PATH PROPERTIES OF THE PRIMITIVES OF A BROWNIAN MOTION

ZHENGYAN LIN

(Received 16 June 1999; revised 28 June 2000)

Communicated by V. Stefanov

Abstract

Let $\{W(t), t \ge 0\}$ be a standard Brownian motion. For a positive integer m, define a Gaussian process

$$X_m(t) = \frac{1}{m!} \int_0^t (t-s)^m \, dW(s).$$

Watanabe and Lachal gave some asymptotic properties of the process $X_m(\cdot)$, $m \ge 1$. In this paper, we study the bounds of its moduli of continuity and large increments by establishing large deviation results.

2000 Mathematics subject classification: primary 60F15, 60J65, 60G15; secondary 60G17. Keywords and phrases: moduli of continuity, large increments, Brownian motion, primitive.

1. Introduction

Let $\{W(t), t \ge 0\}$ be a standard Brownian motion. For a positive integer m, define a Gaussian process

(1.1)
$$X_m(t) = \frac{1}{m!} \int_0^t (t-s)^m dW(s),$$

which was first mentioned by Shepp [4]. This class of processes arises in several domains of applied mathematics. For instance, the process $X_1(\cdot)$, which has been studied at length, is the solution of Langevin's equation under certain physical conditions. Wahba [5,6] used $X_n(\cdot)$ to derive a correspondence between smoothing by splines and Bayesian estimation in certain stochastic models.

Watanabe [7] established a law of the iterated logarithm for $X_1(\cdot)$ (in fact, his result concerns a larger class of Gaussian processes). Lachal [2,3] studied the law of the

^{© 2001} Australian Mathematical Society 0263-6115/2001 A2.00 + 0.00

iterated logarithm and regular points for $X_m(\cdot)$, $m \ge 1$. Moreover, Lachal [2] obtained some integral tests that precisely characterize the upper functions for X_m , which is an important result in the asymptotic study of X_m .

In this paper we study path behaviour of the process $X_m(\cdot)$. By establishing results on large deviations, we investigate the moduli of continuity and large increment properties for $X_m(\cdot)$, $m \ge 1$, and give their upper and lower bounds. Note that increments of $X_m(\cdot)$ are neither independent nor stationary, moreover $X_m(\cdot)$ is also not a stationary process. Usually, stationarity of increments is required for investigating the moduli of continuity and large increments of a process.

First of all, we give some moment results. We have

(1.2)
$$EX_m^2(t) = \frac{1}{(m!)^2} \int_0^t (t-s)^{2m} ds =: b_m t^{2m+1},$$

where $b_m = (m!)^{-2}(2m+1)^{-1}$, and for any h > 0

(1.3)
$$E(X_m(t+h) - X_m(t))^2$$

$$= \frac{1}{(m!)^2} E\left(\int_0^{t+h} (t+h-s)^m dW(s) - \int_0^t (t-s)^m dW(s)\right)^2$$

$$= \frac{1}{(m!)^2} \left\{ E\left(\int_0^t \left(\sum_{j=1}^m {m \choose j} (t-s)^{m-j} h^j\right) dW(s)\right)^2 + E\left(\int_t^{t+h} (t+h-s)^m dW(s)\right)^2 \right\}$$

$$=: \sum_{j=2}^{2m+1} b_{mj} h^j t^{2m+1-j}$$

for some positive b_{mj} , j = 2, ..., 2m + 1, where $b_{m2} = ((m-1)!)^{-2}(2m-1)^{-1}$. Equality (1.3) implies

(1.4)
$$E(X_m(t+h) - X_m(t))^2 = (1 + \delta(h/t))b_{m2}h^2t^{2m-1},$$

where $0 < \delta(x) \to 0$ as $x \to 0$. Hence

$$(1.5) \quad E(X_m(t+h)X_m(t)) = \frac{1}{2}E\left\{X_m^2(t+h) + X_m^2(t) - (X_m(t+h) - X_m(t))^2\right\}$$
$$= \frac{1}{2}b_m\left((t+h)^{2m+1} + t^{2m+1}\right) - \frac{1}{2}\sum_{j=2}^{2m+1}b_{mj}h^jt^{2m+1-j}.$$

