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1. Introduction

For a group G and a group class (a group property) X, let XG denote the set of its
X-subgroups. Let G be a group belonging to a certain universe V of groups. Let X and
T be two further classes of groups. There is an interesting class of theorems in group
theory that tell us how to verify the property X for G by testing the same property at
the members of a test family TG, which consists only of some ‘small’ subgroups of G. In
the language of group classes, these theorems are of the form

G ∈ V and TG ⊆ XG =⇒ G ∈ X

(i.e. if, in a V-group G, the T-subgroups are in X, then G itself is an X-group). For
example, the nilpotency N of any finite group G can be seen at its 2-generated subgroups
(i.e. G ∈ F and G2G ⊆ NG =⇒ G ∈ N). By definition, any local property LX can be
read off at the finitely generated subgroups. In a classic article [2], Baer studies properties
of groups which can be detected at their countable subgroups. It is a good and well-
known exercise that the finiteness of a soluble group is a consequence of the finiteness of
its abelian subgroups, and the famous Hall–Kargapolov–Kulatilaka theorem [6, § 14.3.7,
p. 432] shows that the same finiteness test also holds in the universe V = LF of all locally
finite (and hence in the universe of all soluble-by-locally finite) groups. Further classical
theorems say that for a soluble group G the maximum (minimum) condition can likewise
be tested at its abelian subgroups [6, § 15.2, p. 455].

Continuing with this philosophy, we investigate the classes

X = ZZ
∞, X = ZF and X = ZČ
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in the universe V = A∞ of all soluble groups. That is, the properties of having polycyclic,
finite and Černikov quotients by their centres, respectively. Our result is that the set
TG = A2G of the metabelian subgroups is a test family for all these properties. In other
words, we prove the following.

Theorem 1.1. Let G be a soluble group. Suppose the metabelian subgroups X � G

have polycyclic quotients by their centres X/ζ(X). Then G/ζ(G) is polycyclic.

Theorem 1.2. Let G be a soluble group. Suppose the metabelian subgroups X � G

have finite quotients by their centres X/ζ(X). Then G/ζ(G) is finite.

Theorem 1.3. Let G be a soluble group. Suppose the metabelian subgroups X � G

have Černikov quotients by their centres X/ζ(X). Then G/ζ(G) is a Černikov group.

We may state these results symbolically as follows:

• G ∈ A∞ and A2G ⊆ (ZZ∞)G =⇒ G ∈ ZZ∞;

• G ∈ A∞ and A2G ⊆ (ZF)G =⇒ G ∈ ZF;

• G ∈ A∞ and A2G ⊆ (ZČ)G =⇒ G ∈ ZČ.

These three results can easily be extended as follows.

Consequence 1.4. Let G be a soluble-by-Noetherian group. Suppose the metabelian
subgroups X � G have polycyclic quotients by their centres X/ζ(X). Then G/ζ(G) is
Noetherian.

Consequence 1.5. Let G be a soluble-by-finite group. Suppose the metabelian sub-
groups X � G have finite quotients by their centres X/ζ(X). Then G/ζ(G) is finite.

Consequence 1.6. Let G be a soluble-by-finite group. Suppose the metabelian sub-
groups X � G have Černikov quotients by their centres X/ζ(X). Then G/ζ(G) is a
Černikov group.

For the convenience of the reader, we recall some definitions. A group X is metabelian
if X ′′ = 1, i.e. X is soluble of derived length less than or equal to 2. A group G is
Noetherian if it satisfies the maximal condition on its subgroups. A soluble-by-finite
group is Noetherian if and only if it is polycyclic-by-finite. A group is a Černikov group
if it is a finite extension of an abelian group with minimal condition on its subgroups.
Černikov groups are exactly the soluble-by-finite groups with minimal condition. The
finite residual G0 (the intersection of all finite index subgroups) of a Černikov group G

is an abelian divisible characteristic subgroup with finite quotient [6, p. 156].
For some similar results within the same framework, see [3].

2. Proofs of the theorems

2.1. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. Let A be an abelian normal subgroup of a group G.

(a) If G/A is Noetherian and if X/ζ(X) is Noetherian (i.e. polycyclic) for all metabelian
subgroups X of G, then G/ζ(G) is Noetherian.
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(b) If G/A is finite and if X/ζ(X) is finite for all metabelian subgroups X of G, then
G/ζ(G) is finite.

