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In computer experiments on the dynamics of stellar systems special methods are often 
required for the computation of the forces to keep the problem manageable. For 
collisionless systems a method based on solving Poisson's equation with Fourier-
series expansions has been used with success (Miller et al, 1970; Hohl, 1973). The 
systems in these studies consist of a large number of particles moving on a rectangular 
grid. 

For three-dimensional systems with axial symmetry a similar method can be used, 
based on the expansion of density and potential in Legendre polynomials (cf. Prender-
gast and Tomer, 1970): 
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Poisson's equation, V2\I/ = 4KGQ, with appropriate boundary conditions, supplies the 
relations between an and bn and the potential can be written in the form: 
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(The boundary conditions \j/-+0 for r^oo and ij/^> constant for r ^O have been used). 
Given a grid in r and 0, the integrals over r in (3) can be calculated from recurrence 
relations. The number of operations required to evaluated \j/ from (3) and (4) for a given 
density distribution is therefore proportional to the number of grid divisions in r, the 
number of divisions in 6 and the number of Legendre polynomials. 

We have used this scheme to study the evolution of a system of 4000 particles 
(similar to the systems studied by Gott, 1973); its numerical behavior is quite satis
factory. 
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DISCUSSION 
Miller: A technical question: recurrence-relations such as you mention are usually unstable, and require 
great care unless you are careful about starting and the direction of recurrence. How do you get stable 
results ? 

Van Albada: No direct tests of the behaviour of the recurrence relations have been made. The results 
of experiments with rotating homogeneous spheres agree well with the 'exact' solutions. 

Ipser: Have you tried to use this method to construct self-consistent solutions for equilibrium config
urations ? 

Van Albada: No. 
Spitzer: Can you compare the computing time required by your method and the corresponding time 

required by the method of Dr Gott ? 
Van Albada: For a system with many particles, moving them takes longer than evaluating the forces. 

Solving Poisson's equation on a grid of 1000 cells takes about 1 s on a CDC Cyber 74-16. 

https://doi.org/10.1017/S0074180900015539 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900015539