Put
$$Y_m(t) = X_m(t)/t^{m-1/2}$$
. By (1.2)

$$(1.6) EY_m^2(t) = b_m t^2.$$

Using (1.2), (1.3) and (1.5) we have

$$(1.7) E(Y_m(t+h) - Y_m(t))^2$$

$$= E\left\{\frac{X_m(t+h) - X_m(t)}{(t+h)^{m-1/2}} - \left(\frac{1}{t^{m-1/2}} - \frac{1}{(t+h)^{m-1/2}}\right) X_m(t)\right\}^2$$

$$= \frac{\sum_{j=2}^{2m+1} b_{mj} h^j t^{2m+1-j}}{(t+h)^{2m-1}} + \frac{((t+h)^{m-1/2} - t^{m-1/2})^2}{t^{2m-1}(t+h)^{2m-1}} b_m t^{2m+1}$$

$$- \frac{2((t+h)^{m-1/2} - t^{m-1/2})}{t^{m-1/2}(t+h)^{2m-1}} \left\{\frac{1}{2} b_m \left((t+h)^{2m+1} - t^{2m+1}\right)\right\}$$

$$- \frac{1}{2} \sum_{j=2}^{2m+1} b_{mj} h^j t^{2m+1-j}$$

$$=: B_m h^2 + g_m(h, t),$$

where

$$B_{m} = b_{m2} + b_{m} \left\{ \left(m - \frac{1}{2} \right)^{2} - \left(m - \frac{1}{2} \right) (2m + 1) \right\}$$

$$= b_{m2} - b_{m} \left(m - \frac{1}{2} \right) \left(m + \frac{3}{2} \right),$$

$$g_{m}(h, t) = O(h^{3}t) \quad \text{as } ht \to 0,$$

which implies that

(1.8)
$$E(Y_m(t+h) - Y_m(t))^2 = (1 + o(1))B_m h^2 \text{ as } ht \to 0.$$

2. Large deviations

First we quote a well-known lemma.

LEMMA 2.1 (Fernique). Let G(t) be a Gaussian process on [0, 1] with $EG^2(t) \le A^2$ and $E(G(t) - G(s))^2 \le \sigma^2(|t - s|)$, where $\sigma(\cdot)$ is a continuous nondecreasing function satisfying

$$\int_1^\infty \sigma(e^{-x^2})\,dx\,<\infty.$$

Then, for $x \ge 2$, we have

$$P\left\{\sup_{0 \le t \le 1} |G(t)| \ge x \left(A + \int_1^\infty \sigma(e^{-y^2}) \, dy\right)\right\} \le ce^{-x^2/2},$$

where c is an absolute constant.

The following is a large deviation result for small time increments.

PROPOSITION 2.1. For any $\varepsilon > 0$, there exist positive numbers h_0 , x_0 , c_1 and c_1 such that for any $0 < h \le h_0$ and $x \ge x_0$

$$P\left\{\sup_{0 < t \le 1-h} \sup_{0 \le s \le h} \frac{|X_m(t+s) - X_m(t)|}{(t \vee h)^{m-1/2}} \ge (1+\varepsilon)b_{m2}^{1/2}hx\right\} \le C_1(e^{-c_1x^2} + h^{-1}e^{-x^2/2}).$$

PROOF. For any t > 0 and integer r > 0, let $t_r = [t2^r/h]/(2^r/h)$, and write, for rh < 1 - h,

(2.1)

$$\sup_{0 < t \le 1 - h} \sup_{0 \le s \le h} \frac{|X_m(t+s) - X_m(t)|}{(t \lor h)^{m-1/2}}$$

$$= \sup_{0 < t \le rh} \sup_{0 \le s \le h} \frac{|X_m(t+s) - X_m(t)|}{(t \lor h)^{m-1/2}} \lor \sup_{rh \le t \le 1 - h} \sup_{0 \le s \le h} \frac{|X_m(t+s) - X_m(t)|}{t^{m-1/2}}$$

$$=: I_1 \lor I_2.$$

Noting $t \lor h \ge (t+h)/2$, we have

$$I_1 \leq 2^{m-1/2} \sup_{0 \leq t \leq th} \sup_{0 \leq s \leq h} \frac{|X_m(t+s) - X_m(t)|}{(t+h)^{m-1/2}} \leq 2^{m+1/2} \sup_{0 \leq t \leq (1+r)h} |Y_m(t)|.$$