Proof. We have A � G and G/A is Noetherian under hypothesis (a) and finite
under (b). Let G/A be generated by {Ag1, Ag2, . . . , Agr}. For i = 1, 2, . . . , r, the sub-
groups Xi = A〈gi〉 are metabelian. Therefore, the Xi/ζ(Xi) are polycyclic (respectively,
finite) by hypothesis and the same holds for A/A ∩ ζ(Xi) ∼= Aζ(Xi)/ζ(Xi) � Xi/ζ(Xi).
Hence, for

D = A ∩
r⋂

i=1

ζ(Xi)

we have D � ζ(G) and A/D is polycyclic (respectively, finite). So G/ζ(G) is Noetherian
(respectively, finite). �

This allows us to conclude Consequences 1.4 and 1.5 from Theorems 1.1 and 1.2.

Proof of Consequence 1.4. Let G be soluble-by-Noetherian, satisfying the hypoth-
esis that the metabelian subgroups of G have polycyclic quotients by their centres. Let
S � G be such that S is soluble and G/S is Noetherian. By Theorem 1.1, S/ζ(S) is
polycyclic. So A = ζ(S) is an abelian normal subgroup of G with Noetherian quotient
G/ζ(S). By Lemma 2.1 (a), G/ζ(G) is Noetherian. �

The proof of Consequence 1.5 from Theorem 1.2 is the same, using Lemma 2.1 (b).

Lemma 2.2. Let A be a soluble automorphism group of a polycyclic group. Then A

is polycyclic.

Proof. See [5, § 3.27, p. 82]. �

Lemma 2.3. Let X be a group property closed under subgroups, quotients and finite
direct products. Let G be a nilpotent group of class less than or equal to 2, such that
G′ ∈ X and suppose that M is maximal among the abelian subgroups of G. If M/ζ(G)
is finitely generated, then G/M ∈ X.

Proof. For fixed g ∈ G, the map ϕg : G → G′, defined by ϕg(x) = [x, g] for all x ∈ G,
is an endomorphism with Imϕg � G′ and Kerϕg = CG(g). Therefore, G/CG(g) ∈ X.

Let M/ζ(G) = 〈ζ(G)g1, ζ(G)g2, . . . , ζ(G)gr〉. It follows that

G
/ r⋂

k=1

CG(gk) � G/CG(g1) × G/CG(g2) × · · · × G/CG(gr) ∈ X.

But M = CG(M) =
⋂r

k=1 CG(gk) and therefore G/M ∈ X. �

Corollary 2.4. Let G be a nilpotent group of class less than or equal to 2 and suppose
that G′ is polycyclic. If M/ζ(G) is polycyclic for some maximal abelian subgroup M of
G, then G/ζ(G) is polycyclic.
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Proof of Theorem 1.1. Let G be soluble, satisfying the hypothesis that X/ζ(X)
is polycyclic for all X ∈ A2G, which of course is inherited by every subgroup of G.
We prove the assertion by induction on the derived length of G. We may assume that
the derived group G′ already has polycyclic quotient by its centre G′/ζ(G′). For every
subgroup V � G, the quotient V ′/ζ(V ′), being isomorphic to a section of G′/ζ(G′), is
polycyclic.

To prove that G/ζ(G) is polycyclic, it suffices, by Lemma 2.1 (a), to exhibit in G a
normal abelian subgroup A with G/A polycyclic.

(a) There is a V � G with G/V polycyclic and such that [V ′, V ] � ζ(V ′).

Let V = CG(G′/ζ(G′)). We have ζ(G′) � V � G, and G/V , the automor-
phism group induced by G on G′/ζ(G′), is polycyclic by Lemma 2.2, as G′/ζ(G′)
is polycyclic. Moreover, V ∩ G′ = ζ2(G′), where ζ2(G′)/ζ(G′) = ζ(G′/ζ(G′)).
Now [ζ2(G′), V ] � ζ(G′), i.e. ζ2(G′)/ζ(G′) is a V -central factor. Therefore,
since V ′ � ζ2(G′), V ′ζ(G′)/ζ(G′) is also V -central. By operator isomorphism,
V ′/V ′ ∩ ζ(G′) is also V -central. Since ζ(G′) ∩ V ′ � ζ(V ′), V ′/ζ(V ′) is also V -
central. i.e. [V ′, V ] � ζ(V ′).

We now abbreviate N = ζ(V ′).

(b) V/N is nilpotent of class less than or equal to 2.

By (a), we have (V/N)′ = V ′/N � ζ(V/N).

