, we
have LW0/RV

� Lan
W0/RV

by Theorem 2.12(3), and hence LE/RV [1/t] � Lan
W0/RV

[1/t] by inverting
t, so it is enough to show that Lan

W0/RV
[1/t] has homology only in degrees 0, 1. Consider the

transitivity triangle for OC → RV →W0:

Lan
RV /OC

⊗̂L
RV

W0 → Lan
W0/OC

→ Lan
W0/RV

. (2.1)

As R→ RV is a t-completed Zariski localization, we have

Lan
R/OC

⊗L
RRV � Lan

R/OC
⊗̂L

RRV � Lan
RV /OC

,

where the first isomorphism is from the pseudocoherence of Lan
R/OC

coming from Theorem 2.12(1).
The same reasoning also allows us to drop the completion on the leftmost term in (2.1). Inverting
t in (2.1) then gives a triangle

Lan
RV /OC

[1/t]⊗L
RV [1/t]E → Lan

W0/OC
[1/t]→ Lan

W0/RV
[1/t]. (2.2)

Our task was to show that the term on the right has homology only in degrees 0, 1. The term
on the left is a finite projective E-module in degree 0: indeed, Lan

R/OC
[1/t] is a finite projective

R[1/t]-module by Theorem 2.12(2) and the smoothness assumption on Spa(R[1/t]), and we
have Lan

R/OC
⊗L

R[1/t] RV [1/t] � Lan
RV /OC

[1/t] by the reasoning explained above. By the long exact
sequence, it thus suffices to check that Lan

W0/OC
has homology only in degrees 0, 1. For this, we

consider transitivity triangle for OC → V →W0:

Lan
V/OC

⊗̂L
V E → Lan

W0/OC
[1/t]→ Lan

W0/V [1/t].

Now Lan
V/OC

[1/t] is a finite free K-module as explained previously, so the term on the left is
a finite free E-module. It remains to observe that Lan

W0/V [1/t] has homology in degrees 0, 1 by
Corollary 2.14. �
Remark 2.19. In Theorem 2.18, one cannot strengthen the conclusion from regularity to
smoothness. For example, the Frobenius map on the Tate algebra over any characteristic p non-
archimedean field satisfies the hypothesis of Theorem 2.18, but does not have a single smooth
fibre.

Remark 2.20. The proof of Theorem 2.18 relies on the analytic cotangent complex. When C
is discretely valued, it is possible to prove Theorem 2.18 by avoiding the cotangent complex
and using instead Popescu’s desingularization theorem. Indeed, one first observes that R is an
excellent noetherian ring: by Elkik’s theorem, we can write R as the t-completion of a finite type
OC-algebra, so R is excellent since OC is so. But then the maps R→ R⊗T Tη → RV are regular:
the first map is a localization, while the second one is the completion of an excellent ring. By
Popescu’s theorem, the map R→ RV is ind-smooth. It follows that RV [1/t] must be regular
since R[1/t] is so. In fact, this reasoning shows that any property of R[1/t] that is local for the
smooth topology passes to RV [1/t]. We do not know how to prove the analogous statement in
the general case.

2.4 Generic flatness
Fix a non-archimedean base field K. Our goal in this section is the following theorem.

Theorem 2.21. Let f : X → Y be a quasicompact map of rigid spaces over K. Assume that Y
is geometrically reduced. Let FlX/Y ⊂ Y be the maximal open subset such that X ×Y U → U
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is flat. Then FlX/Y contains all weakly Shilov points of Y . In particular, FlX/Y is a dense open
subset of Y .

Observe that even the non-emptiness of FlX/Y is not clear a priori. Moreover, if K has
characteristic 0, then it suffices to assume that Y is reduced: as in algebraic geometry, this
implies geometric reducedness in characteristic 0 (see [Con99, Lemma 3.3.1]).

Lemma 2.22. Let A be a ring with a locally nilpotent ideal J ⊂ A, and let f : R→ S be any
map of finitely presented flat A-algebras. Then f is flat if and only if f̄ : R/JR→ S/JS is flat.

Proof. ‘Only if’ is clear. Conversely, suppose f̄ is flat. If J is nilpotent (e.g. if A is Artinian),
then flatness of f follows from Proposition 0.8.3.7 in [FK18].

In the general case, write A as a filtered colimit A � colimi∈I Ai where Ai ⊂ A is a filtered
system of Z-algebras of finite type. Set Ji = J ∩Ai, so Ji ⊂ Ai is a nilpotent ideal. By standard
approximation arguments, there is an index i0 ∈ I such that f is the base change along Ai0 → A
of a map fi0 : Ri0 → Si0 of finitely presented Ai0-algebras. For all i ≥ i0, write fi : Ri → Si for
the evident base change of fi0 . By two applications of [Gro66, Théorème 11.2.6], Ri and Si are
flat Ai-algebras for all sufficiently large i.

Next, note that f̄ is the colimit of the diagrams fi : Ri/JiRi → Si/JiSi. Since f̄ is flat by
assumption, fi is flat for all sufficiently large i by another application of [Gro66, Théorème 11.2.6].
But Ji is nilpotent, so flatness of fi implies flatness of fi by the special case of the lemma treated
in the first paragraph of the proof. Therefore fi is flat for all sufficiently large i, so f is flat. �

Recall that an adic ring A admitting a finitely generated ideal of definition I is called topo-
logically universally (t.u.) rigid-noetherian if the scheme Spec A〈T1, . . . , Tn〉� V (IA〈T1, . . . , Tn〉)
is noetherian for all n ≥ 0. If A is a tft K-algebra, then any ring of definition A0 ⊂ A is t.u.
rigid-noetherian.

Proposition 2.23. Let A be a t.u. rigid-noetherian ring, and let J ⊂ A be any open ideal con-
sisting of topologically nilpotent elements. Let f : R→ S be a morphism of flat and topologically
finitely presented A-algebras. Then f is flat if and only if f̄ : R/JR→ S/JS is flat.

Proof. ‘Only if’ is clear. For the converse, choose a finitely generated ideal of definition I ⊂ A
contained in J ; let Jn ⊂ A/In be the image of J , so Jn is locally nilpotent. Since R/JR→ S/JR
is flat, the previous lemma implies that R/InR→ S/InS is flat for all n ≥ 1. By Corollary 0.8.3.9
in [FK18], we then deduce that R→ S is flat. �
Proposition 2.24. Let K be a non-archimedean field, and let f : A→ B be a map of tft
K-algebras with A geometrically reduced. Then there is a (nonempty) rational subset U ⊂ Spa A
containing the Shilov boundary such that Spa B ×Spa A U → U is flat.

Proof. By (the proof of) Theorem 1.3 in [BLR95], we can find a finite étale Galois exten-
sion K ′/K such that the unit ball A◦

K′ ⊂ AK′
def= A⊗K K ′ is topologically finitely presented

over K ′◦ and the special fiber A◦
K′/K ′◦◦A◦

K′ is (geometrically) reduced. Choose an open tfp
K ′◦-algebra B0 ⊂ B ⊗K K ′ such that (f ⊗K K ′)(A◦

K′) ⊂ B0. Let k′ be the residue field of K ′◦.
Then A◦

K′ ⊗K′◦ k′ → B0 ⊗K′◦ k′ is a map of finite-type k′-algebras with reduced source, so there
exists a non-zero-divisor f ∈ A◦

K′ ⊗K′◦ k′ such that (A◦
K′ ⊗K′◦ k′)[1/f ]→ (B0 ⊗K′◦ k′)[1/f ] is

flat. Choose any lift f̃ ∈ A◦
K′ , and let C be the π-adic completion of A◦

K′ [1/f̃ ]; similarly, let D be
the π-adic completion of B0[1/f̃ ]. Applying the previous proposition with A = K ′◦, J = K ′◦◦,
R = C, and S = D, we deduce that the map C → D is flat. Then SpaC[1/π]→ Spa AK′ is the
inclusion of the Laurent domain U(1/f̃), and SpaBK′ ×Spa AK′ U(1/f̃) ∼= Spa D[1/π] by design,
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so Spa BK′ ×Spa AK′ U(1/f̃)→ U(1/f̃) is flat. Moreover, U(1/f̃) contains all the Shilov points of
Spa AK′ by construction.

It remains to undo the base change from K to K ′. For this, let h ∈ A◦ be the image of f̃ under
the norm map AK′ → A, and let U = U(1/h) ⊂ Spa A be the associated Laurent domain. We
claim that U satisfies the conclusions of the theorem. Indeed, writing π : SpaAK′ → Spa A for
the evident finite étale map, it is clear from the definitions that π−1(U) = ∩g∈Gal(K′/K)U(1/f̃)g
as subsets of Spa AK′ . Since each g-translate of U(1/f̃) still contains all Shilov points of SpaAK′ ,
we see that π−1(U) contains all Shilov points of SpaAK′ , and so U contains all Shilov points
of Spa A. Moreover, the results in the previous paragraph show that fU : Spa B ×Spa A U → U
becomes flat after base change along the surjective finite étale map π−1(U)→ U , so fU is flat
by [War17, Proposition 3.1.12]. This concludes the proof. �
Proof of Theorem 2.21. It suffices to check that FlX/Y contains an open neighborhood of every
weakly Shilov point y ∈ Y . The formation of FlX/Y commutes with base change along open
immersions Y ′ → Y in the evident sense, so we’re reduced to showing that if Y is affinoid,
then FlX/Y contains an open neighborhood of every Shilov point of Y . For this, cover X by
finitely many open affinoid subsets Xi. Then each FlXi/Y ⊂ Y contains all Shilov points of Y
by Proposition 2.24. Since FlX/Y = ∩iFlXi/Y , we deduce that FlX/Y contains all Shilov points
of Y . �

2.5 Generic smoothness
In this subsection, we combine Theorems 2.18 and 2.21 to prove our main generic smoothness
result. We begin by translating Theorem 2.18 into geometric language.

Theorem 2.25. Fix a non-archimedean field K, and let f : X = Spa B → Y = Spa A be a map
of K-affinoid rigid spaces. Suppose that X is smooth over Spa K. Then for any Shilov point
y ∈ Y , the adic fiber Xy = Spa(B⊗̂AKy) is regular. In particular, if K has characteristic zero,
then Xy → SpaKy is smooth.

Proof. The first part follows immediately from Theorem 2.18 thanks to the characterization of
Shilov points in Proposition 2.2 once one observes that the local rings of Spa(R) for a regular tft
K-algebra R are regular. The last statement follows as a rigid analytic space over a characteristic
zero non-archimedean field is smooth exactly when all of its local rings are regular. �

We also need the following result, relating smoothness and fibral smoothness.

Lemma 2.26. Let f : X → Y be any map of rigid spaces, and let x ∈ X be any point with image
y = f(x). Then the following are equivalent:

(1) f is smooth at x;
(2) f is flat in a neighborhood of x and Xy = X ×Y Spa(Ky, K

+
y )→ Spa(Ky, K

+
y ) is smooth

at x.

Proof. This follows from (the proof of) Lemma 2.9.2 in [War17]. �
Theorem 2.27. Let f : X → Y be any quasicompact map of rigid spaces in characteristic zero.
Assume that X is smooth and Y is reduced. Then there is a dense open subset U ⊂ Y such that
f−1(U)→ U is smooth.

Remark 2.28. Consideration of standard examples (for instance, quasi-elliptic fibrations in char-
acteristics 2 and 3) shows that no result like this can hold in positive characteristic, not even
with the weaker conclusion that f−1(U)→ U is smooth up to a universal homeomorphism.
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Proof. Let y ∈ Y be any weakly Shilov point. By Theorem 2.21, we can choose some open sub-
set U(y) ⊂ Y containing y such that X ×Y U(y)→ U(y) is flat. Moreover, by Theorem 2.25,
the entire fiber Xy is smooth over y. Applying Lemma 2.26 and the openness of the smooth
locus in the source, we deduce that every point x ∈ f−1(y) admits a quasicompact open neigh-
borhood Wx in X such that Wx → Y is smooth. Forming a suitable union of the Wx and using
the quasicompacity of f , we deduce that there is a quasicompact open neighborhood W ⊂ X
of the fiber f−1(y) such that W → Y is smooth. Shrinking U(y) further, we may assume by
an easy quasicompacity argument that f−1(U(y)) ⊂W . In particular, X ×Y U(y)→ U(y) is
smooth.

Since weakly Shilov points are dense in Y , setting U = ∪y weakly ShilovU(y) concludes the
proof. �

In the proper case, we can do even better.

Theorem 2.29. Let f : X → Y be a proper map of rigid spaces in characteristic zero, with X
smooth and Y reduced. Then the maximal open subset Sf ⊂ Y over which f becomes smooth
is a dense Zariski-open subset.

Proof. Let W ⊂ X be the Zariski-open subset where X → Y is smooth, and let Z = X −W
be the complement regarded as a rigid space with its induced reduced structure. The com-
posite morphism g : Z → Y is proper, so by Kiehl’s results g∗OZ is a coherent sheaf on Y .
Since Supp(g∗OZ) = f(Z), we deduce that f(Z) ⊂ Y is Zariski-closed, so then Sf = Y − f(Z)
is Zariski-open, and density follows from the previous theorem. �
Remark 2.30 (Deducing Theorem 2.29 from [Duc18]). Let us indicate how to prove the
Berkovich variant of Theorem 2.29, using results from [Duc18].4 Precisely, given a non-
archimedean base field K of characteristic 0, we claim that if f : X → Y is a proper map of
K-analytic spaces in the sense of Berkovich with X quasi-smooth and Y reduced, then f is
smooth over a dense Zariski-open subset of Y . To see this, let T ⊂ Y be image under f of the
non-smooth locus of f ; the latter is Zariski-closed by [Duc18, Theorem 10.7.2], so the former is
Zariski-closed by properness (as in the proof of Theorem 2.29). As f is smooth over the Zariski-
open subset Y − T ⊂ T , it suffices to show that Y − T is dense in Y . In fact, we claim that Y − T
contains all the Abhyankar points y ∈ Y . By [Duc18, Theorem 10.3.7], the map f is flat at y,
so by [Duc18, Theorem 5.3.4], it suffices to note that f−1(y) is quasi-smooth (or equivalently
regular, as Ky has characteristic 0) by [Duc18, Theorem 6.3.7].

3. The six functors for Zariski-constructible sheaves

In this section, we use the geometric results of § 2 to develop the six-functor formalism for
Zariski-constructible sheaves in rigid analytic geometry over a characteristic 0 field.

3.1 Definition of Zariski-constructible sheaves
In this subsection we briefly review the definition and basic properties of Zariski-constructible
sheaves on rigid analytic spaces. Most of this material is taken from [Han20]; the exception is
Theorem 3.5.

Definition 3.1. Let X be a rigid analytic space over a non-archimedean field K, and let Λ be
a finite commutative ring.

