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Abstract

We propose a two-urn model of Pólya type as follows. There are two urns, urn A and
urn B. At the beginning, urn A contains rA red and wA white balls and urn B contains rB
red and wB white balls. We first draw m balls from urn A and note their colors, say i red
and m− i white balls. The balls are returned to urn A and bi red and b(m− i) white balls
are added to urn B. Next, we draw � balls from urn B and note their colors, say j red and
�− j white balls. The balls are returned to urn B and aj red and a(�− j) white balls are
added to urn A. Repeat the above action n times and let Xn be the fraction of red balls
in urn A and Yn the fraction of red balls in urn B. We first show that the expectations of
Xn and Yn have the same limit, and then use martingale theory to show that Xn and Yn

converge almost surely to the same limit.
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1. Introduction

The study of urn models has a long history. James Bernoulli (1713) may be the first person to
mention problems in the language of urns (cf. [10]). Up to 1977, the results on urn models were
summarized in the book ‘Urn Models and Their Applications’ [9]. This book stimulated many
probabilists and statisticians to investigate different kinds of urn models. After two decades,
Kotz and Balakrishnan [10] published a survey paper: ‘Advances in Urn Models During the Past
Two Decades’. It covered almost all of the different kinds of urn models and their properties.
One of the most famous urn models was introduced by Eggenberger and Pólya [5], and is
usually called the Pólya urn; it is described as follows. An urn initially contains r red and w

white balls. A ball is drawn at random and then replaced together with c balls of the same color.
The procedure is repeated ad infinitum. It is well-known that the fraction of red balls converges
almost surely to a beta distributed random variable with parameters r/c and w/c.

Various generalizations of the Pólya urn can be found in the literature. Hill et al. [8] and
Higueras et al. [7] extended the result of Eggenberger and Pólya to an urn model in which
the probability of adding balls is a function of the fraction of red balls. Bagchi and Pal [2]
considered a generalization of the Pólya urn model in which the rule for adding balls follows
a matrix. Subsequently, Gouet [6] showed that if the matrix satisfies some suitable conditions,
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the limit of the fraction of red balls degenerates to a constant. The generalization of the Pólya
urn given by Pemantle [13] is a time-dependent urn model. Chen and Wei [4] used martingales
to study a generalization of the Pólya urn in which at least two balls are drawn at each time
step. Later, Renlund [14] studied a generalized Pólya urn (similar to Chen and Wei’s) via
stochastic approximation. Recently, Mahmoud [11] wrote a book named ‘Pólya urn model’,
which includes several classical urn models and presents different techniques to investigate
various structural properties of Eggenberger–Pólya urn schemes.

One famous generalization of the Pólya urn is the Ehrenfest urn model, which is a two-urn
model and may be described as follows. There are two urns, say A and B, and N balls, numbered
consecutively from 1 to N , distributed in the two urns. At each step, an integer between 1 and
N is chosen at random, uniformly, and the ball whose number has been chosen is moved to the
opposite urn. The procedure is repeated n times and the probability distribution of the number
of balls in each urn is considered. Much of the literature on the Ehrenfest urn model is surveyed
in [10]. Some of the literature (e.g. [3] and [12]) studied other two-urn models.

In this paper we introduce a new two-urn model, which is described as follows. Assume
that there are two urns, urn A and urn B. Suppose that, at the beginning, there are s0x0 red and
s0(1 − x0) white balls in urn A, and t0y0 red and t0(1 − y0) white balls in urn B. Note that
s0 and t0 are the respective number of balls in urns A and B, and x0 and y0 are the respective
fraction of red balls in urns A and B. First, draw m ≤ s0 balls (without replacement) from urn
A and note their colors, say i red and m − i white balls. Then return the balls to urn A and add
bi red and b(m − i) white balls to urn B. Next, draw � ≤ t0 + bm balls (without replacement)
from urn B and note their colors, say j red balls and � − j white balls. Then return the balls to
urn B and add aj red and a(� − j) white balls to urn A. Repeat the above action ad infinitum.

After the nth action, let RA(n) and RB(n) be the respective numbers of red balls in the urns
A and B. At this stage, there are s0 + a�n balls in urn A and t0 + bmn balls in urn B. Denote
s0 + a�n = sn and t0 + bmn = tn for n ≥ 1. Let Xn = RA(n)/sn and Yn = RB(n)/tn, that is,
Xn and Yn are the respective fractions of red balls in the urns A and B after the nth action. Let
Fn denote the σ -field generated by X1, X2, . . . , Xn and Y1, Y2, . . . , Yn. Then (RA(n), RB(n))

is clearly a Markov chain. For clarity, let

RA(n + 1) = RA(n) + a�Un+1, RB(n + 1) = RB(n) + bmVn+1,

where mVn and �Un are the respective numbers of red balls drawn from the urns A and B in
the nth action. Then