Let $Z_m(t) = Y_m((1+r)ht)$, $0 < t \le 1$. We will use Lemma 2.1 with $A = b_m^{1/2}(1+r)h$ and $\sigma(s) = (2B_m)^{1/2}(1+r)hs$. Put $D = (1+r)(b_m^{1/2} + (2B_m)^{1/2} \int_1^\infty e^{-y^2} dy)$. For any given $\varepsilon > 0$, take $r = r(\varepsilon)$ to be specified later on. By Lemma 2.1, we have

$$(2.2) P\{I_1 \ge b_{m2}^{1/2}hx\} \le P\left\{\sup_{0 \le t \le 1} |Z_m(t)| \ge (b_{m2}^{1/2}2^{-(m+1/2)}D^{-1})Dhx\right\} \le Ce^{-c_1x^2}$$

for $x \ge x_0 := b_{m2}^{-1/2} 2^{m+1/2} D$, where $c_1 = b_{m2} 2^{-(2m+1)} D^{-2} / 2$.

Consider I_2 now. We shall use a method similar to that in [1]. For $rh < t \le 1 - h$, $0 \le s \le h$, which implies that

$$\frac{1}{t^{m-1/2}} \le \left(1 + \frac{1}{r}\right)^{m-1/2} \frac{1}{(t+s)^{m-1/2}} \le \left(1 + \frac{1}{r}\right)^{m-1/2} \frac{1}{(t+s)^{m-1/2}_{r+i+1}}$$

for any $j \geq 0$, we have

$$(2.3) \frac{|X_m(t+s) - X_m(t)|}{t^{m-1/2}} \le \frac{|X_m((t+s)_r) - X_m(t_r)|}{t^{m-1/2}} + \frac{|X_m((t+s)_r) - X_m(t+s)|}{t^{m-1/2}}$$

$$+ \frac{|X_{m}(t_{r}) - X_{m}(t)|}{t^{m-1/2}}$$

$$\leq \frac{|X_{m}((t+s)_{r}) - X_{m}(t_{r})|}{t^{m-1/2}} + \sum_{j=0}^{\infty} \frac{|X_{m}((t+s)_{r+j+1}) - X_{m}((t+s)_{r+j})|}{t^{m-1/2}}$$

$$+ \sum_{j=0}^{\infty} \frac{|X_{m}(t_{r+j+1}) - X_{m}(t_{r+j})|}{t^{m-1/2}}$$

$$\leq \frac{|X_{m}((t+s)_{r}) - X_{m}(t_{r})|}{t^{m-1/2}_{r}}$$

$$+ \left(1 + \frac{1}{r}\right)^{m-1/2} \sum_{j=0}^{\infty} \frac{|X_{m}((t+s)_{r+j+1}) - X_{m}((t+s)_{r+j})|}{(t+s)_{r+j+1}^{m-1/2}}$$

$$+ \sum_{j=0}^{\infty} \frac{|X_{m}(t_{r+j+1}) - X_{m}(t_{r+j})|}{t_{r+j+1}^{m-1/2}} .$$