4 We thank a referee for encouraging us to flesh out this deduction (and in fact for providing a complete argument).
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(1) An étale sheaf F ∈ Sh(X, Λ) is lisse there exists an étale cover {Ui → X} such that F |Ui

is the constant sheaf associated to a finitely generated Λ-module.
(2) A complex A ∈ D(X, Λ) is lisse if the cohomology sheaves Hn(A) are lisse for all n. We

write Dlis(X, Λ) ⊂ D(X, Λ) for the full subcategory spanned by lisse complexes.
(3) An étale sheaf F ∈ Sh(X, Λ) is Zariski-constructible if X admits a locally finite stratifica-

tion X =
∐

i∈ Xi into Zariski locally closed subsets Xi such that F | Xi is a lisse sheaf of
Λ-modules for all i ∈ I. We write Shzc(X, Λ) for the full subcategory of Zariski-constructible
sheaves.

(4) A complex A ∈ D(X, Λ) is Zariski-constructible if the cohomology sheaves Hn(A) are
Zariski-constructible for all n. We write Dzc(X, Λ) for the full subcategory spanned by
Zariski-constructible complexes.

One has the bounded below variant D+
zc(X, Λ); similarly for D− and Db. Finally, let

D
(b)
zc (X, Λ) ⊂ Dzc(X, Λ) denote the full triangulated subcategory of complexes which are

locally bounded; similarly for D(−) and D(+). The natural ∞-categorical refinements of
D(X, Λ), D(b)

zc (X, Λ), etc. shall be denoted D(X, Λ),D(b)
zc (X, Λ), etc., as usual.

Warning 3.2. Let us record some subtleties concerning this notion.
(1) Given a Zariski-open immersion j : U → X and a Zariski-constructible sheaf F on U , the

extension j!F can fail to be Zariski-constructible X, unlike the situation in algebraic geometry
(see next example). The main problem is that the operation of taking Zariski-closures in X
of Zariski-closed subsets of U is poorly behaved in general (e.g. it does something non-trivial
over U); this issue does not arise if F is itself locally constant.

Example 3.3. Let F be the direct sum of skyscraper sheaves supported at an infinite discrete
set of classical points in (A1)an, and let j : (A1)an → (P1)an be the standard open immersion.
Then j!F is not Zariski-constructible on (P1)an: any Zariski-closed set of (P1)an must be either
finite or all of (P1)an by rigid GAGA.

This phenomenon should not be regarded as a pathology: similar examples occur in complex
analytic geometry as well, and are a natural consequence of the non-quasi-compactness of affine
space in any kind of analytic geometry.

(2) Huber’s book [Hub96] defines a notion of ‘constructible’ sheaves that is very well behaved
from a topos theoretic perspective. However, these sheaves are typically not Zariski-constructible;
for instance, if j is the qcqs open immersion defined by including a closed disc of radius (say)
1/2 inside a closed disc of radius 1, then j!Λ is constructible in Huber’s sense but is not Zariski-
constructible. In fact, the overlap between these two notions is exactly the lisse sheaves.

Next, we record some simple stability properties of this notion.

Proposition 3.4.

(1) Shzc(X, Λ) is a weak Serre subcategory of Sh(X, Λ), and Dzc(X, Λ) is a thick triangulated
subcategory of D(X, Λ).

(2) (Devissage) A sheaf F ∈ Sh(X, Λ) is Zariski-constructible if and only if there is a dense
Zariski-open subset U ⊂ X such that F | U is lisse and F | (X � U) is Zariski-constructible.

(3) Zariski-constructibility is stable under f∗ for f any morphism of rigid spaces, and under f∗
for finite morphisms.

(4) A sheaf F ∈ Sh(X, Λ) is Zariski-constructible if and only if F | Xi is Zariski-constructible
for all irreducible components Xi ⊂ X.
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Proof. Parts (1)–(3) are proved in [Han20]. For (4), one direction is clear. For the other direction,
let f0 : X̃ → X be the normalization of X, and let f1 : X̃ ×X X̃ → X be the evident map. The
hypothesis guarantees that f∗

0 F (and then also f∗
1 F ) is Zariski-constructible, since X̃ =

∐
i X̃i

is the disjoint union of normalizations of the irreducible components of X. Since f0 and f1

are both finite, pushforward along these maps preserves Zariski-constructibility by (3). The
exact sequence 0→ F → f0∗f∗

0 F → f1∗f∗
1 F now exhibits F as the kernel of a map between

Zariski-constructible sheaves, so we conclude by (1). �
In view of Warning 3.2(1), the following result on the analytic (or even étale) locality of the

notion of Zariski-constructibility is somewhat surprising.

Theorem 3.5. Let X be a rigid space over a characteristic zero non-archimedean field K,
equipped with an étale Λ-sheaf F . If there exists an étale cover {Ui} of X such that F |Ui

is Zariski-constructible, then F is Zariski-constructible.

In particular, the assignment carrying a rigid space X to the ∞-category D(b)
zc (X, Λ) is a

stack for the étale topology.

We shall prove this result in § 3.2. Finally, the following result is often very useful.

Proposition 3.6. If X is a quasicompact rigid space over a non-archimedean field K of char-
acteristic zero, then Db

zc(X, Λ) is the thick triangulated subcategory of D(X, Λ) generated by
objects of the form f∗M for f : Y → X a finite morphism and M a constant constructible Λ-sheaf
on Y .

Proof. By induction on dimX and devissage, it is enough to show that if j : U → X is a dense
Zariski-open and F is lisse and killed by a prime �, then j!F lies in the claimed subcategory. For
this, choose (as in [Sta18, Tag 0A3R]) a finite étale cover g : U ′ → U of prime-to-� degree such
that g∗F is an iterated extension of copies of F�. Then F is a summand of g∗g∗F , so F is a
summand of an iterated extension of copies of g∗F�. Now extend g to a finite cover f : X ′ → X
as in [Han20], so j!F is a summand of an iterated extension of copies of G = j!g∗F� = f∗j′!F�,
where j′ : U ′ → X ′ is the evident map. Letting i : Z → X ′ be the complement of j′, the exact
sequence 0→ f∗j′!F� → f∗F� → (f ◦ i)∗F� → 0 shows that G lies in the desired subcategory. �

3.2 Zariski-constructible sheaves via algebraic geometry
In this subsection, we describe Zariski-constructible sheaves on affinoids purely in terms of
algebraic geometry, and deduce that the property of being Zariski-constructible is étale local.

Let K be a characteristic zero non-archimedean field. Recall from [Han20] that for any
affinoid K-algebra A and any scheme X locally of finite type over SpecA, there is a naturally
associated rigid space X = X an over Spa A, and a natural map Xét → Xét of sites, inducing a
t-exact pullback functor μX : D(X ,Z/n)→ D(X,Z/n) carrying Dc into Dzc. Here we change
notation slightly from [Han20], and write (−)an interchangeably for μ∗

X(−).

Proposition 3.7 (Algebraization of Zariski-constructible sheaves over affinoids). Fix an affi-
noid K-algebra A, and write S = Spec A and S = Spa A.

(1) If f : X → Y is any finite type map of finite type S-schemes, then for any F ∈ Db
c (X ,Z/n)

the natural base change map (Rf∗F )an → Rfan∗ F an is an isomorphism. In particular,
Rfan∗ F an lies in Db

zc(Y,Z/n).
(2) If X is any finite type S-scheme, the functor (−)an : Db

c (X ,Z/n)→ Db
zc(X,Z/n) is fully

faithful. If X is proper over S, it is an equivalence of categories.
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(3) If X is any finite type S-scheme, the fully faithful functor (−)an : Db
c (X ,Z/n)→

Db
zc(X,Z/n) from (2) identifies the full subcategory of lisse objects on both sides.

Note that part (2) applies notably when X = S.

Proof. (1) This is exactly [Han20, Theorem 1.8].
(2) The full faithfulness is a special case of [Han20, Theorem 1.10.ii]. Essential surjectivity

in the case where X/S is proper can be checked on hearts. We can also assume that X and
X are reduced. Arguing by induction on dimX as in the proof of [Han20, Theorem 1.7], one
reduces to checking that any sheaf on X of the form j!F is in the essential image of (−)an;
here j : U ⊂ X is the inclusion of any normal Zariski-open subset and F is any lisse sheaf. To
do this, first note that the complement Z = X − U algebraizes to a closed subscheme Z ⊂ X
by relative rigid GAGA, so then U = X − Z is an algebraization of U . We’re now reduced to
proving that the analytification functor FÉt(U)→ FÉt(U) is an equivalence of categories. We
explain the construction of an essential inverse. Suppose V → U is any finite étale map. By
[Han20, Theorem 1.6], this extends uniquely to a branched covering V ′ → Xn, where Xn is
the normalization of X. By relative rigid GAGA again, this algebraizes to a branched covering
V ′ → X n, and then V := V ′ ×Xn U → U is the desired algebraization of V .

(3) Since we already have full faithfulness, it suffices to prove essential surjectivity on the
hearts, i.e. we want to realize a lisse sheaf on X as the analytification of a unique lisse sheaf on
X . By uniqueness and Zariski/analytic descent for lisse sheaves in algebraic/analytic geometry,
we may assume that X is separated (or even affine). By finite descent for lisse sheaves in both
algebraic and analytic geometry, we may also assume X is normal. In this case, we can realize
X as an open subscheme of a normal proper S-scheme X̄ ; the argument used in the proof of (2)
now yields the desired algebraization. �

We shall use the above description to prove Theorem 3.5 by a topological argument. To run
this argument, we need a couple of lemmas in pure algebraic geometry on the existence and
properties of the maximal open set where a constructible sheaf is lisse.

Lemma 3.8. Let X be a scheme and let F be a constructible sheaf on X. Then there exists
a maximal open subset UF ⊂ X such that F |UF

is locally constant. Moreover, UF is given by
either of the following equivalent descriptions.

(1) The set of all x ∈ X such that F |Xx is locally constant. (Here Xx is the local scheme of X
at x.)

(2) The set of all x ∈ X admitting an open neighborhood x ∈ U ⊂ X with F |U being locally
constant.

In particular, UF contains all the generic points of X.

Proof. As local constancy is a local property, the collection of all opens V ⊂ X such that F |V
is locally constant is stable under taking unions. Taking the union of all such opens then gives
the maximal open UF such that F |UF

is open. It is also clear from this description that UF

agrees with the set in (2). The set in (2) is trivially contained in the set in (1). Conversely, as the
functor sending a scheme Y to its category of locally constant sheaves (respectively, constructible
sheaves) is locally finitely presented (i.e. carries cofiltered limits of affine schemes to direct limits),
the set in (1) is also contained in the set in (2), so the two sets coincide. The final statement is
clear from the description of UF given by the set in (1). �
Lemma 3.9. The formation of the open set UF ⊂ X associated with a pair (X, F ) as in
Lemma 3.8 is compatible with pullback along universally generalizing maps of schemes.
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Proof. Let f : Y → X be a universally generalizing map of schemes. We have an obvious contain-
ment f−1(UF ) ⊂ Uf∗F , and we must show it is an equality. Assume towards contradiction that
there exists some y ∈ Uf∗F − f−1(UF ). Thus, (f∗F )|Yy is locally constant but F |Xf(y)

is not
locally constant. There is then a specialization x1 � x2 of geometric points of Xf(y) such that
the corresponding cospecialization map Fx2 → Fx1 is not an isomorphism. Choose an abso-
lutely integrally closed valuation ring V and a map ηX : Spec(V )→ Xf(y) that witnesses the
specialization x1 � x2, so η∗X(F |Xf(y)

) is not locally constant. Now that the map Yy → Xf(y)

is universally generalizing (it factors as Yy → Xf(y) ×X Y → Xf(y), with both maps being uni-
versally generalizing) and surjective (all points of Xf(y) specialize to y, so surjectivity follows
from the universally generalizing property). By stability of universally generalizing surjective
maps under base change, we can replace V with an extension if necessary to lift ηX to a map
ηY : Spec(V )→ Yy. But then we have η∗X(F |Xf(y)

) = η∗Y (f∗F |Yy); this is a contradiction as the
left side is not locally constant by choice of ηX , while the right side is locally constant by choice
of y. �
Proof of Theorem 3.5. Let us first give the argument when {Ui} is a cover of X for the analytic
topology. We proceed by induction on dim(X). The dim(X) = 0 case is clear: X is a disjoint
union of points in this case. In general, as Zariski-constructibility is stable under pullback, we
may assume each Ui = Spa(Ai) is affinoid. Write Ui = Spec(Ai) for the obvious algebraization of
Ui. The map Ui → Ui identifies constructible Z/n-sheaves on the target with Zariski-constructible
Z/n-sheaves on the source by Proposition 3.7, so there is a unique constructible Z/n-sheaf Fi

over Ui descending F |Ui . Let Vi := Ui,Fi
⊂ Ui be the maximal Zariski open over which Fi is

locally constant as in Lemma 3.8, let Vi ⊂ Ui be its Zariski-open preimage, and let Zi ⊂ Ui be
the Zariski-closed complement of Vi (regarded as a reduced rigid space); note that Zi ⊂ Vi is
nowhere dense as Vi ⊂ Ui contains all the generic points. As the natural algebraizations of the
maps given by rational localizations of affinoids are universally generalizing, Lemma 3.9 implies
that for all i, j, the Zariski-open subsets Vi ∩ (Ui ∩ Uj) and Vj ∩ (Ui ∩ Uj) of Ui ∩ Uj agree, and
consequently their complements also agree. By descent for coherent ideal sheaves applied to
the ideal sheaves IZi ⊂ OUi of the Zi, there is a unique Zariski-closed subset Z ⊂ X such that
Z ∩ Ui = Zi. As Zi is nowhere dense in Ui for all i, we must have dim(Z) < dim(X). Moreover,
the sheaf F is lisse over X − Z by construction. Induction on dimension shows that F |Z is also
Zariski-constructible, so we win.

To adapt this argument to the étale topology, note the proof above has two essential
ingredients.

(1) For each pair of indices i, j, if V ⊂ Ui ∩ Uj = Ui ×X Uj is an open affinoid, then the natural
algebraization of V → Ui (respectively, V → Uj) is a universally generalizing map of affine
schemes.

(2) Descent for coherent sheaves holds true with respect to the cover {Ui}.
These properties are also true for étale covers of X, so the descent claim also holds true

in the étale topology. Indeed, étale descent for coherent sheaves on rigid spaces is [dJvdP96,
Corollary 3.2.3], while the first property reduces to the well-known fact that for any étale map
of affinoid rigid spaces, the associated ring map is flat. �

3.3 Pushforward, ⊗, and RH om
In this subsection, we prove some of our main stability properties for Zariski-constructible
sheaves. Until further notice, we fix a characteristic zero non-archimedean base field K of residue
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characteristic p (with p = 0 allowed). The first main result in this section is the following theorem,
which was conjectured by the second author [Han20, Conjecture 1.14].