P
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Moreover, we have, for n ≥ 0,

Xn+1 = RA(n + 1)

sn+1
= snXn + a�Un+1

sn+1
= αnXn + ᾱnUn+1 = Xn + ᾱn(Un+1 − Xn),

(1.1)

Yn+1 = RB(n + 1)

tn+1
= tnYn + bmVn+1

tn+1
= βnYn + β̄nVn+1 = Yn + β̄n(Vn+1 − Yn), (1.2)

where αn = sn/sn+1 = 1 − ᾱn and βn = tn/tn+1 = 1 − β̄n.
From the above conditional distributions of Vn+1, it follows that mVn+1 is a (conditional)

hypergeometric random variable with parameters sn, snXn, and m. Hence,

E(Vn+1 | Fn) = 1

m
E(mVn+1 | Fn) = 1

m

msnXn

sn
= Xn. (1.3)

Similarly, since �Un+1 is a conditional hypergeometric random variable with parameters tn+1,
tn+1Yn+1, and �, given Fn and Vn+1, we have

E(Un+1 | Fn, Vn+1) = 1

�
E(�Un+1 | Fn, Vn+1) = 1

�

�tn+1Yn+1

tn+1
= βnYn + β̄nVn+1.

Thus,
E(Un+1 | Fn) = E(E(Un+1 | Fn, Vn+1) | Fn)

= E(βnYn + β̄nVn+1 | Fn)

= βnYn + β̄nXn. (1.4)

Combining identities (1.1)–(1.4) yields

E(Xn+1 | Fn) = Xn − ᾱnβn(Xn − Yn), (1.5)

E(Yn+1 | Fn) = Yn + β̄n(Xn − Yn). (1.6)

From (1.5) and (1.6), it is easy to derive

E(Xn+1 − Yn+1) = αnβnE(Xn − Yn) = · · · = (x0 − y0)

n∏
i=0

αiβi = s0t0(x0 − y0)

sn+1tn+1
, (1.7)

and, hence, we have limn→∞ E(Xn − Yn) = 0 since limn→∞ 1/(sn+1tn+1) = 0.
Motivated by the above result, it is natural to consider the limit of EXn. In Section 2 we

first derive the limit of EXn and this implies that EXn and EYn have the same limit since
limn→∞ E(Xn − Yn) = 0. In Section 3 we strengthen the result to the strong convergence; we
prove that Xn and Yn converge almost surely to the same limit. This is a more involved work.
In fact we can use martingale theory to prove that Xn +Yn converges almost surely and Xn −Yn

converges to 0 almost surely; these two results then imply the claim.

2. Limits of EEEXn and EEEYn

In this section we study the limits of EXn and EYn. Taking the expectation of both sides of
(1.5) and (1.6), and using (1.7) repeatedly, we obtain

EXn = x0 −
n−1∑
j=0

a�s0t0(x0 − y0)

sj sj+1tj+1
and EYn = y0 +

n−1∑
j=0

bms0t0(x0 − y0)

sj tj tj+1
. (2.1)
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Note that

∞∑
j=0

1

sj sj+1tj+1
≤

∞∑
j=1

1

j3 < ∞ and
∞∑

j=0

1

sj tj tj+1
≤

∞∑
j=1

1

j3 < ∞.

Thus, by (2.1), we obtain

lim
n→∞ EXn = x0 −

∞∑
j=0

a�s0t0(x0 − y0)

sj sj+1tj+1
and lim

n→∞ EYn = y0 +
∞∑

j=0

bms0t0(x0 − y0)

sj tj tj+1
.

Moreover, since limn→∞ E(Xn − Yn) = 0, we have

lim
n→∞ EXn = lim

n→∞ EYn.

It is interesting to note that if x0 = y0 then, in view of (2.1), EXn = EYn = x0 for each
n, and so limn→∞ EXn = limn→∞ EYn = x0. In the case x0 �= y0 we find a simpler form of
limn→∞ EXn under the assumptions a� = bm and s0 = t0 + ka�, k ∈ Z.

Theorem 2.1. In the two-urn model, assume that x0 �= y0, a� = bm, and s0 = t0 + ka� for
k ∈ Z. Then

lim
n→∞ EXn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 − (x0 − y0)

(
s0

a�k
− s0t0

a�k(k + 1)

k∑
j=0

1

s0 + a�j

)
if k ≤ −2,

1
2 (x0 + y0) if k = −1,

y0 + (x0 − y0)

( ∞∑
j=0

s2
0

(s0 + a�j)2 − s0

a�

)
if k = 0,

x0 + (x0 − y0)

(
t0

a�
−

∞∑
j=1

s0t0

(t0 + a�j)2

)
if k = 1,

x0 + (x0 − y0)

(
t0

a�k
− s0t0

a�k(k − 1)

k−1∑
j=1

1

t0 + a�j

)
if k ≥ 2.