For the first term of the right hand side of (2.3), by (1.4) we have

$$E\left(\frac{X_m((t+s)_r)-X_m(t_r)}{t_r^{m-1/2}}\right)^2 \leq \left(1+\frac{\varepsilon}{4}\right)^2 b_{m2} \left(1+2^{-r}\right)^2 h^2 \leq \left(1+\frac{\varepsilon}{3}\right)^2 b_{m2} h^2,$$

provided $r = r(\varepsilon)$ is large enough. Hence, noting that the number of points lying within the grid $[0, h] \times [rh, 1]$ with step $h/2^r$ is less than $2^{2r}/h$, we obtain

$$(2.4) \quad P\left\{ \sup_{rh < t \le 1-h} \sup_{0 \le s \le h} \frac{|X_m((t+s)_r) - X_m(t_r)|}{t_r^{m-1/2}} \ge \left(1 + \frac{\varepsilon}{3}\right) b_{m2}^{1/2} hx \right\}$$

$$\leq \frac{2^{2r}}{h} \sup_{rh < t \le 1-h} \sup_{0 \le s \le h} P\left\{ \frac{|X_m((t+s)_r) - X_m(t_r)|}{t_r^{m-1/2}} \ge \left(1 + \frac{\varepsilon}{3}\right) b_{m2}^{1/2} hx \right\}$$

$$\leq \frac{2^{2r}}{h} e^{-x^2/2}$$

by recalling the well-known inequality $1 - \Phi(x) \le (1/\sqrt{2\pi}x)e^{-x^2/2}$. (Without loss of generality, assume that $x_0 \ge 1/\sqrt{2\pi}$.)

Consider the second term of the right hand side of (2.3). Note the following inequality:

$$P\left\{\sup_{i \in I} \sum_{j=0}^{\infty} X_{ij} \ge \sum_{j=0}^{\infty} x_{j}\right\} \le \sum_{i \in I} P\left\{\sum_{j=0}^{\infty} X_{ij} \ge \sum_{j=0}^{\infty} x_{j}\right\}$$

$$\le \#(I) \sup_{i \in I} P\{\exists j \ge 0 : X_{ij} \ge x_{j}\}$$

$$\le \#(I) \sup_{i \in I} \sum_{j=0}^{\infty} P\{X_{ij} \ge x_{j}\},$$

where X_{ij} , $i \in I$, j = 0, 1, ..., are random variables and x_j , j = 0, 1, ..., are real numbers. Moreover, by (1.4) again, we have

$$E\left(\frac{X_m(t_{r+j+1})-X_m(t_{r+j})}{t_{r+j+1}^{m-1/2}}\right)^2 \le 2b_{m2}h^2/2^{2(r+j+1)}$$

for any $0 < t \le 1$, provided r is large enough. Furthermore, we may demand

$$\sqrt{2} \sum_{j=0}^{\infty} 2^{-(r+j+1)/2} \le \left(1 + \frac{1}{r}\right)^{-m+1/2} \frac{\varepsilon}{3}.$$

Then we have

$$(2.5) P\left\{ \sup_{rh < t \le 1 - h} \sup_{0 \le s \le h} \sum_{j=0}^{\infty} \frac{|X_m((t+s)_{r+j+1}) - X_m((t+s)_{r+j})|}{(t+s)_{r+j+1}^{m-1/2}} \ge \left(1 + \frac{1}{r}\right)^{-m+1/2} \frac{\varepsilon}{3} b_{m2}^{1/2} hx \right\}$$

$$\le P\left\{ \sup_{rh < t \le 1} \sum_{j=0}^{\infty} \frac{|X_m(t_{r+j+1}) - X_m(t_{r+j})|}{t_{r+j+1}^{m-1/2}} \ge \sum_{j=0}^{\infty} \sqrt{2} b_{m2}^{1/2} \left(\frac{h}{2^{(r+j+1)/2}}\right) x \right\}$$

$$\le \frac{2^r}{h} \sum_{j=0}^{\infty} e^{-2^{r+j+1} x^2/2} \le \frac{2^r}{h} e^{-x^2/2}$$

for large r. Similarly, for the third term of the right hand side of (2.3) we have

$$(2.6) P\left\{\sup_{rh< t\leq 1-h} \sup_{0\leq s\leq h} \sum_{j=0}^{\infty} \frac{|X_m(t_{r+j+1})-X_m(t_{r+j})|}{t_{r+j+1}^{m-1/2}} \geq \frac{\varepsilon}{3} b_{m2}^{1/2} hx\right\} \leq \frac{2^r}{h} e^{-x^2/2}.$$

Combining (2.3)-(2.6) we obtain

$$(2.7) P\left\{I_2 \geq (1+\varepsilon)b_{m2}^{1/2}hx\right\} \leq \left(2^{2r}+2^{r+1}\right)\frac{1}{h}e^{-x^2/2}$$

(2.2) and (2.7) together imply the conclusion of Proposition 2.1.