Theorem 3.10 (Proper direct images). Let f : X → Y be a proper map of rigid spaces over K.

Then Rf∗ preserves D
(b)
zc (−,Z/n).

Note that p | n is allowed here. We caution the reader that if f : X → Y is a proper map of
rigid spaces with Y irreducible, then in contrast with the situation for algebraic varieties, it is
not always true that X has finitely many irreducible components, or that the fibers of f have
bounded dimension.5 Thus, it is necessary to use D(b) and not Db in the above formulation, and
similarly in many other places in this section.

Proof. By Theorem 3.5, we may assume Y = Spa(A) for an affinoid K-algebra A. In particular, X
and Y are both qcqs. We may clearly also assume that Y is reduced. Our task is to show that Rf∗
preserves Db

zc(−,Z/n) in this situation. As X is quasi-compact, we may apply Proposition 3.6,
so it suffices to show that Rf∗Z/n ∈ Db

zc. In fact, as the fibres of f have bounded dimension
(e.g. by checking on formal models), we know by cohomological dimension estimates and
proper base change that Rf∗ has finite cohomological dimension, so it is enough to show that
Rf∗Z/n ∈ Dzc, i.e. that each Rif∗Z/n is Zariski-constructible on Y . By proper base change and
induction on dim(Y ), it suffices to find a dense open U ⊂ Y such that (Rif∗Z/n)|U is locally
constant. As K has characteristic 0, Temkin’s [Tem18, Theorem 1.1.13(i)] gives a proper hyper-
cover ε : X• → X with each Xi being K-smooth. Cohomological descent enables us to compute
Rf∗Z/n as the totalization of Rg∗Z/n, where g = f ◦ ε. As Hi of the totalization of a cosimpli-
cial object K(•) : Δ→ D≥0 only depends on truncated cosimplicial object K(•)|Δ≤i+1

, we can
replace X• with the finite diagram X≤i+1 and then by each Xj to assume that X is smooth. As
Y is reduced, our generic smoothness result (Theorem 2.29) yields a Zariski-dense Zariski-open
U ⊂ X such that f : X → Y is smooth over U . It then suffices to show that Rig∗Z/n is locally
constant when g is both proper and smooth. To check this, we may assume n = � is a prime.
Now if � 
= p, the claim reduces to [Hub96, Corollary 6.2.3], while the claim for � = p reduces to
[SW20, Theorem 10.5.1]. �

As a consequence of Theorem 3.10, we also get some additional stability results. First, locally
constant sheaves are carried to Zariski-constructible complexes via pushforward along a fairly
general class of maps.

Corollary 3.11 (Direct images of lisse complexes). Let f : X → Y be a Zariski-compactifiable

map of rigid spaces. Then Rf! and Rf∗ carry D
(b)
lis (−,Z/n) into D

(b)
zc (−,Z/n).

As explained in Warning 3.2(1), the functor Rf∗ does not preserve D
(b)
zc in general, even

for Zariski-open immersions. Thus, the above seems to be the best general statement one can
expect.

Proof. The statement is local on the target by Theorem 3.5, so we may assume Y = Spa(A) is affi-

noid. By assumption, we can factor f as X
j−→ X̄

g−→ Y with j being a Zariski-open immersion and
g being proper. Using Theorem 3.10, we can reduce to the case f = j is a Zariski-open immersion.
The claim for Rf! is clear from the definition of Zariski-constructible sheaves (using {X, X̄ −X}

5 For a simple example where both conditions fail, let Y = (Spec K[T ])an be the rigid affine line, set Xn = (Pn)an

and let fn : Xn → Y be the map which factors over the inclusion of the closed point T = p−n. Then f =
∐

fn :∐
Xn → Y is proper.
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as the stratification on X̄ witnessing Zariski-constructibility), so it remains to check the asser-
tion for Rf∗. As Y is affinoid, the Zariski-open immersion f : X ↪→ Y is the algebraization of a
unique open immersion g : X → Y = Spec(A). Moreover, any object of Db

lis(X,Z/n) is the ana-
lytification of a unique object in Db

lis(X ,Z/n) by Proposition 3.7(3). Using the compatibility
of pushforwards with analytification from Proposition 3.7(1), the claim follows from Gabber’s
constructibility theorem in [ILO14, Expose XIII, Théorème 1.1.1]. �

Second, !-pullback along finite morphisms preserves Zariski-constructibility.

Corollary 3.12 (Finite !-pullback). Let f : X → Y be a finite morphism of rigid spaces
over K. Then the right adjoint Rf ! : D+(Y,Z/n)→ D+(X,Z/n) to f! = f∗ constructed in

[Hub96, § 7.1] preserves D
(b)
zc (−).

Proof. By Theorem 3.5, the assertion is étale-local on Y , so we may assume both X and Y are
affinoid, corresponding to a finite map A→ B of affinoid K-algebras. Fix F ∈ Db

zc(Y,Z/n). Let
SF ⊂ Y be the smallest Zariski-closed subset of Y containing the support of F . We shall prove
the claim by induction on dF = dim(SF ).

If dF = 0, then F is supported at finitely many points. As the claim is étale local on Y , we
may then assume that F is a finite direct sum of sheaves of the form k∗Z/n, where k : W → Y
is the inclusion of a Zariski-closed point. Now f ! and k∗ commute: the corresponding statement
for left adjoints is the proper base change theorem for f . We are thus reduced to checking the
statement when Y (and thus X) are 0-dimensional. In this case, up to universal homeomorphisms,
the map f is finite étale, so Rf ! = f∗, so the claim is clear.

Now assume dF > 0. We may then choose a Zariski open subset j : U ↪→ Y such that U ∩ SF

is dense is SF , the restriction L := F |U∩SF
is lisse, and f is finite étale (up to universal homeo-

morphisms) over U : one can find such an open U as the algebraization of an open U ⊂ Spec(A)
satisfying the analogous properties for the map Spec(B)→ Spec(A) and the algebraization F
of F (in the sense of Proposition 3.7). Let i : Z ↪→ Y be the closed complement, so we have the
standard exact triangle

i∗Ri!F → F → Rj∗(F |U ).

Now Rj∗(F |U ) � k∗Rj′∗L, where j′ : U ∩ SF → SF and k : SF → X are the natural maps (and
thus Zariski open and Zariski closed immersions respectively). By Corollary 3.11, the third term
in the triangle above is then Zariski-constructible. The remaining term i∗Ri!F in the triangle is
then also Zariski-constructible, so Ri!F is itself Zariski-constructible. Applying Rf ! to the above
triangle gives a triangle

Rf !i∗i!F → f !F → Rf !k∗Rj′∗L.

By proper base change for f as in the previous paragraph, the last term identifies with
kX,∗Rj′X,∗(f |U∩SF

)!L, where kX and j′X are the base changes of k and j′ along f . As f is finite
étale up to universal homeomorphisms over U , we have (f |U∩SF

)!L � (f |U∩SF
)∗L, so this object

is lisse on f−1(U ∩ SF ). Corollary 3.11 then implies that the third term in the triangle above is
lisse. For the first term, using proper base change again lets us write it as iX,∗f !

Zi!F , where iX and
fZ are the base changes of i and f against f and i. As i!F is known to be Zariski constructible,
the induction hypothesis then shows that the first term is also Zariski constructible. �
Remark 3.13. Using results from [Hub96, § 7], in the special case (p, n) = 1, we can extend
Corollary 3.12 to much larger generality. Indeed, if f : Y → X is any separated taut morphism of
rigid spaces over K, then Rf ! sends D

(b)
zc (X,Z/n) into D

(b)
zc (Y,Z/n). To see this, by Theorem 3.5,

this assertion can be checked locally on X and Y , so we can assume they are affinoid. The map
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f can be then be factored as the composition of a Zariski-closed immersion followed by a smooth
map of pure dimension d. The claim for Zariski-closed immersions follows from Corollary 3.12,
while that for smooth morphisms follows from Huber’s [Hub96, Theorem 7.5.3], which identifies
Rf ! with f∗(d)[2d].

We deduce the existence of ⊗ and RH om.

Corollary 3.14 (⊗ and RH om). Let X be a rigid space. For any F , G ∈ D
(b)
zc (X,Z/n) with

F having finite Tor dimension, both F ⊗ G and RH om(F , G ) lie in D
(b)
zc (X,Z/n).

Proof. We may work locally on X on Theorem 3.5, so assume X is affinoid. The claim about
tensor products is clear (e.g. by Proposition 3.7 and the corresponding statement in algebraic
geometry). For RH om, we proceed by induction on d = dim(X), the case d = 0 being triv-
ial. Choose a dense Zariski-open j : U ⊂ X such that both F |U and G |U are lisse. Applying
RH om(−, G ) to the triangle j!j

∗F → F → i∗i∗F →, we get a triangle

i∗ RH om(i∗F , i!G )→ RH om(F , G )→ Rj∗(F |∨U ⊗ G |U )→,

where we simplified the first term using the adjunction defining i!, and the last term by using
RH om(A, B) = A∨ ⊗B for A, B ∈ D(Z/n) with A ∈ Dperf(Z/n). Now induction on dimen-
sion and Corollary 3.12 ensure that the first term lies in Db

zc. The last term lies in Db
zc by

Corollary 3.11, so we win. �
We also deduce the proper base change theorem.

Theorem 3.15. Let

X ′

g′
��

f ′
�� Y ′

g

��
X

f
�� Y

be a Cartesian diagram of rigid spaces over K, with f proper. Then for any F ∈ D
(b)
zc (X,Z/n),

the natural base change map g∗Rf∗F → Rf ′∗g′∗F is an isomorphism.

Proof. This easily splits into the two disjoint cases where p � n or n = pa. When p � n, the result
follows from Huber’s much more general base change results [Hub96, Theorem 4.1.1(c)]. We
may thus assume that n = pa. By Theorem 3.10, we know that g∗Rf∗F and Rf ′∗g′∗F are
Zariski-constructible, hence overconvergent, so it suffices to show that the base change map
induces an isomorphism on stalks at all rank-1 geometric points ȳ → Y ′. By two applications of
[Hub96, Example 2.6.2], we compute that (g∗Rf∗F )ȳ � RΓ(X ×Y g(y), F ) and (Rf ′∗g′∗F )ȳ �
RΓ(X ×Y ȳ, F ). We now conclude by Lemma 3.25. �

We end this section by recording that the equivalence in Proposition 3.7 is compatible with
all the operations we have seen so far.

Proposition 3.16. Fix an affinoid K-algebra A, and write S = Spec A and S = Spa A. The
functor (−)an : Db

c (X ,Z/n)→ Db
zc(X,Z/n) for finite type S-schemes X with X = X an is com-

patible with ⊗, RH om when the first argument has finite Tor dimension, f∗, Rf∗, Rf! for
compactifiable f , and Ri! for any finite morphism i. If p � n, it is compatible with Rf ! for
compactifiable f .
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Proof. The compatibilities for f∗, ⊗, and j! for open immersions j are easy and left to the
reader. The compatibility for Rf∗ is a special case of Proposition 3.7(1). For proper f , the
claim for Rf∗ = Rf! is [Hub96, Theorem 3.7.2] This implies the claim for Rf! for compactifiable
f . The result for Ri! in the case of a closed immersion follows from the triangle Ri! → i∗ →
i∗Rj∗j∗ → and its analytic counterpart, where j is the complementary open immersion, using
the known compatibilities for i∗, j∗, and Rj∗. Given these compatibilities, the claim for RH om
now follows by induction on the dimension, imitating the devissage carried out in Corollary 3.14.
The result for Ri! for general finite maps i : X → Y can be proven by following the argument in
Corollary 3.12.

Finally, the claim for Rf ! in the case (n, p) = 1 is local on the source, so we may factor f as
g ◦ i where g is smooth of some pure relative dimension d and i is a closed immersion. Then Rf ! =
Ri! ◦Rg! = Ri! ◦ g∗[2d](d) by Poincaré duality for schemes, and Rfan! = Rian! ◦ gan∗[2d](d) by
Poincaré duality for rigid spaces as in Huber’s book. The result now follows from the known
compatibilities for g∗ and Ri!. �

3.4 Verdier duality
It remains to discuss Verdier duality. Recall that if p is invertible in the coefficient ring Z/n,
then [Hub96, § 7] shows that any separated taut morphism f : X → Y of rigid spaces over K
induces a well-behaved functor Rf! : D(X,Z/n)→ D(Y,Z/n) with a well-behaved right adjoint
Rf !. In particular, for any separated taut rigid space X and any n prime to p, we can define
the dualizing complex ωX = Rπ!

X(Z/n), where πX : X → Spa K is the structure map. We shall
construct dualizing complexes in a different way using results from [ILO14]; our construction
works without restriction on p, and is equivalent to Huber’s if (p, n) = 1. We will need the
following form of unbounded BBDG gluing [BBD82, Théorème 3.2.4] for complexes.

Lemma 3.17. Let (C,O) be a ringed site with a final object X and fiber products, and with
enough points. Let B be a collection of open subobjects U ⊂ X such that X = ∪U∈BU and for
all U, V ∈ B we have U ∩ V = ∪W∈B,W⊂U∩V W .

Suppose we are given objects KU ∈ D(U,O) for all U ∈ B together with isomorphisms
ρU

V : KU |V → KV for all V ⊂ U with V, U ∈ B which are compatible with composition. Finally,
suppose that Exti(KU , KU ) = 0 for all U ∈ B and all i < 0.

Then there exists a pair (K, {ρU}U∈B) consisting of an object K ∈ D(X,O) and isomorphisms
ρU : K|U → KU such that ρU

V ◦ ρU = ρV for all V ⊂ U with V, U ∈ B. The pair (K, {ρU}) is
unique up to unique isomorphism.

Recall that a subobject U ⊂ X is open if the associated map Sh(CU )→ Sh(C) is an open
immersion of topoi, cf. [Sta18, Tag 08M0] for the latter notion. Note that unlike the unbounded
gluing results proved in [LO08] or [Sta18, Tag 0DCC], we do not assume here that the underlying
site locally has finite cohomological dimension. The price to pay is that we only prove gluing for
open covers.

Proof. This follows from the proof of [Sta18, Tag 0D6C]. �
Next, we recall some results from [ILO14] on the existence and uniqueness of étale dualizing

complexes for a fairly general class of noetherian schemes. For this, we need good dimension
functions.

Proposition 3.18. Let X be a noetherian universally catenary scheme whose irreducible com-
ponents are equicodimensional [EGA, Définition 14.2.1], i.e. such that dim(OY,y) = dimY for
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every irreducible component Y ⊂ X and every closed point y ∈ Y. Then the function δ(x) =
dim {x} is a dimension function on X , which we call the canonical dimension function.