We set Z/N = ζ(V/N) and let M/N be a maximal among the abelian subgroups of
V/N . Clearly, ζ(V/N) � M/N , i.e. Z � M and M � V .

(c) The quotient (M/N)/ζ(V/N) is polycyclic.

M is a metabelian subgroup of V . Therefore, M/ζ(M) is polycyclic by hypothesis.
Since ζ(M) centralizes M and V ′ � M , we see that ζ(M) centralizes V ′. Therefore,
[ζ(M), V ] � V ′ ∩ ζ(M) � V ′ ∩ CV (V ′) = N . This means that Nζ(M)/N �
ζ(V/N) = Z/N . Thus, ζ(M) � Z and we see that (M/N)/ζ(V/N) ∼= M/Z is
polycyclic.

(d) V/M is polycyclic.

(V/N)′ is polycyclic and V/N is nilpotent of class less than or equal to 2. Since
(M/N)/ζ(V/N) is polycyclic by (c), so is (V/N)/(M/N) by Corollary 2.4, applied
to V/N . Thus, V/M is polycyclic.

(e) Conclusion of the proof.

V/M is polycyclic by (d) and M/ζ(M) is polycyclic by hypothesis. Thus,
V/ζ(M), being an extension of two polycyclic groups, is also polycyclic. Apply-
ing Lemma 2.1 (a) to V with A = ζ(M) � V , it follows that V/ζ(V ) is polycyclic.
Since ζ(V ) � G and G/ζ(V ) is polycyclic, we see once more with Lemma 2.1 (a)
now applied to G and A = ζ(V ) � G that G/ζ(G) must be polycyclic.

�
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Proof of Theorem 1.2. Let X/ζ(X) be finite for all X ∈ A2G. By Theorem 1.1 we
already know that G/ζ(G) is polycyclic. We prove the assertion by induction on the length
r = r(G) of a shortest subnormal chain of G/ζ(G) with cyclic factors to show that G/ζ(G)
is finite. Let ζ(G) = C0 � C1 � · · · � Cr−1 = C � Cr = G such that Ci/Ci−1 is cyclic for
i = 1, 2, . . . , r. Since ζ(G) � ζ(C), we have r(C) � r(G) − 1, so that C/ζ(C) is finite by
induction. Let y ∈ G such that G/C = 〈yC〉. Now X = ζ(C)〈y〉 is metabelian, so X/ζ(X)
is finite. Moreover, |G : X| = |C〈y〉 : X| = |CX : X| = |C : C ∩ X| � |C/ζ(C)| < ∞.
Also |G : ζ(X)| < ∞ and therefore G/(ζ(X))G is finite, where

(ζ(X))G =
⋂
g∈G

(ζ(X))g.

With A = (ζ(X))G in Lemma 2.1 (b), we see that G/ζ(G) must be finite. �

2.2. Proof of Theorem 1.3

The proof of Theorem 1.3 is somewhat more involved and not completely analogous
to that of Theorem 1.1. One reason is that we do not have at our disposal a result
corresponding to Lemma 2.2; namely, a soluble automorphism group of a Černikov group
need not be Černikov.

Lemma 2.5 (Polovickii). The class Č of all Černikov groups is a Schur class, i.e. for
every group G, we have the implication

G/ζ(G) ∈ Č =⇒ G′ ∈ Č.

Proof. See [5, § 4.23, p. 115] and [4]. �

Lemma 2.6 (Kurosh). Let G be an abelian Černikov group. Then

(a) G is a finite direct product of finite cyclic and quasicyclic (Prüfer) groups,

(b) G is a so-called FO-group, i.e. for every possible element order n, there exist only
finitely many elements of order n in G.

Proof. See [6, § 4.2.11, pp. 104, 446]. �

We recall that a group G is an FC-group if |G : CG(x)| < ∞ for all elements x ∈ G,
i.e. all elements have only finitely many conjugates in G. Clearly, the finiteness of the
quotient G/ζ(G) is sufficient for G to be an FC-group. Moreover, a sufficient condition
for being an FC-group is the finiteness of G′, since for fixed x ∈ G, the map xg →
[x, g](g ∈ G) is injective. It is also clear that

G/ζ(G) is finite ⇐⇒ G is an FC-group and G/ζ(G) is Černikov. (2.1)

Now we can prove the following extension of a result of Baer [1] (see [5, Theorem 3.14,
p. 69]), which is essential for the proof of our Theorem 1.3.
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Proposition 2.7. Let G be a nilpotent group such that G/ζ(G) is a Černikov group.
Then G/ζ(G) is even finite.