In particular, if x0 = 1, y0 = 0, s0 = t0 = 1, and a = b = � = m = 1 then we have
limn→∞ EXn = π2/6 − 1.

Proof. Since limn→∞ EXn = limn→∞ EYn we have

lim
n→∞ EXn = 1

2 lim
n→∞ E(Xn + Yn).

By the assumption a� = bm and (2.1), it follows that

E(Xn + Yn) = x0 + y0 + s0t0(x0 − y0)

n−1∑
j=0

a�

sj tj+1

(
1

tj
− 1

sj+1

)
. (2.2)

If s0 = t0 − a� then sj+1 = tj for all j and 2.2 gives E(Xn + Yn) = x0 + y0. This implies
that

lim
n→∞ EXn = 1

2 (x0 + y0).
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If s0 = t0 then sj = tj for all j and so, from (2.2),

E(Xn + Yn) = x0 + y0 + s2
0 (x0 − y0)

n−1∑
j=0

(
1

sj
− 1

sj+1

)2

= x0 + y0 + s2
0 (x0 − y0)

n−1∑
j=0

[
2

a�

(
1

sj+1
− 1

sj

)
+ 1

s2
j

+ 1

s2
j+1

]

= x0 + y0 + s2
0 (x0 − y0)

[
2

a�

(
1

sn
− 1

s0

)
− 1

s2
0

− 1

s2
n

+
n∑

j=0

2

s2
j

]

= x0 + y0 + (x0 − y0)

[
2s2

0

a�

(
1

sn
− 1

s0

)
− 1 − s2

0

s2
n

+
n∑

j=0

2s2
0

s2
j

]
.

Thus,

lim
n→∞ EXn = 1

2

{
x0 + y0 + (x0 − y0)

[
−2s0

a�
− 1 +

∞∑
j=0

2s2
0

s2
j

]}

= y0 + (x0 − y0)

[ ∞∑
j=0

s2
0

(s0 + a�j)2 − s0

a�

]
.

If s0 = t0 + ka�, k ≥ 2, then sj = tj+k for all j and so, from (2.2),

E(Xn + Yn)

= x0 + y0 + s0t0(x0 − y0)

n−1∑
j=0

(k + 1)a2�2

tj tj+1tj+ktj+k+1

= x0 + y0 + s0t0(x0 − y0)

n−1∑
j=0

[
1

a�k

(
1

tj
− 1

tj+k+1

)
− k + 1

a�k(k − 1)

(
1

tj+1
− 1

tj+k

)]

= x0 + y0 + (x0 − y0)

[
s0t0

a�k

(
1

t0
+ 1

s0
− 1

tn
− 1

tn+k

)

− 2s0t0

a�k(k − 1)

(k−1∑
j=1

1

tj
−

n+k−1∑
j=n+1

1

tj

)]
.

Thus,

lim
n→∞ EXn = 1

2

{
x0 + y0 + (x0 − y0)

[
s0 + t0

a�k
− 2s0t0

a�k(k − 1)

k−1∑
j=1

1

tj

]}

= x0 + (x0 − y0)

(
t0

a�k
− s0t0

a�k(k − 1)

k−1∑
j=1

1

tj

)

= x0 + (x0 − y0)

(
t0

a�k
− s0t0

a�k(k − 1)

k−1∑
j=1

1

t0 + a�j

)
,

where the second equality follows from s0 = t0 + ka�. Because the proofs for k = 1 and
k ≤ −2 are similar to the proofs for k = 0 and k ≥ 2, respectively, we omit them here.
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3. Strong convergence of Xn

In this section we study the long term behavior of the processes {Xn}n≥1 and {Yn}n≥1.
Because EXn and EYn converge to the same limit, we are motivated to prove that Xn and
Yn converge almost surely to the same limit. To this end, we construct a martingale and a
supermartingale in terms of Xn + Yn and Xn − Yn.

Theorem 3.1. In the two-urn model,

{
Xn + Yn +

n−1∑
k=0

(ᾱkβk − β̄k)(Xk − Yk)

}
n≥1

(3.1)

is a bounded martingale and Xn+Yn converges almost surely; moreover, {(Xn−Yn)
2+4/n}n≥1

is a nonnegative supermartingale.

Proof. From (1.5) and (1.6), we have, for any �, m ≥ 1,

E[Xn+1 + Yn+1 | Fn] = Xn + Yn − (ᾱnβn − β̄n)(Xn − Yn),

so {Xn + Yn + ∑n−1
k=0(ᾱkβk − β̄k)(Xk − Yk)}n≥1 is a martingale. Furthermore, since ᾱnβn −

β̄n = O(n−2), the compensator

n−1∑
k=0

(ᾱkβk − β̄k)(Xk − Yk)

converges almost surely. This implies that the martingale (3.1) is bounded and, therefore,
convergent almost surely. Hence, Xn + Yn converges almost surely.