The hypotheses here are satisfied for any scheme X of finite type over Z, over a field, or over
Spec A for some affinoid K-algebra A. We will only need the latter case.

Proof. By [ILO14, Corollaire XIV.2.4.4], the map x 	→ dim {x} defines a dimension function
on each irreducible component of X . Since these functions agree on overlaps of irreducible
components, this implies the claim. �

In the next theorem, we shall use the language introduced in [ILO14, § XVII]. In par-
ticular, we shall use the notion of a potential dualizing complex from [ILO14, § XVII.2].
Recall that such a complex on a scheme X equipped with a dimension function δ is an
object ωX ∈ D+(X ,Z/n) equipped with some additional data: one has specified isomorphisms
RΓx̄(ωX ) ∼= Z/n[2δ(x)](δ(x)), called pinnings, for each geometric point x̄→ X lying over a point
x ∈ X , and these isomorphisms are required to be compatible with immediate specializations in
the appropriate sense. The following theorem asserts that such complexes exist in large generality,
and have good properties.

Theorem 3.19 (Existence of dualizing complexes in algebraic geometry). Let X be an excellent
noetherian Z[1/n]-scheme satisfying the hypotheses of Proposition 3.18, and set Λ = Z/n. Then
X admits a potential dualizing complex ωX ∈ Db

ctf (X , Λ) relative to the canonical dimension
function, which is unique up to unique isomorphism. The functor DX (−) = RH om(−, ωX ) pre-
serves Db

c (X , Λ) and the biduality map F → DXDXF is an isomorphism for all F ∈ Db
c (X , Λ).

Proof. The existence and uniqueness is [ILO14, Théorème XVII.5.1.1], while the rest follows
from [ILO14, Théorème XVII.6.1.1]. �
Remark 3.20. Choose X as in Theorem 3.19. Assume additionally than X is regular of (locally
constant) dimension d. Then the twisted constant sheaf Z/n[2d](d) comes equipped with the
required pinning data thanks to absolute cohomological purity [ILO14, Théorème XVI.3.1.1], so
it follows that there is a unique isomorphism Z/n[2d](d) ∼= ωX compatible with the pinnings.

Using the preceding results in algebraic geometry and the algebraization results in
Proposition 3.7, we construct dualizing complexes in rigid geometry using Lemma 3.17 on gluing.

Theorem 3.21 (Existence of dualizing complexes in rigid geometry). Let X be a rigid space
over K.

(1) Existence: There exists a natural dualizing complex ωX ∈ D
(b)
zc (X,Z/n), characterized up

to unique isomorphism by the requirement that its formation commutes with passage to
open subsets and is given by the algebraization (in the sense of Proposition 3.7) of the
potential dualizing complexes from Theorem 3.19 when X is affinoid. Moreover, one has
ωX
∼= (Z/n)[2d](d) for X smooth of pure dimension d, and canonical isomorphisms ωZ �

Ri!ωX for any finite morphism i : Z → X.
(2) !-compatibility for (n, p) = 1: If X is separated and taut and (n, p) = 1, then ωX

∼=
Rπ!

X(Z/n) where πX : X → Spa K is the structure map.
(3) Biduality: The dualizing functor DX(−) = RH om(−, ωX) induces a contravariant self-

equivalence of D
(b)
zc (X,Z/n) satisfying biduality id ∼= DX ◦DX via the natural map.

(4) Duality and finite morphisms: For any finite morphism i : Z → X, there are natural
identifications of functors Ri!DX

∼= DZi∗ and i∗DZ
∼= DXi∗.
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(5) Duality and open immersions: For a Zariski-open immersion j : U → X, there are natural
isomorphisms j∗DX � DUj∗ and Rj∗DU � DXj!.

(6) Base change: If L/K is an extension of non-archimedean fields, with a∗ : Dzc(X,Z/n)→
Dzc(XL,Z/n) the natural pullback map, then a∗ωX

∼= ωXL
.

(7) Compatibility with algebraic geometry: If X = X an for a finite type K-scheme X , then
ωX = (ωX )an.

Proof. Let us first construct ωX by gluing together the analytifications of the dualizing complexes
coming from Theorem 3.19. Let U = SpaA be any affinoid rigid space, and set U = Spec A. Then
U satisfies the hypotheses of Theorem 3.19. Let ωU ∈ Db

c (U ,Z/n) be the dualizing complex
provided by that theorem.

By Propositions 3.7 and 3.16, we have an equivalence (−)an : Db
c (U ,Z/n)→ Db

zc(U,Z/n)
compatible with RH oms. We now define ωU := (ωU )an, so (DUF )an ∼= DU (F an) for every
F ∈ Db

c (U ,Z/n). Since the dualizing functor DU induces a contravariant self-equivalence on
Db

c (U ,Z/n) which satisfies biduality, and (−)an is an equivalence of categories, we now conclude
the analogous results for DU .

To construct ωX over an arbitrary rigid space X, we apply Lemma 3.17, taking B to be
the collection of affinoid opens U ⊂ X, and letting KU = ωU as constructed in the previous
paragraph. Note that the full faithfulness in Proposition 3.7 and Theorem 3.19 show that
Z/n ∼= RH om(ωU , ωU ) for all U ∈ B, so all negative self-extensions vanish. Moreover, for any
inclusion of open affinoid subsets g : V ⊂ U , there is a natural isomorphism g∗ωU

∼= ωV com-
patible with compositions by Lemma 3.22 below (applied with d = 0). The gluing lemma now
applies, and gives a unique ωX ∈ D(X,Z/n) equipped with a transitive system of isomorphisms
ωX |U � ωU for all open affinoids U ⊂ X.

We now prove this construction has all the required properties.
(1) By construction, the complex ωX is characterized by the properties demanded in the first

sentence of (1); these also characterize ωX uniquely (up to unique isomorphism) by the unique-
ness assertions in Theorem 3.19 and Lemma 3.22 through the equivalence in Proposition 3.7.
It is also clear from the construction and Remark 3.20 that ωX |Xsm ∼= Z/n[2d](d), where d is
the dimension. For the compatibility with Ri! for finite morphisms, we reduce to the affinoid
case following our construction, and use compatibility of the analytification functor with Ri!

(Proposition 3.16) to reduce to the corresponding result in algebraic geometry [ILO14, Propo-
sition XVII.4.1.2]. The compatibility with restriction to open subsets is clear from our con-
struction. As these properties guarantee uniqueness of ωX up to isomorphism, we are done
with (1).

(2) The identification with Rπ!
X(Z/n) can be checked locally, where it follows by factoring

πX as a closed immersion followed by a smooth map and using the results on Poincaré duality
proved in Huber’s book.

(3) This follows from the corresponding assertion in the affinoid case (which was explained
above whilst constructing ωX) as the property of being Zariski-constructible is local in the
analytic topology (Theorem 3.5).

(4) This is a formal argument given duality and known adjunctions. For compatibility with
i∗, fix G ∈ D

(b)
zc (Z,Z/n). Then we have isomorphisms

i∗DZ(G) = i∗ RH om(Z/n,DZ(G))

= i∗ RH om(G, ωZ)

= i∗ RH om(G, i!ωX)
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= RH om(i∗G, ωX)

= DX(i∗G),

where the second isomorphism is by biduality, the third by ωZ = i!ωX , and the fourth by the
defining property of i!. Comparing the first and last term gives i∗DZ = DXi∗.

For compatibility with i!, fix additionally F ∈ D
(b)
zc (X,Z/n). Then we have bifunctorial

isomorphisms

RHom(i∗DX(F ), G) = RHom(DX(F ), i∗G)

= RHom(DX(i∗G), F )

= RHom(i∗DZ(G), F )

= RHom(DZ(G), Ri!F )

= RHom(DZ(Ri!F ), G),

where first equality is by adjunction for (i∗, i∗), the second and last by duality, the third by the
equality i∗DZ = DXi∗ we just showed, and the fourth by adjunction for (i∗, i!).

(5) The compatibility with j∗ is built into the construction. The rest is again a formal
argument using duality and known adjunctions. For F ∈ D

(b)
zc (U,Z/n) and G ∈ D

(b)
zc (X,Z/n),

we have

RHom(F, Rj∗DU (G)) = RHom(j∗F,DU (G))

= RHom(G,DU (j∗F ))

= RHom(G, j∗DX(F ))

= RHom(j!G,DX(F ))

= RHom(F,DX(j!G)),

with first equality by the adjunction (j∗, Rj∗), the second and last by duality, third by j∗DX =
DUj∗, and the fourth by the adjunction (j!, j

∗).
(6) By our construction of dualizing complexes, it suffices to construct a natural system

of such isomorphisms over affinoids. Thus, assume X = Spa(A) is affinoid with base change
XL = Spa(AL). Write X and XL for the natural algebraization, and let f : XL → X be the
natural map. It is enough to construct a natural isomorphism f∗ωX � ωXL

. We claim this follows
from [ILO14, Proposition 4.1.1] (and uniqueness of potential dualizing complexes). To apply this
lemma, we need to know that f is a regular map, and that the dimension function y 	→ δ′(y) :=
δ(f(y))− codimf−1(f(y))(y) on XL agrees with the standard dimension function y 	→ dim({y}).
The regularity of f is discussed in the last paragraph of the proof of Proposition 3.24 below, and
essentially comes from [And74]. To obtain agreement of the dimension functions, it suffices to
know that δ′(y) = 0 for a closed point y (as any point on XL is linked to a closed point by a finite
chain of immediate specializations). Thus, we must check that dim({f(y)}) = codimf−1(f(y))(y).
Since y is a closed point, this follows from [Con99, Lemma 2.1.5] applied to the affinoid algebra
of functions on integral scheme {y} ⊂ X .

(7) To deduce this from our construction, it suffices to show the following. If X = Spec(A)
is an affine finite-type K-scheme and U = Spa(B) ⊂ X = X an is an open affinoid with natural
map ν : U → X , then there is a natural isomorphism ν∗ωX � ωU . This follows by Lemma 3.22
below applied to the map Spec(B)→ Spec(A) with d = 0. �
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In the course of the previous proof, we used the following lemma.

Lemma 3.22. Let g : V = Spec B → U = SpecA be a regular morphism between excellent affine
Q-schemes of finite Krull dimension. Suppose moreover that U and V have equicodimensional
irreducible components, that g maps closed points to closed points, and that V ×U Spec κ(g(x))
is equidimensional of dimension d for all closed points x ∈ V for some (constant) d ≥ 0. Then
there is a unique isomorphism g∗ωU [2d](d) ∼= ωV compatible with the pinnings.

This lemma applies if g arises from an étale map of affinoid rigid spaces Spa B → Spa A, with
d = 0. This is the only case we will need.

Proof. This is a variant of the argument used in Theorem 3.21(6). By [ILO14, Expose XVII,
Proposition 4.1.1], g∗ωU is a potential dualizing complex for the dimension function δ̃ : |V | → Z
defined by δ̃(x) = dim {g(x)} − codimg−1(g(x))(x). Our assumptions guarantee that δ̃(x) + d =
dim {x} = 0 for all closed points x. Since the difference of any two dimension functions is locally
constant, this implies that δ̃(x) + d = dim {x} for all x ∈ V , and therefore that g∗ωU [2d](d) is a
potential dualizing complex for the canonical dimension function on V . We now conclude by the
uniqueness of potential dualizing complexes. �
Remark 3.23 (Duality and proper maps). In Theorem 3.21, we have only discussed the functor
Rf ! when p is invertible in the coefficient ring, or when f is finite. However, we expect that
for any proper map f : X → Y , the functor Rf∗ : D

(b)
zc (X,Z/pn)→ D

(b)
zc (Y,Z/pn) admits a right

adjoint Rf ! naturally isomorphic to DXf∗DY . One can check that this expectation holds if and
only if there is a natural isomorphism DY Rf∗ ∼= Rf∗DX . For f proper and smooth, ongoing
work of Zavyalov confirms these expectations.

3.5 Miscellany
We collect some auxiliary results.

First, we note that the entire formalism is compatible with changing the nonarchimedean
base field. More precisely, let K → L be an extension of characteristic zero non-archimedean
fields. For any rigid space X/ Spa K, there is a natural map of étale sites XL,ét → Xét which
induces a pullback functor D(X)→ D(XL) sending Dzc into Dzc.

Proposition 3.24. With notation as above, the change of base field functors Dzc(X)→
Dzc(XL) are compatible (under the appropriate boundedness conditions) with the operations
f∗, ⊗, RH om, Verdier duality, Rf∗ for proper f , Rf! and Rf∗ on lisse complexes for Zariski-
compactifiable morphisms f , and Rf ! if either f is a finite morphism or p is invertible in the
coefficient ring.

Proof. The compatibilities for f∗, ⊗ and j! are trivial. The compatibilities for Rf∗ in the proper
case and Rj∗ in the Zariski-open lisse case are the hardest; the rest follow from these.

For Rf∗ in the case of a proper map f : Y → X, one easily reduces to the two disjoint
cases p � n and n = pa. The first case follows from Huber’s general base change theorem [Hub96,
Theorem 4.1.1.b]. The second case can be reduced, via [Hub96, Theorem 4.1.1.b’], to the situation
where K and L are algebraically closed, and then by Theorem 3.10 it can be checked on stalks
at classical points of XL which map to classical points of X. At these points it reduces to
Lemma 3.25 below.

For Rj∗ on lisse sheaves in the case of a Zariski-open immersion j : U → X, we can assume
that X = Spa A is affinoid. Write jL : UL → XL = Spa A⊗̂KL for the base change, and let
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jalg : U → X = Spec A and jalg
L : UL → XL = Spec AL be the evident algebraizations. By (mul-

tiple applications of) Proposition 3.7, we are reduced to proving that g∗Rjalg
∗ F ∼= Rjalg

L,∗g
′∗F

for any lisse sheaf F on U , where g : XL → X is the natural map and g′ : UL → U is its base
change to U . Since g is regular (see next paragraph), this follows from regular base change
[ILO14, Expose XVII, Proposition 4.2.1]. (The results for RH om and Ri! can be handled in an
entirely analogous way, with the endgame supplied by [ILO14, Expose XVII, Proposition 4.2.2
and Corollaire 4.2.3].)

The claimed regularity of A→ A⊗̂KL can be reduced by Noether normalization to the reg-
ularity of the map K〈x1, . . . , xn〉 → L〈x1, . . . , xn〉. By standard excellence properties of affinoid
rings, regularity of this map can be verified after m-adic completion at all maximal ideals m in the
source. This finally reduces us to the fact that for any separable extension of non-archimedean
fields L/K the ring map K[[x1, . . . , xn]]→ L[[x1, . . . , xn]] is regular, which follows from the
formal smoothness of this map, cf. [And74]. �

In the previous proof, we used the following lemma.