Remark 2.8. Baer proves the finiteness of G/ζ(G) under the hypothesis that the
whole group G satisfies the minimum condition.

Proof. By (2.1) we only have to show that G is an FC-group.
We prove the assertion by induction on the nilpotency class c of G. The hypothesis

is clearly inherited by every subgroup X of G and every quotient G/N (N � G), since
X/ζ(X) and (G/N)/ζ(G/N) are isomorphic to sections of G/ζ(G). For c � 1 there is
nothing to prove.

Let c = 2, i.e. G′ � ζ(G). Since G/ζ(G) is a Černikov group, we see by Lemma 2.5
that G′ is also Černikov. Since G′ is abelian, it is an FO-group by Lemma 2.6. Let x ∈ G

have order o(x) � ∞. We have 〈x〉∩ζ(G) � G. Since G/ζ(G) is a torsion group, certainly
〈x〉/〈x〉 ∩ ζ(G) ∼= 〈xζ(G)〉 is finite. We set N = 1 if o(x) < ∞ and N = 〈x〉 ∩ ζ(G) if
o(x) = ∞. Since G′ is a torsion group, N ∩G′ = 1. Let m = |〈x〉/N |, so that xm ∈ N . For
g ∈ G we have xg = xc with c = [x, g] ∈ G′ � ζ(G). It follows that (xg)m = xmcm ∈ N

and therefore cm ∈ N ∩ G′ = 1. So o(c) divides m. Since G′ is an FO-group, there are
only finitely many possible choices for c. It follows that G is an FC-group, i.e. G/ζ(G)
is finite by (2.1).

Now let c � 3. By induction, the quotient by the centre of the group G/ζ(G) is already
finite, i.e. |G/ζ2(G)| < ∞, where ζ2(G)/ζ(G) = ζ(G/ζ(G)). For any x ∈ G the subgroup
X = ζ2(G)〈x〉 is of finite index in G and of class less than or equal to 2. By the first part,
X/ζ(X) is finite. So x is an FC-element of G, i.e. G is an FC-group. Again, by (2.1) we
conclude that G/ζ(G) is even finite. �

Corollary 2.9. Let G/ζ(G) be a Černikov group and let G0/ζ(G) be its finite residual.
Then G/G0 is finite and G0 is abelian.

Proof. Clearly, G/G0 is finite and G0/ζ(G) is an abelian divisible group. Since ζ(G) �
ζ(G0), we see that G0 is nilpotent and G0/ζ(G0) is an abelian divisible Černikov group.
By Proposition 2.7, G0 = ζ(G0) is abelian. �

We now have the following, which is analogous to Lemma 2.1.

Lemma 2.10. Let A be an abelian normal subgroup of a group G such that G/A

is a Černikov group. If X/ζ(X) is Černikov for all metabelian subgroups X of G, then
G/ζ(G) is a Černikov group.

Proof. Let B/A be the finite residual of the Černikov group G/A. Then B/A is abelian
and B is metabelian. Therefore, B/ζ(B) is Černikov, by hypothesis. Moreover, B is of
finite index in G. Let B0/ζ(B) be the finite residual of B/ζ(B). Then B0 has finite index
in G. By Corollary 2.9 applied to B, we see that B0 is abelian. Let r = |G : B0| and
let {g1, g2, . . . , gr} be a transversal for B0 in G. The metabelian subgroups Xi = B0〈gi〉
have Černikov quotient by their centre Xi/ζ(Xi), i = 1, 2, . . . , r. For D =

⋂r
i=1 ζ(Xi) it

follows that D � ζ(G) and that G/D is a Černikov group. This proves the assertion. �
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Lemma 2.10 allows us to prove the Consequence 1.6 from Theorem 1.3.

Proof of Consequence 1.6. Let G be soluble-by-finite satisfying the hypothesis that
the metabelian subgroups of G have Černikov quotients by their centres. Let S � G be
such that S is soluble and G/S is finite. By Theorem 1.3, S/ζ(S) is Černikov. So A = ζ(S)
is an abelian normal subgroup of G with Černikov quotient G/ζ(S). By Lemma 2.10,
G/ζ(G) is Černikov. �

For the proof of Theorem 1.3 we still need the following.

Lemma 2.11. Let G be an FC-group and let M be a maximal abelian subgroup of
G. If M/ζ(G) satisfies the minimal condition, then G/ζ(G) is finite.