Next, from (1.1) and (1.2), it follows that

(Xn+1 − Yn+1)
2

= (Xn − Yn)
2 + [ᾱn(Un+1 − Xn) − β̄n(Vn+1 − Yn)]2

+ 2(Xn − Yn)[ᾱn(Un+1 − Xn) − β̄n(Vn+1 − Yn)]
≤ (Xn − Yn)

2 + 4

(n + 1)2 + 2(Xn − Yn)[ᾱn(Un+1 − Xn) − β̄n(Vn+1 − Yn)],

where the last inequality holds since 0 < ᾱn, β̄n ≤ 1/(n+1) and 0 ≤ Xn, Yn, Un+1, Vn+1 ≤ 1.
This together with (1.3) and (1.4) implies that

E[(Xn+1 − Yn+1)
2 | Fn]

≤ (Xn − Yn)
2 + 4

(n + 1)2 + 2(Xn − Yn)E[ᾱn(Un+1 − Xn) − β̄n(Vn+1 − Yn) | Fn]

= (1 − 2ᾱnβn − 2β̄n)(Xn − Yn)
2 + 4

(n + 1)2 . (3.2)

Since 1 − 2ᾱnβn − 2β̄n < 1, we have, from (3.2),

E

[
(Xn+1 − Yn+1)

2 + 4

n + 1

∣∣∣∣ Fn

]
≤ (Xn − Yn)

2 + 4

(n + 1)2 + 4

n + 1
≤ (Xn − Yn)

2 + 4

n
.

Hence, {(Xn − Yn)
2 + 4/n}n≥1 is a nonnegative supermartingale.
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We are now ready to prove our main result.

Theorem 3.2. In the two-urn model, the fractions of red balls in urns A and B converge almost
surely to the same limit.

Proof. In view of Theorem 3.1, Xn+Yn converges almost surely. If we can further prove that
Xn − Yn converges to 0 almost surely, then the proof is complete. Again Theorem 3.1 and the
supermartingale convergence theorem (see [1, p. 419]) imply that (Xn − Yn)

2 + 4/n converges
almost surely and so does (Xn − Yn)

2 since 4/n converges to 0. Let Zn = (Xn − Yn)
2 and

Zn → Z almost surely. We claim that EZn → 0. If so, then, by the dominated convergence
theorem, EZ = 0 and, therefore, Z = 0 almost surely. This implies that Xn − Yn converges to
0 almost surely. In the following, we prove that EZn → 0.

From (3.2), we have

EZn+1 ≤ (1 − 2ᾱnβn − 2β̄n)EZn + 4

(n + 1)2 . (3.3)

Since 0 < αn, βn < 1, it follows that

1 − 2ᾱnβn − 2β̄n = 1 − 2ᾱnβn − 2(1 − βn) = 2βn(1 − ᾱn) − 1 = 2αnβn − 1 ≤ αnβn,

which, combined with (3.3), implies that

EZn+1 ≤ αnβnEZn + 4

(n + 1)2 . (3.4)

Note that 0 < αnβn < 1,
∏n

i=1 αiβi = s1t1/sn+1tn+1 → 0 and
∑∞

n=1 4/(n + 1)2 < ∞.
Hence, applying Lemma 3.1 below to (3.4) gives the desired conclusion, EZn → 0.

Lemma 3.1. Suppose that {xn}n≥1, {an}n≥1, and {bn}n≥1 are nonnegative real sequences
satisfying xn+1 ≤ anxn+bn, where 0 < an < 1 for n ≥ 1. If

∏n
i=1 ai → 0 and

∑∞
n=1 bn < ∞,

then xn → 0.

Proof. First, note that xn+1 ≤ xn + bn since 0 < an < 1. Thus,

xn+1 ≤ x1 +
n∑

i=1

bi ≤ x1 +
∞∑
i=1

bi,

which implies that {xn}n≥1 is uniformly bounded by a positive constant M .
Given ε > 0, choose n0 such that

∑∞
n=n0

bi < ε/(1 + M), and then choose n1 > n0 such
that

∏n
i=n0

ai < ε/(1 + M) whenever n > n1. Now, for each n > n1, we have

xn+1 ≤ anxn + bn

≤ anan−1xn−1 + bn−1 + bn

...

≤
( n∏

i=n0

ai

)
xn0 +

n∑
i=n0

bi

≤ εM

1 + M
+ ε

1 + M

= ε.

Hence, xn → 0, as required.
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