Lemma 3.25. Let C ′/C/Qp be an extension of algebraically closed nonarchimedean fields. Then
for any proper rigid space X/C and any F ∈ Db

zc(X,Z/pa), the natural map RΓ(X, F )→
RΓ(XC′ , FC′) is an isomorphism.

Proof. By an easy induction on a and Proposition 3.6, we can assume that F = f∗Fp for some
finite map f : X ′ → X. Replacing X by X ′, we can assume further that F = Fp is constant.
By two applications of the primitive comparison theorem, it is enough to check that the natural
map

RΓ(X,O+
X/p)⊗OC/p OC′/p→ RΓ(XC′ ,O+

XC′/p)

is an almost isomorphism. This can be deduced from a purely local statement: if U = Spa A/C
is any affinoid, then the natural map

RΓ(U,O+
U /p)⊗OC/p OC′/p→ RΓ(UC′ ,O+

UC′/p)

is an almost isomorphism.
To prove the local statement, choose a perfectoid Zd

p-torsor A→ A∞. Then

RΓ(U,O+
U /p) ∼=a RΓcts(Zd

p, A
◦
∞/p),

and similarly for UC′ . The result now follows by writing RΓcts(Zd
p,−) as the usual d + 1-

term Koszul complex and observing that the natural map A◦∞⊗̂OC
OC′ → A◦

C′,∞ is an almost
isomorphism (e.g. because both sides provide perfectoid rings of definition for the Tate ring
A∞⊗̂CC ′). �

Second, with biduality in hand, we can somewhat extend our results on pushfoward.

Proposition 3.26. Let f : X → Y be a Zariski-compactifiable morphism, and let F ∈
D

(b)
zc (X,Z/n) be an object such that one of the following holds true:

(1) F is lisse or DXF is lisse;

(2) F = j∗F ′ for some compactification X
j→ X ′ f̄→ Y and some F ′ ∈ D

(b)
zc (X ′,Z/n).

Then Rf∗F and Rf!F lie in D
(b)
zc (Y,Z/n).

It follows from the above proposition that if f is a Zariski locally closed immersion, any F
satisfying (1) automatically satisfies (2): we may simply take F ′ = Rf∗F by the proposition.
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Proof. For the first case, the result is already proved for F lisse. Suppose now that DXF is lisse,

and choose a compactification X
j→ X ′ f̄→ Y . We first show that Rj∗F is Zariski-constructible.

To see this, use Theorem 3.21 to write

Rj∗F ∼= Rj∗DXDXF ∼= DX′j!DXF .

Then DXF is lisse by assumption, so j!DXF is Zariski-constructible by Corollary 3.11, and
then duality preserves Zariski-constructibility. Now the triangle j!F → Rj∗F → i∗i∗Rj∗F →
shows that j!F is also Zariski-constructible. Applying Rf∗ now gives the claim.

For the second case, let i : Z → X ′ be the complementary closed immersion. Then
we get a triangle Rf!F → Rf∗F ′ → R(f̄ ◦ i)∗i∗F ′ →, and the second and third terms
are Zariski-constructible by Theorem 3.10. Likewise, we get a triangle R(f̄ ◦ i)∗Ri!F ′ →
Rf∗F ′ → Rf∗F →, and the first two terms are Zariski-constructible by Theorem 3.10 and
Proposition 3.12. �
Remark 3.27 (Unbounded variants). We briefly discuss without proof how the results discussed
above extend to the unbounded derived category. We shall need the following notion.

Definition 3.28. Given a non-archimedean base field K and the coefficient ring Z/n, we say
(†) holds if Gal(K̄/K) has finite �-cohomological dimension for all primes � | n.

This condition is very mild, and holds for example if K is separably closed, or if K is a local
field, or if K has separably closed residue field and (n, p) = 1. One can also check that (†) is
stable under replacing K by Kx, where Kx is the residue field of any rigid space X/K at any
(adic) point x ∈ X. The main reason for introducing this condition is the following.

Proposition 3.29. Fix K and Λ = Z/n such that (†) holds. Then for any rigid space X/K,
the derived category D(Xét, Λ) is left-complete and compactly generated, and the functor R lim :
D(XN

ét , Λ)→ D(Xét, Λ) has bounded cohomological amplitude on any finite-dimensional open
subspace of X.

Proof. This is well known; cf. [Roo06] for the final statement. �
Let us now formulate the promised unbounded variants of the results discussed in this paper.

Let f : X → Y be a map of rigid spaces over K, and let F ∈ Dzc(X,Z/n).

(1) Pullback: the pullback f∗ takes Dzc into Dzc.
(2) Proper pushforward: if F is bounded below or (†) holds, then Rf∗F ∈ Dzc.
(3) General pushforward: say F is lisse and f is Zariski-compactifiable. If F is bounded below

or (†) holds, then Rf!F , Rf∗F ∈ Dzc.
(4) Duality: the functor DX(−) = RH om(−, ωX) carries D

(−)
zc into D

(+)
zc . Furthermore, if (†)

holds, then DX(−) also carries D
(+)
zc into D

(−)
zc , and gives an autoequivalence of Dzc(X,Z/n)

satisfying biduality.
(5) !-pullback: if f is a finite map, then Rf ! takes Dzc to Dzc.
(6) !-pullback for good coefficients: if (p, n) = 1, f is any taut separated map and (†) holds true,

then Rf ! preserves Dzc.
(7) Tensor product: D

(−)
zc (X,Z/n) is stable under ⊗ inside D(X,Z/n).

(8) Internal Hom: the bifunctor RH om(−,−) carries D
(−)
zc ×D

(+)
zc into D

(+)
zc .

These assertions are all proven by using homological arguments to reduce to the locally
bounded case (using Proposition 3.29 as needed). We omit the proofs. The most notably difficult
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case is (4), where the reduction to the bounded situation is non-formal, and requires the following
lemma.

Lemma 3.30. Let X be a d-dimensional rigid space. Then for any F ∈ Shzc(X,Z/n), the
complex RH om(F , ωX) is concentrated in degrees [−2d, 0].

In particular, for any finite-dimensional X, the functor DX(−) preserves Db without
assuming that X is quasi-compact.

Proof. One could deduce this from the last assertion in [ILO14, Théorème XVII.5.1.1] using
[Gab04, § 3] as well as our algebraization Proposition 3.7. For the convenience of the reader, we
give a direct proof, essentially mimicking the argument in Corollary 3.14 when G = ωX , while
controlling the amplitude of the terms showing up.

Without loss of generality, we may assume X is affinoid and reduced. We proceed induction on
d, the d = 0 case being trivial. Let j : U → X be a smooth Zariski-open subset of pure dimension
d with complement of dimension < d such that F |U is locally constant. Let i : Z = Spa B →
X be the inclusion of the closed complement of U . Applying RH om(−, ωX) to the triangle
j!j

∗F → F → i∗i∗F →, we get a triangle

i∗ RH om(i∗F , ωZ)→ RH om(F , ωX)→ (Rj∗j∗F∨)[2d](d)→,

where we used the isomorphism ωU � Z/n[2d](d) (coming from the smoothness of U) to simplify
the last term, and Theorem 3.21(4) for the first term. By induction, the first term here is
concentrated in degrees [−2d + 2, 0]. It thus suffices to show that Rj∗j∗F∨ is concentrated
in degrees [0, 2d− 1]. Proposition 3.7 identifies Rj∗j∗F∨ as the analytification of Rjalg

∗ G, where
jalg : U = Spec A− Spec B → X = SpecA is the natural algebraization of j and G is some locally
constant sheaf on U . By [ILO14, Expose XVIII-A, Théorème 1.1], Rjalg

∗ G is concentrated in
degrees [0, 2d− 1], so the result follows. �

3.6 Adic coefficients
We fix a characteristic zero non-archimedean base field K of residue characteristic p > 0. Fix
any prime �. In this section we explain a variant of the theory of Zariski-constructible sheaves
with Z�-coefficients, using the formalism6 from [Sch17].

For a rigid space X/K, let Xv denote the v-site of X from [Sch17]. Let Z� = limn Z/�n be
the displayed inverse limit of constant sheaves, regarded as a sheaf of (abstract) rings. Any
perfect complex M ∈ D(Z�) yields a ‘constant’ �-complete sheaf M := limn M/�n ∈ D(Xv,Z�).
Our goal is to build a theory of Zariski-constructible Z�-complexes on a rigid space X where
the locally constant objects are twisted forms of M for M ∈ Dperf(Z�). We first recall the
basic notion of ‘étale Z�-sheaves’ that is introduced in [Sch17] for the purposes of defining
operations.

Construction 3.31. Fix n ≥ 1. For any strictly totally disconnected perfectoid space Y , the usual
derived category D(Yét,Z/�n) is left-complete and identifies with a full subcategory D(Yv,Z/�n)
via pullback along Yv → Yét. Moreover, containment in this subcategory can be checked v-locally
(see [Sch17, Propositions 14.10, 14.11(iii), Theorem 14.12(ii)]).

For any v-stack X, let Dét(X,Z/�n) ⊂ D(Xv,Z/�n) be the full subcategory spanned by
objects whose pullback along any map Y → X with Y a strictly totally disconnected perfectoid

6 The paper [Sch17] assumes that a prime number is topologically nilpotent in the base field K. This is the reason
we assume that the residue characteristic p of K is > 0. Since we only use the relatively formal aspects of [Sch17],
we expect that this assumption can be removed once a theory of adic coefficients over non-archimedean base fields
of residue characteristic 0 has been developed.
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space lies in the subcategory D(Yét,Z/�n) ⊂ D(Yv,Z/�n); this condition can be checked after
pullback along a v-cover [Sch17, Remark 14.14]. Imposing this condition for a complex K is
equivalent to imposing it for each v-cohomology sheaf Hi(K) (regarded as a complex) [Sch17,
Proposition 14.16]. Moreover, if X is a locally spatial diamond (e.g. one attached to a rigid space),
then Dét(X,Z/�n) admits a classical description: it agrees with the left-completion D̂(Xét,Z/�n)
of the usual derived category D(Xét,Z/�n) [Sch17, Proposition 14.15].

Finally, for any v-stack X, write Dét(X,Z�) ⊂ D�-comp(Xv,Z�) as the full subcategory derived
�-complete objects in D(Xv,Z�) whose mod �-reduction lies in the subcategory Dét(X,Z/�)
mentioned above [Sch17, Definition 26]. If X is a locally spatial diamond, then derived
�-completeness as well as the previous remark on left-completeness give an equivalence

Dét(X,Z�) = lim
n
Dét(X,Z/�n) � lim

n
D̂(Xét,Z/�n) (3.1)

at the level of the corresponding ∞-categories, thus giving a classical description of the left
side in the case of rigid spaces, see [Sch17, Proposition 26.2]. In fact, we could have defined
Dét(X,Z�) as the homotopy category of the right side above, and thus avoided ever mentioning
the ambient category D�-comp(Xv,Z�); one reason we introduce the latter is that it carries an
obvious t-structure, which we shall use in our proofs.

As in [Sch17, § 26], all operations between the categories Dét(−,Z�) of �-adic complexes
introduced above are always interpreted in the �-completed sense, i.e. the functor in question
takes values in �-complete complexes by fiat, and agrees after reduction mod � with the corre-
sponding functor for finite coefficients. For instance, if j : U → X is a Zariski-open immersion
and M ∈ Db

ét(U,Z�) ⊂ Db
�-comp(Uv,Z�), then j!M ∈ Db

�-comp(Xv,Z�) is defined to be the derived
�-completion of jtop

! M ∈ Db(Xv,Z�) where jtop
! denotes the topos theoretic !-extension (without

any completions); then one can see that j!M lies in Db
ét(X,Z�) and j!M ⊗Z�

F� agrees with
j!(M ⊗Z�

F�), where the latter is defined in the classical way.

In the above setting, we can introduce Zariski-constructible complexes.

Definition 3.32. Let X be a rigid space. We define full subcategories

D
(b)
lis (X,Z�) ⊂ D(b)

zc (X,Z�) ⊂ D
(b)
ét (X,Z�) ⊂ D

(b)
�-comp(Xv,Z�)

as follows.

• An object K ∈ D
(b)
ét (X,Z�) lies in D

(b)
lis (X,Z�) (and is called lisse) if K/� ∈ D(b)(Xét,Z/�) is

lisse in our previous sense (Definition 3.1).
• An object K ∈ D

(b)
ét (X,Z�) lies in D

(b)
zc (X,Z�) (and is called Zariski-constructible) if K/� ∈

D(b)(Xét,Z/�) has Zariski-constructible cohomology sheaves.

As before, we write D(b)
lis (X,Z�) and D(b)

zc (X,Z�) for the corresponding full ∞-categories
inside Dét(X,Z�).

Remark 3.33. Let us explain an inverse limit description of D(b)
zc (X,Z�), similarly to (3.1). For

each n ≥ 1, let D(b)
zc,�-ftd(X,Z/�n) ⊂ D(b)

zc (X,Z/�n) be the full subcategory spanned by objects M

such that M ⊗L
Z/�n Z/� is locally bounded. These are compatible under the base change functors

changing n. We claim that the equivalence in (3.1) restricts to an equivalence

D(b)
zc (X,Z�) � lim

n
D(b)

zc,�-ftd(X,Z/�n).

Indeed, since Z� has global dimension 1, it is clear that the equivalence in (3.1) gives a fully
faithful functor from the left to the right. The essential surjectivity follows by observing that,
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under the equivalence in (3.1), the condition that M ∈ Dét(X,Z�) lies inside D(b)
zc (X,Z�) can be

checked after reduction mod �.

As both locally constant sheaves and Zariski-constructible sheaves with Z/�-coefficients form
weak Serre subcategories of the category of Z/�-sheaves on Xét, both categories introduced above
form triangulated subcategories of D

(b)
ét (X,Z�). These categories admit an algebraic description

on affinoids.

Lemma 3.34. Let X = Spa(A) be an affinoid rigid space with the natural algebraization
X = Spec(A). The pullback along X → X induces equivalences

Db
lis(X ,Z�) � D

(b)
lis (X,Z�) and Db

zc(X ,Z�) � D(b)
zc (X,Z�)

of triangulated categories.

Proof. This follows from the description in Remark 3.33 together with Proposition 3.7 that
implies the corresponding statements with Z/�n-coefficients by passing to the full subcategory
of objects with finite Tor dimension. �

Using the aforementioned algebraic description, we can show that local constancy mod �
implies local constancy, justifying our definition of lisse complexes.

Lemma 3.35. Let X be a rigid space and let M ∈ D
(b)
lis (X,Z�). Then M is locally constant.

More precisely, for any cover {Ui} of X by connected affinoids, there exist perfect complexes
Ni ∈ Dperf(Z�) such that M |Ui is locally isomorphic (for the v- or in fact even the pro-(finite
étale) topology of Ui) to Ni. In particular, each v-cohomology sheaf Hi(M) is locally constant
as well.