Proof. For every subset X ⊆ G with |X| < ∞ we have |G : CG(X)| < ∞ and
ζ(G) � CM (X) � M . By hypothesis, the family

M = {CM (X) | X ⊆ G, |X| < ∞}

contains a minimal element. Therefore, there exists a finite subset X0 ⊆ G such that
CM (X0) is minimal in M. We claim that CM (X0) = ζ(G). If ζ(G) < CM (X0), let
c ∈ CM (X0) \ ζ(G). There exists a t ∈ G such that tc �= ct. We have CM (X0) >

CM (X0 ∪ {t}) ∈ M: a contradiction. Thus, CM (X0) = ζ(G). Now

|M : ζ(G)| = |M : M ∩ CG(X0)| � |〈CG(X0), M〉 : CG(X0)| � |G : CG(X0)| < ∞

and therefore M/ζ(G) is finite. Let M/ζ(G) = ζ(G)m1 ∪ ζ(G)m2 ∪ · · · ∪ ζ(G)ms with
m1, m2, . . . , ms ∈ M . Then

M = CG(M) = CG(m1, m2, . . . , ms) =
s⋂

i=1

CG(mi).

Since G is an FC-group, we have
∣∣∣∣G :

s⋂
i=1

CG(mi)
∣∣∣∣ < ∞

and so G/ζ(G) is finite. �

Proof of Theorem 1.3. Again, we prove the assertion by induction on the derived
length of the soluble group G. Since every subgroup of G inherits the hypothesis, the
quotient by its centre G′/ζ(G′) of the derived group G′ is Černikov by induction. To
prove that G/ζ(G) is Černikov, it suffices, by Lemma 2.10, to exhibit in G a normal
abelian subgroup A with Černikov quotient G/A.

(a) There is an abelian subgroup G0 � G such that G0 � G′ and G′/G0 is finite.

Let G0/ζ(G′) be the finite residual of the Černikov quotient G′/ζ(G′). Then G0

has the asserted properties by Corollary 2.9 applied to G′.
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(b) There is a (normal) subgroup V of finite index in G, an abelian N � V with
ζ(V ′) � N � V ′ and [V ′, V ] � N such that |V ′ : N | < ∞.

Let V = CG(G′/G0). Then G/V is finite since G′/G0 is finite. By (a), G0 ∩ V ′ is
abelian, so that N = ζ(V ′)(G0∩V ′) is also abelian. So N � V and ζ(V ′) � N � V ′.
Also |V ′ : N | < ∞, as G′/G0 is finite and V ′/V ′ ∩ G0 ∼= V ′G0/G0 � G′/G0.
Moreover, [V ′, V ] � [G′, V ] ∩ V ′ � G0 ∩ V ′ � N .

(c) V/N is a nilpotent FC-group of class less than or equal to 2.

Since (V/N)′ = V ′/N is finite by (b), we see that V/N is an FC-group. Also
[V ′, V ] � N . This means exactly that V ′/N � ζ(V/N). So V/N is nilpotent of
class less than or equal to 2.

We choose a maximal abelian subgroup M/N of V/N . Clearly, ζ(V/N) � M/N and
M � V .

(d) (M/N)/ζ(V/N) has the minimal condition.

Let Z/N = ζ(V/N). Since N is abelian, M is a metabelian subgroup of V . There-
fore, M/ζ(M) is a Černikov group, by hypothesis. Now, since V ′ � M , we see
that ζ(M) � CV (V ′). Moreover, ζ(M) � V . Therefore, [V, ζ(M)] � V ′ ∩ ζ(M) �
ζ(V ′) � N and so ζ(M)N/N � ζ(V/N) = Z/N , i.e. ζ(M) � Z.

It follows that M/Z ∼= (M/N)/ζ(V/N) is Černikov.

(e) Conclusion of the proof.

Since (M/N)/ζ(V/N) has the minimal condition by (d), and since V/N is an FC-
group, by (c), we see that (V/N)/ζ(V/N) is finite by Lemma 2.11 applied to V/N .
In particular, |V/N : M/N | < ∞. Thus, |V : M | is finite. Since also |G : V | < ∞,
we see that |G : M | < ∞ and G/MG also is finite, where MG =

⋂
g∈G Mg is the

core of M in G. Since MG is metabelian, MG/ζ(MG) is Černikov by the assumption
of the theorem. So G/ζ(MG) is Černikov and Lemma 2.10 shows with A = ζ(MG)
that G/ζ(G) must be a Černikov group.

�
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