This lemma is analogous to [BS15, Remark 6.6.13], with Achinger’s theorem replacing Artin’s
theorem.

Proof. We may assume X = Spa(A) is a connected affinoid. Proposition 3.34 then implies that
M is uniquely pulled back from some M ′ ∈ Db

lis(Spec(A),Z�). Let B := colimi Bi be a universal
cover of A, i.e. this is filtered colimit of connected finite étale covers A→ Bi with B itself being
simply connected. Thus, Spec(B) admits no non-trivial locally constant sheaves of finitely gen-
erated Z�-modules. Moreover, Achinger has shown [Ach17, § 1.5] that each Spec(Bi) is a K(π, 1),
which implies that RΓ(Spec(B),Z�) = Z�. The combination of these two properties of Spec(B)
implies that taking the ‘constant’ sheaf gives an equivalence Dperf(Z�) � Db

lis(Spec(B),Z�), so
M ′|Spec(B) ∈ Db

lis(Spec(B),Z�) is the ‘constant’ Z�-complex attached to a perfect Z�-complex N .
Analytifying this cover then solves the problem, i.e. taking Y := limi Spa(Bi) where each Bi is
given the natural topology and the inverse limit is computed in v-sheaves, we obtain a pro-(finite
étale) cover Y → X such that M |Y � N for some N ∈ Dperf(Z�), as wanted. �

Next, we observe that all operations defined before extend to Z�-sheaves.

Theorem 3.36. On the category of rigid spaces over K, the following operations (defined

in [Sch17, § 26]) restrict to operations on D
(b)
zc (−,Z�) and are compatible with reduction

modulo �n:

(1) f∗, ⊗, and RH om;
(2) Verdier duality;
(3) Rf∗ for f proper;
(4) Rf! and Rf∗ on lisse complexes for Zariski-compactifiable morphisms f ;
(5) Rf ! if either f is a finite morphism or p 
= �.
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Moreover, proper base change holds, and all of these operations are compatible with extensions
of the non-archimedean base field.

Proof. Let us first define the dualizing complex ωX ∈ D(b)
zc (X,Z�), thereby defining the opera-

tion that is supposed to give Verdier duality. Given a rigid space X and an integer n ≥ 1, we
have constructed in Theorem 3.21 a dualizing complex ωn ∈ D(b)

zc (X,Z/�n). Given two integers
n ≥ m, we claim that there is a transitive system of isomorphisms anm : ωn ⊗L

Z/�n Z/�m � ωm in
Db

zc(X,Z/�m): for X = Spa(A) being affinoid, this follows by a similar isomorphism for poten-
tial dualizing complexes on Spec(A) (see discussion on potential dualizing complexes following
Theorem 3.19, and use the pinning data there to see transitivity), and the general case fol-
lows by BBDG gluing (as in the proof of Theorem 3.21). By canonicity as well as the fact
that Ext<0

Z/�n(ωn, ωn) = 0 for all n ≥ 1, the system {ωn} lifts naturally to an object of the

∞-category limnD(b)
zc,�-ftd(X,Z/�n) from Remark 3.33. Using the equivalence there, the inverse

limit ωX := limn ωn ∈ D(Xv,Z�) then lies in D(b)
zc (X,Z�); this object comes equipped with a

transitive system of isomorphisms ωX ⊗L
Z�

Z/�n � ωn, thus providing our candidate dualizing
complex ωX .

All the operations are now defined on the larger category Dét(X,Z�), and are compatible
with reduction mod �; the claims in the proposition now follow from the analogous statements
mod �. �
Remark 3.37 (Relating Verdier duality with finite and Z�-coefficients). For any n ≥ 1, the reduc-
tion modulo �n-functor D

(b)
zc (X,Z�)→ D

(b)
zc (X,Z�/�n) carries the dualizing complex ωX,Z�

:=
ωX ∈ D

(b)
zc (X,Z�) constructed in the proof of Theorem 3.36 to the dualizing complex ωX,Z/�n :=

ωX ∈ D
(b)
zc (X,Z�) from Theorem 3.21(1), which gives the formula DX,Z�

(−)/�n � DX,Z/�n(−/�n)
relating the Verdier duality operations under reduction modulo �n. Moreover, using the for-
mula RHomZ�

(Z/�n,Z�) = Z/�n[−1], it follows that the restriction of scalars functor Res :
D

(b)
zc (X,Z�/�n)→ D

(b)
zc (X,Z�) satisfies DX,Z�

◦ Res = Res ◦DX,Z/�n [−1].

Remark 3.38. In the entire discussion in this section, we could have used the pro-étale topol-
ogy from [Sch17] instead of the v-topology without any modification: this follows from the full
faithfulness results in [Sch17, § 14] for the ‘change of topology map’ and the observation that
any F ∈ Shlis(X,Z�) as defined above is in fact locally constant in the pro-étale topology by
Lemma 3.35. Nevertheless, we have preferred to formulate things using the v-topology since the
operations defined in [Sch17, § 26] are defined using the v-topology.

As our final goal in this section, we define the ‘standard’ or ‘constructible’ t-structure on
D

(b)
zc (X,Z�). We first explain how to do the analogous construction in algebraic geometry; we

use the pro-étale approach from [BS15], but a closely related result can be found in [Eke90,
Theorem 3.6(v)].

Proposition 3.39 (The constructible t-structure for Z�-sheaves on a noetherian scheme). Let Y
be a noetherian scheme. Then the standard t-structure on D(Yproét,Z�) restricts to one on
Db

cons(Yproét,Z�).

In the statement above and the proof below, we use the notions from [BS15, §§ 5, 6]. In
particular, we refer to an object of Db(Yproét) as classical if it is in the essential image of the
(fully faithful) pullback along ν : Yproét → Yét (see [BS15, § 5.1]). Classical abelian sheaves on
Yproét are thus equivalent to abelian sheaves on Yét and form an abelian Serre subcategory of all
abelian sheaves on Yproét.
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Proof. Given M ∈ Db
cons(Yproét,Z�), we must show that each Hi(M) lies in Db

cons(Yproét,Z�).
Using the definition of constructibility [BS15, § 5], we must show that the abelian pro-étale
sheaves Hi(M)/� and Hi(M)[�] are constructible F�-sheaves for all i. Note that these sheaves
can be regarded as subobjects (respectively, quotient objects) of some Hi(M/�) via the Bockstein
sequence for �. As étale subquotients of étale constructible constructible sheaves on a noethe-
rian scheme are constructible [Sta18, Tag 09BH], it suffices to show that the pro-étale sheaves
Hi(M)/� and Hi(M)[�] are classical. In fact, by the Bockstein sequence and stability of classical
sheaves under cokernels in all pro-étale sheaves, it suffices to prove that each Hi(M)/� is étale.
By definition of constructibility, we know that Hi(M/�n) is classical for all i and n. As classical
sheaves are stable under images, it is then enough to show that Hi(M)/� ⊂ Hi(M/�) is exactly
the image of Hi(M/�n)→ Hi(M/�) for n� 0. By the Bockstein sequences for �n, this would
follow if we knew that the projective system {Hi(M)[�n]}n≥1 are Mittag–Leffler for each i, i.e.
if each Hi(M) had bounded �-power torsion. If M is lisse, this is clear. In general, recall the
following fact from [BS15, § 6.2]: if k : Z → Y is a (necessarily constructible, as Y is noetherian)
locally closed immersion, then the functors k∗ and k! on the derived category of all pro-étale
sheaves preserve limits and colimits and commute with Hi(−). By [BS15, Proposition 6.6.11], we
know that Y admits a finite stratification {kj : Yj → Y } such that each Nj := k∗

j M is lisse. The
aforementioned properties of kj,! and k∗

j then show thatHi(M)[�n] admits a finite filtration whose
graded pieces have the form kj,!k

∗
j (Hi(Nj)[�n]) for lisse complexes Ni. But then each Hi(Nj) is

also lisse and hence has bounded �-power torsion, so the corresponding claim for Hi(M) follows
by devissage. �
Theorem 3.40 (The constructible t-structure for Z�-sheaves on a rigid space). Let X/K be a
rigid space. Then there exists a natural ‘constructible’ t-structure (cD≤0

zc (X,Z�), cD≥0
zc (X,Z�))

on D
(b)
zc (X,Z�) with the following properties.

(1) An object K lies in cD≤0
zc (X,Z�) if and only if K/� ∈ D≤0(X,Z/�).

(2) An object K lies in the heart if and only if there exists a locally finite stratification X = {Xi}
by Zariski locally closed subsets such that K|Xi is locally constant and concentrated in
degree 0 in the obvious sense (i.e. isomorphic locally on Xi,v to an object of the form N
with N a finitely generated Z�-module).

The restrictions appearing in part (2) above are in the sense of the operations in Proposition 3.36
(see also Remark 3.38).

Proof. First assume X = Spa(A) is affinoid. In this case, to obtain a t-structure by the description
in (1), we may use Lemma 3.34 to translate to a similar question on Y = Spec(A). Thus, it suffices
to show that the t-structure on Db

cons(Yproét,Z�) constructed in Proposition 3.39 is characterized
by the property that K ∈ D≤0(Yproét) exactly when K/� ∈ D≤0(Yét); this follows from repleteness
of Yproét, exactness and full faithfulness of pullback along Yproét → Yét, and standard facts on
derived completions. Moreover, part (2) also follows from the reasoning at the end of the proof of
Proposition 3.39 as well as the fact that Zariski-closed subsets of Spa(A) are the same as closed
subsets of Spec(A).

For future reference, still in the affinoid case, we remark that once we know (2) is satisfied
for some stratification, there is in fact canonical stratification where (2) is satisfied. Indeed, if we
take the open stratum X0 ⊂ X to be the maximal Zariski dense open provided by Lemma 3.8
combined with Proposition 3.7(2) for H∗(K/�) and continue inductively, we obtain a stratifi-
cation {Xi}i≥0 of X by Zariski locally closed subsets such that K|Xi is lisse by Lemma 3.35.
To check that K|Xi is concentrated in degree 0 in the sense of (2), we may refine the canonical
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stratification to ensure it is finer than a given stratification witnessing the property in (2), take
stalks, and then deduce the result for the canonical stratification itself. We observe also that this
canonical stratification has the feature that it is compatible with restricting to smaller affinoids
by Lemma 3.9.

We now deduce the general case by gluing. Indeed, first observe that the pullback along maps
of affinoids is t-exact with respect to the t-structure we constructed in the first paragraph: right
t-exactness is clear from the description in (1), while left t-exactness follows from the description
of the heart in (2) and the boundedness of the t-structure on affinoids. As the condition appearing
in part (1) is of a local nature, it follows that for any rigid space X, we can glue the t-structures
defined above on the affinoid opens of X to produce a t-structure on D

(b)
zc (X,Z�) satisfying

part (1). For part (2), thanks to the last sentence of the previous paragraph, we may simply
glue together the canonical stratification on affinoids constructed in the previous paragraph to
obtain the desired stratification. �

4. Perverse sheaves

In this section, we use the results of § 3 to define a notion of perverse sheaves on rigid spaces over
non-archimedean base field K of characteristic 0. Our results with finite coefficients work for any
rigid space, with Z� coefficients when K has residue characteristic p (due to the corresponding
requirement in § 3.6), and Q�-coefficients when one further restricts to the qcqs case.

4.1 Finite coefficients
Let K be a non-archimedean field of characteristic 0 and let X/K be a rigid space. In this
subsection, we use Z/n-coefficients for some n ≥ 1. In this section, we develop a theory of perverse
sheaves on X that enjoys the same pleasant formal properties as its counterpart in algebraic
geometry [BBD82].

Definition 4.1. Let X/K be a rigid space.

(1) Define pD≤0
zc (X) ⊂ D

(b)
zc (X) as the full subcategory of complexes F such that

dim suppHj(F ) ≤ −j for all j ∈ Z.
(2) Define pD≥0

zc (X) ⊂ D
(b)
zc (X) as the full subcategory of complexes F such that DX(F ) ∈

pD≤0
zc (X).

The main results about this definition are summarized as follows.

Theorem 4.2 (Properties of the perverse t-structure). In the setup above, we have the follow-
ing.

(1) The pair (pD≤0
zc (X), pD≥0

zc (X)) define a t-structure on D
(b)
zc (X). Write Perv(X) =

Perv(X,Z/n) for the heart of this t-structure, and write pHn : D
(b)
zc (X)→ Perv(X) for the

associated cohomology functors.
(2) For a Zariski-open immersion j (respectively, Zariski-closed immersion i), we have the

following exactness properties with respect to the perverse t-structure:
(a) j∗ and i∗ are t-exact;
(b) j! is right t-exact in the context of Proposition 3.26(2), i.e. if F ∈ pD≤0

zc (U,Z/n) arises

as the pullback of some object from D
(b)
zc (X,Z/n), then j!F ∈ pD≤0

zc (X,Z/n);
(c) i∗ is right t-exact and Ri! is left t-exact;
(d) Rj∗ is left t-exact in the context of Proposition 3.26(2).
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(3) Perv(X) is stable under Verdier duality.
(4) If X = X an for a finite type K-scheme X , the functor Db

c (X )→ Db
zc(X) induces a fully faith-

ful functor Perv(X )→ Perv(X). If X is proper over Spec K, this functor is an equivalence
of categories.

(5) Say j : U ⊂ X is the inclusion of any Zariski locally closed subset and L is a perverse

sheaf on U that admits an extension to D
(b)
zc (X,Z/n) under j∗ (e.g. if one of L or DU (L )

is lisse, see Proposition 3.26). Then there is a naturally associated intermediate extension
j!∗L ∈ Perv(X) such that j∗j!∗L ∼= L . Moreover, DX(j!∗L ) ∼= j!∗DU (L ).

(6) If X is quasicompact, Perv(X) is noetherian and Artinian. The simple objects have the
form j!∗(L [d]), where j : U → X is a Zariski-locally closed immersion with U smooth of
dimension d and L is a simple locally constant sheaf on U .

(7) Perversity is stable under pushforward along finite morphisms.
(8) Assume p is invertible on Λ. If K is algebraically closed and X is a formal model of X

with special fiber Xs, the nearby cycles functor RλX∗ : Db
zc(X)→ Db

c(Xs) is t-exact for the
perverse t-structures.

We expect that the t-exactness in (8) holds true without the assumption on p (using the
perverse t-structure on the target constructed in [Gab04]). The right t-exactness ought to fol-
low from the relevant affinoid vanishing theorem, generalizing [BM21, Han20], that has been
announced by Gabber.

Proof. (1) We give two proofs: one via localizing to [Gab04], and one via a direct argument.

Proof via [Gab04]. We have seen before that X 	→ D(b)
zc (X) is a stack for the analytic topology

on X. Moreover, pullback along open inclusions U ⊂ X of rigid spaces preserves pD≤0
zc (−) by

definition, and pD≥0
zc (−) as Verdier duality localizes. Consequently, these pullbacks are perverse

t-exact once we know the perverse t-structure exists. Given a diagram of stable ∞-categories
equipped with t-structures and t-exact transition maps, the inverse limit carries a unique
t-structure compatible with those of the terms. Using the stackyness of D(b)

zc (−), we thus conclude
that it suffices to prove (1) when X = Spa(A) is affinoid. In this case, using Proposition 3.7 as
well as the compatibility of the notion of dimension and duality with analytification, it is enough
to prove the corresponding statements for Db

cons(X ,Z/n) where X = Spec(A); we do this next
via [Gab04].

Consider the strong perversity function p : X → Z given by p(x) = −dim({x}). The results
of [Gab04, §§ 2 & 6] show that there is a natural perverse t-structure on Db

c (X ,Z/n) attached to
the function p(−). It is clear from the definition in [Gab04, § 2] as well as the compatibility of the
notion of dimension with analytification that the connective part pD≤0

c (X ,Z/n) ⊂ Db
c (X,Z/n)

of this t-structures agrees with pD≤0
zc (X) ⊂ Db

zc(X) under the equivalence (−)an : Db
c (X ,Z/n) �

Db
zc(X) from Proposition 3.7. It remains to identify pD≥0

zc (X) ⊂ Db
zc(X) as defined above (via

stalks of the dual) with pD≥0
c (X ,Z/n) ⊂ D≥0

c (X ,Z/n) as defined in [Gab04, § 2] (via costalks).
For this, it suffices to show the following pair of assertions.

(∗) For any G ∈ Db(X ,Z/n) and any geometric point x̄→ x ∈ X , the costalk i!x̄G of G identifies
with the Z/n-linear dual of the stalk i∗̄xDX (G ) of the Verdier dual of G .

Indeed, assume (∗). Fix some F ∈ Db
zc(X,Z/n) arising as the analytification of G ∈

Db
c (X ,Z/n). Assume first that F ∈ pD≥0

zc (X,Z/n). Then for any irreducible Zariski-closed sub-
set Z ⊂ X of dimension i, we know by assumption H−j(DX(F )) vanishes after restriction to a
Zariski open subset of Z for all j < i. This implies a similar constraint on G by t-exactness of
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analytification and its compatibility with duality and the notion of dimension. Using (∗) and
passing to the limit then shows that G ∈ pD≥0(X ,Z/n). Conversely, if G ∈ pD≥0(X ,Z/n), then
(∗) and the compatibility of analytification with duality and the notion of dimension shows that
F ∈ pD≥0

zc (X,Z/n).
It remains to prove (∗). This follows by passage to the limit from (the algebraic version of)

Theorem 3.21(4) applied to quasi-finite maps of the form U ↪→ Z ↪→ X , with the first map being
a dense open immersion, and the second map being the closed immersion of an irreducible closed
subset.

Direct proof. We now explain a direct proof of the existence of the perverse t-structure on Db
zc(X)

when X is finite dimensional by induction on dimX. The result is trivial when dimX = 0. For the
moment, fix a smooth dense Zariski-open subset j : U → X, with closed complement i : Z → X.
It is trivial from the definition that i∗ : Db

zc(X)→ Db
zc(Z) carries pD≤0

zc into pD≤0
zc , and then

(using biduality) that Ri! carries pD≥0
zc into pD≥0

zc . By induction, we can assume that (1) is true
for Z.

Write Db
zc.U -lis(X) ⊂ Db

zc(X) for the full subcategory spanned by complexes whose cohomol-
ogy sheaves are lisse after restriction to U . One trivially checks that pD≤0

zc (U) ∩Db
lis(U) and

pD≥0
zc (U) ∩Db

lis(U) define a t-structure on Db
lis(U), which locally on connected components is the

obvious shift by dimU of the standard t-structure. Moreover, a complex F ∈ Db
zc.U -lis(X) lies in

pD≤0
zc (X) if and only if j∗F ∈ D≤− dim X

lis (U) and i∗F ∈ pD≤0
zc (Z). By duality, this implies that

F ∈ Db
zc.U -lis(X) lies in pD≥0

zc (X) if and only if j∗F ∈ D≥− dim X
lis (U) and i!F ∈ pD≥0

zc (Z).
On the other hand, by [BBD82, Théorème 1.4.10] we can glue the perverse t-structure on

Db
lis(U) and the perverse t-structure on Db

zc(Z) to get an actual t-structure on Db
zc.U -lis(X). The

key technical ingredient here is Corollary 3.11, which guarantees that Rj∗ carries Db
lis(U) into

Db
zc.U -lis(X). This together with the induction hypothesis implies that the truncation functors

pτ≤i preserve Db
zc.U -lis(X).

It is clear that this glued t-structure agrees with the restriction of the putative perverse
t-structure from Definition 4.1 to the full subcategory Db

zc.U -lis(X) ⊂ Db
zc(X). Since Db

zc(X) is
the filtered colimit of Db

zc.U -lis(X) over (the opposite category of) all U ⊂ X as above, we deduce
that pD≤0

zc and pD≥0
zc define an honest t-structure on Db

zc(X).
(2) The right t-exactness in part (a) is clear, while the left t-exactness follows as both functors

commute with Verdier duality.
Part (b) is clear.
The claim for i∗ in part (c) is clear and that for Ri! then follows by duality.
For part (d), it suffices to identify DXRj∗F with j!DU (F ) (whenever F satisfies the hypoth-

esis in the proposition). These sheaves are isomorphic over U as duality is local, so it is enough
to show that i∗DXRj∗F = 0 for i : Z → X being the complementary closed immersion. But this
follows as i∗DX = DZRi! on Db

zc(X) and Ri!Rj∗ = 0 on all of D(U).
(3) Part (3) is clear from the definitions.
(4) By Proposition 3.7, (−)an : Db

c (X )→ Db
zc(X) is fully faithful, and is an equivalence in

the proper case. It remains to show that (−)an is perverse t-exact. Right t-exactness is clear,
while left t-exactness follows as (−)an is compatible with duality (e.g. via Lemma 3.22).

(5) As usual, we define j!∗L to be the image of the map pH0(j!L )→ pH0(Rj∗L ) of perverse
sheaves, noting that this makes sense by part (2) and Proposition 3.26. The remaining claims
are immediate, using the formula DXRj∗L = j!DU (L ) from (2) for the last part.

(6) It suffices to prove every perverse sheaf has finite length. We prove the claim by induction
on dimension d = dim(X). Clearly we can assume X is reduced.
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When d = 0, the space X identifies with
⊔n

i=1 Spa(Ki) with Ki/K a finite extension.
For such spaces, the claim is clear after translating from étale sheaves to Galois repre-
sentations, ultimately because finite Z/n-modules have finite length in the category of all
Z/n-modules.

Next, we show that for any Zariski locally closed immersion j : U → X and any lisse sheaf L
on U , the intermediate extension j!∗L [dimU ] is a perverse sheaf of finite length. As pushforward
along closed immersions is exact and fully faithful with essential image closed under passage to
subquotients, we may assume j is a dense Zariski-open immersion. Using induction on dimension
as well as the fact that j!∗ is exact up to perverse sheaves supported on the Zariski-closed space
i : Z := X − U ↪→ X which has < d, it is enough to prove that j!∗L is simple if L is so. As j∗

is perverse t-exact, it suffices to show that j!∗L admits no non-trivial subobjects or quotients
supported on X − U . The statement for quotients follows from the surjection pH0(j!L )→ j!∗L ,
the right perverse t-exactness of j!, and the fact that RH om(j!(−), i∗(−)) = 0; the statement
for subobjects follows by duality.

We now handle the general case. Given a perverse sheaf F on X, let U ⊂ X be a dense
Zariski-open subset such that F |U [−dim(U)] is lisse. Then we have a correspondence

j!∗(F |U )← pH0(j!(F |U ))→ F

of perverse sheaves with both maps having cones have perverse cohomology sheaves supported
on Z = X − U . As dim(Z) < dim(X), induction on dimension and the previous paragraph show
that F has finite length.

The claimed description of simple objects also follows from the proof above (and is similar to
the algebraic case). Indeed, say F is simple and supported on some Zariski-closed subset Z ⊂ X.
Replacing X with Z, we can assume F is supported everywhere. Let j : U ⊂ X be a Zariski-
dense Zariski-open subset of (locally constant) dimension d such that F |U = L [d] for a lisse
sheaf L on U . As j!∗ preserves injections and has a left-inverse, the simplicity of F implies that
L must be simple. Both maps in the correspondence j!∗(F |U )← pH0(j!(F |U ))→ F used in
the previous paragraph must then be surjective by simplicity of the targets. The kernels of both
maps are supported on X − U while the simple targets are supported on all of X. It follows that
kernels of both maps identify with the maximal perverse subsheaf of pH0(j!(F |U )) supported on
X − U . In particular, both maps are isomorphic, so F = j!∗(F |U ), as wanted.

(7) Right t-exactness is clear, and commutation of finite pushforward with Verdier duality
(Theorem 3.21(4)) gives left t-exactness.

(8) By the commutation of nearby cycles with Verdier duality [Han18], it is enough to show
that RλX∗ is right t-exact for the perverse t-structures. Fix some F ∈ pD≤0

zc (X). By [BBD82,
Réciproque 4.1.6], to check that RλX∗F ∈ pD≤0(Xs) it suffices to show that for any étale map
j : Ys → Xs from an affine scheme Ys, the complex RΓ(Ys, j

∗RλX∗F ) is concentrated in non-
positive degrees.

Let j : Y → X be the étale map obtained by deforming j to a map of formal schemes and then
passing to the rigid generic fiber. Note that Y is affinoid. Then RΓ(Ys, j

∗RλX∗F ) ∼= RΓ(Y, j∗F )
by basic properties of the nearby cycles functor in this setting, and j∗F ∈ pD≤0

zc (Y ). But RΓ(Y, G )
is concentrated in degrees ≤ 0 for any G ∈ pD≤0

zc (Y ) by rigid analytic Artin–Grothendieck
vanishing [BM21, Han20]. �

4.2 Z�-coefficients
Let K be a non-archimedean field of characteristic 0 and residue characteristic p > 0, let � be
a prime number (including possibly � = p), and let X/K be a rigid space. Our goal is to define
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a perverse t-structure on the category D
(b)
zc (X,Z�) (introduced in § 3.6) that agrees on �-torsion

objects with our previous construction. The definition of the connective part is the same, but that
of the coconnective part needs to modified to account for the fact that the standard t-structure
on Dperf(Z�) is not quite self-dual. A similar issue occurs in algebraic geometry (see [BBD82,
§ 3.3]), and our fix is also similar: there are two perverse t-structures with Z�-coefficients that
are exchanged by Verdier duality and which differ from each other by torsion (Proposition 4.6).

Construction 4.3 (The p- and p+-perverse t-structures). Consider the following full subcate-
gories of D

(b)
zc (X,Z�):

• pD≤0
zc (X,Z�) is the collection of all K with K/� ∈ pD≤0

zc (X,F�);
• pD≥0

zc (X,Z�) is the collection of all those K with DX(K) ∈ pD≤1
zc (X,Z�) and such that, locally

on X, there exists some c with �c · pH1(DX(K)/�n) = 0 for all n.

We refer to the pair (pD≤0
zc (X,Z�), pD≥0

zc (X,Z�)) as the p-perverse t-structure on D
(b)
zc (X,Z�); it

will be shown to be a t-structure later (Proposition 4.6).
Write (p+

D≤0(X,Z�), p+
D≥0(X,Z�)) for the dual of the pair (pD≤0

zc (X,Z�), pD≥0
zc (X,Z�)), i.e.

p+
D≤0

zc (X,Z�) = DX
pD≥0

zc (X,Z�) and p+
D≥0

zc (X,Z�) = DX
pD≤0

zc (X,Z�).

We refer to the pair (p+
D≤0

zc (X,Z�), p+
D≥0

zc (X,Z�)) as the p+-perverse t-structure on D
(b)
zc (X,Z�).

Example 4.4 (The case of a point). Assume X = Spa(K) is a geometric point, so K is alge-
braically closed. In this case, we may identify D

(b)
zc (X,Z�) = Dperf(Z�). Under this equivalence,

the p-perverse t-structure on Dperf(Z�) identifies with the standard t-structure (and is thus a
t-structure). Indeed, the identification of the connective part is clear. For the coconnective part,
we must show that M ∈ Dperf(Z�) lies in D≥0 exactly when M∨ := RHom(M,Z�) ∈ D≤1 with
Ext1(M,Z�) being torsion. This follows easily by using biduality M = RHom(M∨,Z�) as well as
the fact that Hom(N,Z�) = 0 if N is torsion.

More generally, a similar argument shows the following: for a smooth rigid space X/K of
dimension d, intersecting the p-perverse t-structure with Db

lis(X,Z�) gives (homological) d-fold
shift of the standard t-structure on Db

lis(X,Z�).

To compare the two t-structures in Construction 4.3, we shall need the following notion.

Definition 4.5. We say that an object K ∈ D
(b)
zc (X,Z�) is locally bounded torsion if, locally

on X, there exists some c with �c · H∗(K) = 0.

The main result of this subsection is the following analog of some remarks in [BBD82, § 3.3].

Proposition 4.6 (Properties of Z�-perverse sheaves).

(1) The p-perverse t-structure is indeed a t-structure on D
(b)
zc (X,Z�). Consequently, the same

holds for p+-perverse t-structure.

(2) For any n ≥ 1, the reduction modulo �n-functor D
(b)
zc (X,Z�)→ D

(b)
zc (X,Z�/�n) is right

t-exact with respect to p-perverse t-structure on the source and the perverse t-structure
on the target.

(3) For any n ≥ 1, the restriction of scalars functor Res : D
(b)
zc (X,Z�/�n)→ D

(b)
zc (X,Z�) is

t-exact with respect to the same pair of t-structures as in (2).
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(4) We have pD≤0
zc (X,Z�) ⊂ p+

D≤0
zc (X,Z�) ⊂ pD≤1

zc (X,Z�).
(5) Given K ∈ D

(b)
zc (X,Z�), we have K ∈ p+

D≤0
zc (X,Z�) if and only if K ∈ pD≤1

zc (X,Z�) with
pH1(K) being locally bounded torsion. (Note that pH1(−) makes sense by part (1).)

Proof. (1) All assertions are local, so we may assume X = Spa(A) is affinoid. We proceed by
induction on dim(X). If dim(X) = 0, then we can reduce to the case where X is a point. In this
case, the claim follows by Example 4.4. In general, we translate the theorem to a similar question
about Db

cons(Spec(A),Z�) with evident definitions, and proceed by imitating the gluing method
of [BBD82, § 1.4]. Fix a smooth dense Zariski-open j : U ⊂ X of dimension d with complemen-
tary closed i : Z ⊂ X . Consider the full subcategory DU−lis ⊂ Db

cons(Spec(A),Z�) spanned by
complexes K which are lisse over U . Then DU−lis admits a semi-orthogonal decomposition into
Db

lis(U,Z�) as well as Db
cons(Z,Z�) as in [BBD82, § 1.4.3]. Moreover, for K ∈ DU−lis, one checks

that K ∈ pD≤0
cons(X,Z�) (respectively, K ∈ pD≥0

cons(X,Z�)) exactly when its ∗-pullbacks (respec-
tively, !-pullbacks) to U and Z lie in pD≤0

lis (U,Z�) and pD≤0
cons(Z,Z�) (respectively, pD≥0

lis (U,Z�)
and pD≥0

cons(Z,Z�)): this is clear for pD≤0 over both U and Z as well as for pD≥0 over U , and fol-
lows for pD≤0 over Z by the formula i∗DX = DZRi!. One can then use [BBD82, Théorème 1.4.10]
to glue the p-perverse t-structures on Db

lis(U,Z�) as well as Db
cons(Z,Z�) (which are t-structures by

Example 4.4 and induction respectively) to conclude that intersecting the p-perverse t-structure
with DU−lis gives a t-structure on DU−lis. Taking the colimit over all such U then proves (1).

(2) Part (2) is clear from the definition.
(3) The right t-exactness is again clear from the definition. The left t-exactness follows by

unwinding definitions from Remark 3.37.
(4) Both containments are immediate from biduality.
(5) Fix some K ∈ D

(b)
zc (X,Z�). Both directions can be checked locally on X, so we may

assume X is qcqs and thus K is bounded.
We first prove the ‘only if’ direction, so assume that K ∈ p+

D≤0(X,Z�). Unwinding defini-
tions and using biduality, this means that K ∈ pD≤1

zc (X,Z�) and that there exists some c ≥ 1 such
that �c · pH1(K/�n) = 0 for all n. We shall prove that �c · pH1(K) = 0. Since K ∈ pD≤1

zc (X,Z�)
and pD≤0

zc (X,Z�) ⊂ p+
D≤0

zc (X,Z�), we are allowed to replace K with pH1(K)[−1], so we may
assume that K is concentrated in cohomological degree 1 with respect to the p-perverse t-
structure. Moreover, by a variant of the argument used to prove (1), one checks that there exists
a constant c′ such that K (or any perverse Z�-sheaf) has �∞-torsion bounded by �c′ , i.e. that
the perverse Z�-sheaves ker(�n : K → K) are killed by �c′ for all n. Our hypothesis on K then
shows that the complex K/�n is killed by �2 max(c,c′) for all n. But this implies K must be killed
by �2 max(c,c′) by generalities on derived �-complete sheaves in the replete topos7 of all v-sheaves
on X, so we are done.

For the ‘if’ direction, assume that K ∈ pD≤1
zc (X,Z�) and the object pH1(K) is killed by �c for

some c. As reduction modulo powers of � is right t-exact for the perverse t-structure, it is then
trivially true that �c · pH1(K/�n) = 0 for all n ≥ 1. It is then immediate from the definitions that
K ∈ p+

D≤0(X,Z�). �
Remark 4.7. Proposition 4.6(5) cannot be strengthened to the assertion that pH1(K) is bounded
torsion globally on X for K ∈ p+

D≤0(X,Z�). Indeed, given a countable discrete subset S :=
{x1, x2, x3, . . .} ⊂ X := (A1)an of classical points, one may take K =

⊕
ixn,∗Z/�n[−1] to obtain

a counterexample (where ixn : Spa(k(xn))→ X is the inclusion of the point at xn).

7 This follows from (the replete topos variant of) the following statement (which appears in [BL20] and whose
proof we leave as an exercise here). If M is any derived �-complete abelian group such that there exists some c ≥ 0
with �c · (M/�nM) = 0 for all n ≥ c + 1, then �cM = 0.
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4.3 Q�-coefficients
We continue with notation from § 4.2. There are some subtleties with passing from Z� to Q�-
coefficients for rigid spaces that are not qcqs.8 Thus, in this subsection, we assume X is qcqs
(e.g. X could be affinoid or proper over K), so D

(b)
zc (X,Z�) = Db

zc(X,Z�). In this setting, we shall
prove in Theorem 4.11 that the basic theory of perverse sheaves with Q�-coefficients behaves as
well as can be expected.

Our constructions will take place in the following category.

Definition 4.8 (Q�-constructible sheaves). Set Db
zc(X,Q�) := Db

zc(X,Z�)⊗Z�
Q� (i.e. objects

remain the same and endomorphisms are tensored with Q�).

Remark 4.9 (Q�-sheaves as Verdier quotient). The category Db
zc(X,Q�) can also be described as

the Verdier quotient of Db
zc(X,Z�) by its full subcategory of objects annihilated by a power of �. In

fact, the analogous statement holds true with Db
zc(X,Z�) replaced by any Z�-linear triangulated

category C. To see this, let Ctors ⊂ C be the full subcategory of objects annihilated by a power
of �. As the multiplication by � map on any object of C has cone in Ctors, it follows that C/Ctors

is naturally Q�-linear, so there is a natural map C ⊗Z�
Q� → C/Ctors. Conversely, as the Verdier

quotient C/Ctors can be regarded as the localization S−1C, where S is the collection of maps in
C whose cone lies in Ctors, one also immediately constructs a natural map C/Ctors → C ⊗Z�

Q�.
We leave it to the reader to check that these constructions give mutually inverse equivalences of
categories.

Remark 4.10 (Problems in the non-qcqs case). While Definition 4.8 makes sense for any rigid
space X, it is the ‘wrong’ definition to use when X is not qcqs. For example, the object
K described in Remark 4.7 is non-zero in Db

zc(X,Q�) yet vanishes after restriction to any
quasi-compact open in X. While there are several candidate replacements (e.g. based on
Remark 4.9, one might work with the quotient of D

(b)
zc (X,Z�) by the full subcategory of

locally bounded torsion objects; alternately, one might attempt to work with Zariski con-
structible Q�-complexes defined using the proétale site), we were unable to develop enough
machinery to construct a reasonable intersection cohomology theory (e.g. a self-dual theory
with a GAGA theorem) using any of these approaches, so we restrict to the qcqs case in our
discussion.

Using our results on integral coefficients, we obtain a well-behaved perverse t-structure with
Q�-coefficients.

Theorem 4.11 (Properties of Q�-perverse sheaves). The p- and p+- perverse t-structures from
§ 4.2 induce a t-structure on Db

zc(X,Q�), and they are the same t-structure; we call this the
perverse t-structure on Db

zc(X,Q�). This t-structure satisfies all the properties in Theorem 4.2
with the following changes: one works with proper X in (4), only finite maps of qcqs spaces in
(7), and replaces the assumption p � #Λ with p 
= � in (8).

Proof. The first part is immediate from Proposition 4.6 (using part (5) there and the fact
X is qcqs to get the equality of the two t-structures). It remains to verify the properties in
Theorem 4.2(2)–(7).

Property (3): This is immediate from the fact that the p- and p+-perverse t-structures on
D

(b)
zc (X,Z�) are exchanged by Verdier duality.

8 In fact, similar issues arise in algebraic geometry but are typically not as consequential, because non-qcqs schemes
are much rarer than non-compact rigid spaces. For instance, the affine line over K is qcqs when regarded as a
scheme simply because it is a noetherian scheme, but its analytification is not a qcqs rigid space.
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Property (2): Parts (a), (b) and the right t-exactness in (c) is clear from the definition, while
the left t-exactness in (c) was implicitly asserted in the proof of Proposition 4.6(1). For part (d),
we use the stronger property DXRj∗F = j!DU (F ) proven in Theorem 4.2(2)(d) and invert �.

Property (4): The equivalence is clear. For perverse t-exactness, one simply notes that entire
discussion in this section also holds true in the algebro-geometric context (and in fact was
borrowed from there, see [BBD82, § 3.3]), and that analytification is compatible with duality
and passing to perverse cohomology sheaves with finite coefficients.

Properties (5)–(8): These follow by the same proof as in Theorem 4.2. �

4.4 Intersection cohomology
In this section, fix a rigid space X/K, a prime �, and a coefficient ring Λ ∈ {Z/�n,Q�}. If
Λ ∈ {Z�,Q�}, we assume K has positive residue characteristic p > 0. If Λ = Q�, then we also
assume that X is qcqs. Note that we have a reasonable (e.g. self-dual) theory of perverse Λ-sheaves
in this context by §§ 4.1 and 4.3 respectively.

Construction 4.12 (Intersection cohomology of rigid spaces). Let j : U ⊂ X a Zariski-dense
Zariski-open subset such that Ured is smooth. Write ICX,Λ := j!∗Λ[dim(X)] ∈ Perv(X, Λ); one
can show that this is independent of the choice of U . We call ICX,Λ the intersection cohomology
complex on X and write IH ∗(X, Λ) := H∗(X, ICX,Λ) for its cohomology, called the intersection
homology of X.

We then have the following result on these objects.

Theorem 4.13 (Basic properties of intersection cohomology). Write C/K for a completed
algebraic closure.

(1) IH ∗(XC , Λ) are finitely generated Λ-modules if either X is proper or if X is qcqs and p 
= �.
(2) If X = X an for a proper K-scheme X, then IH ∗(XC ,Q�) � IH ∗(XC ,Q�).
(3) If X is proper and equidimensional of dimension d and p 
= �, there is a natural Poincaré

duality isomorphism

IH i(XC , Λ)∨ � IH−i(XC , Λ)(d)

for all i.

Ongoing work by Zavyalov suggests that the third part should hold true without the
assumption on �.

Proof. (1) For X proper, we obtain the result from Theorem 3.10. For X qcqs and p 
= �, we
can then choose a formal model of X and deduce the claim from the constructibility of nearby
cycles [Hub98].

(2) It is enough to prove that ICX,Λ = (ICX ,Λ)an. This follows from the definition of either
side as an appropriate image, and the compatibility of (−)an with all the constituent operations
(namely, j!, j∗, perverse truncations, and images).

(3) As X is proper, Huber’s results show that RΓ(XC ,−) is compatible with duality [Hub96,
Chapter 7], so it is enough to show that DX(ICX,Λ) � ICX,Λ(d). Using Theorem 4.2(4), this
amounts to checking that DU (Λ[d]) � Λ[d](d) for a smooth rigid space U of dimension d, which
follows immediately as ωU = Λ[2d](d) (Remark 3.20). �
Remark 4.14 (Intersection cohomology for Zariski-compactifiable spaces). We expect that there
is a well-behaved notion of intersection cohomology with Q�-coefficients on any rigid space,
not merely the qcqs ones. Since we did not construct a good category of perverse Q�-sheaves
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(see Remark 4.10), let us formulate a precise conjecture. Say X is a rigid space equipped with
a Zariski open immersion j : X ↪→ X̄ with X̄ proper over K. One can then define a candidate
intersection cohomology complex ICX,Q�

:= j∗ICX̄,Q�
∈ Db

zc(X,Z�)⊗Z�
Q� as well as the result-

ing intersection homology groups IH ∗(X,Q�) := Ext∗(Q�, ICX,Q�
) (where the Ext are computed

in Db
zc(X,Z�)⊗Z�

Q�). We conjecture that these objects are independent of the compactifica-
tion. Note that IH ∗(X,Q�) will be finite dimensional Q�-vector space using Proposition 3.26 and
Theorem 3.36.

4.5 Some conjectures
Given the results in this paper, it is natural to expect that most of the important founda-
tional theorems on perverse sheaves in complex geometry or arithmetic algebraic geometry admit
analogs for Zariski-constructible sheaves in p-adic analytic geometry. In this section, we formulate
some conjectures along these lines.

Let K/Qp be a finite extension, with residue field k of cardinality q; let C/K be a completed
algebraic closure. Let X be a rigid space over K. Let us begin by describing a conjecture on �-adic
intersection cohomology; we believe this conjecture is accessible in the algebraic case thanks to
de Jong’s alterations theorem [dJ96].

Conjecture 4.15 (�-adic intersection cohomology). Assume X is qcqs. Fix a prime � 
= p.

(1) Nearby cycles: for any formal model X/OK and any � 
= p, the nearby cycle sheaf
F = RλX∗(ICX,Q�

) is a mixed �-adic perverse sheaf on the geometric special fiber Xs̄. More-
over, if X is equidimensional of dimension d, then ICXs,Q�

occurs as a summand of the dth
graded piece of the weight filtration of F .

(2) Weights: for any prime � 
= p and any g ∈WK projecting to a non-negative power of the
geometric Frobenius element, the eigenvalues of g acting on IH ∗(XC ,Q�) are q-Weil numbers
of weight ≥ 0.

Next, we formulate a conjecture on the p-adic Hodge theoretic properties of p-adic intersection
cohomology. The first part of this conjecture can be proven in the algebraic case using the
decomposition theorem.

Conjecture 4.16 (p-adic intersection cohomology). Say X is proper over K.

(1) Each IH i(XC ,Qp) is a de Rham GK-representation. (Moreover, assuming the conjecture in
Remark 4.14, this should be true for any Zariski compactifiable rigid space.)

(2) If L is a de Rham Zp-local system on a smooth Zariski-open subset j : U → X, then
H∗(XK̄ , IC(L[dim(X)])) is de Rham.

Finally, we discuss the rigid analog of the BBDG decomposition theorem. As in complex
geometry, the Hopf surface construction X = (A2,an − {0})/qZ (with q ∈ K with 0 < |q| < |1|)
gives a proper smooth genus 1 fibration f : X → (A2,an − {0})/Gan

m � P1,an over K such that
Rf∗Q� is not formal (i.e. is not isomorphic to a direct sum of its shifted cohomology sheaves). It
is thus unreasonable to expect the decomposition theorem to hold true for arbitrary proper maps
between rigid spaces. Nevertheless, by analogy with the complex geometric story in [Sai90], the
following appears plausible.

Conjecture 4.17 (Decomposition theorem). Let f : X → Y be a projective map of rigid
spaces over K with Y qcqs. Then Rf∗ICX,Q�

is a direct sum of shifts of perverse sheaves of the
form j!∗L , where j : U → Y is a Zariski-locally closed immersion and L is a Q�-local system
on U .
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Finally, we also expect that Zariski-constructible sheaves on smooth rigid spaces are
holonomic, in analogy with [KS94, Bei16], but we do not formulate a precise statement here.
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morphismes de schémas, Première partie, Publ. Math. Inst. Hautes Études Sci. 20 (1964).

Eke90 T. Ekedahl, On the adic formalism, in The Grothendieck Festschrift, Vol. II, Progress in
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