An analogue of Proposition 2.1 in the large increment case is the following.

PROPOSITION 2.2. Let a_T be a function of T with $0 < a_T \le T$ and $a_T/T \to 0$ as $T \to \infty$. Then for any $\varepsilon > 0$, there exist positive numbers T_0, x_1, c_2 and C_2 such that for any $T \ge T_0$ and $x \ge x_1$,

$$P\left\{\sup_{0< t\leq T-a_T}\sup_{0\leq s\leq a_T}\frac{|X_m(t+s)-X_m(t)|}{(t\vee a_T)^{m-1/2}}\geq (1+\varepsilon)b_{m2}^{1/2}a_Tx\right\}\leq C_2(e^{-c_2x^2}+Ta_T^{-1}e^{-x^2/2}).$$

The proof is similar to that of Proposition 2.1, and hence, is omitted.

3. Moduli of continuity

We need another well-known lemma.

LEMMA 3.1 (Slepian). Let G(t) and $G^*(t)$ be Gaussian processes on [0, T] for some $0 < T < \infty$, possessing continuous sample path functions with $EG(t) = EG^*(t) = 0$, $EG^2(t) = EG^{*2}(t) = 1$, and let $\rho(s, t)$ and $\rho^*(s, t)$ be their respective covariance functions. Suppose that we have $\rho(s, t) \ge \rho^*(s, t)$, $s, t \in [0, T]$. Then for any real u,

$$P\left\{\sup_{0\leq t\leq T}G(t)\leq u\right\}\geq P\left\{\sup_{0\leq t\leq T}G^*(t)\leq u\right\}.$$

Put $\log x = \ln(e \vee x)$.

THEOREM 3.1.

(3.1)
$$\limsup_{h\to 0} \sup_{0 < t \le 1-h} \sup_{0 \le s \le h} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2}(t \lor h)^{m-1/2}h(2\log h^{-1})^{1/2}} \le 1 \quad almost surely,$$

REMARK 3.1. It is interesting to find the exact factors such that equality signs in (3.1) and/or (3.2) hold. For Lévy's moduli of continuity of a Brownian motion $W(\cdot)$, the ' $(\log h^{-1})^{1/2}$ ' makes the equality sign in (3.1) hold. For $X_m(\cdot)$, there are certain difficulties because its increments are neither independent nor stationary.

PROOF. First we prove (3.1). For any given $\varepsilon > 0$, by Propositon 2.1, there exist $c_1 = c_1(\varepsilon) > 0$ and $C_1 = C_1(\varepsilon) > 0$ such that

$$P\left\{ \sup_{0 < t \le 1 - h} \sup_{0 \le s \le h} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \lor h)^{m-1/2} h (2 \log h^{-1})^{1/2}} \ge (1 + \varepsilon)^2 \right\}$$

$$\le C_1 \left(\exp\left\{ -2c_1 (1 + \varepsilon)^2 \log h^{-1} \right\} + h^{-1} \exp\left\{ -(1 + \varepsilon)^2 \log h^{-1} \right\} \right)$$

$$\le C_1 (h^{2c_1} + h^{2\varepsilon}).$$

Taking $h_n = n^{-A}$ with $A > (2(\varepsilon \wedge c_1))^{-1}$, we obtain

$$\sum_{n=1}^{\infty} P \left\{ \sup_{0 < t \le 1 - h_n} \sup_{0 \le s \le h_n} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \vee h_n)^{m-1/2} h_n (2 \log h_n^{-1})^{1/2}} \ge (1 + \varepsilon)^2 \right\} < \infty,$$

which, in combination with the Borel-Cantelli lemma, implies

(3.3)
$$\limsup_{n\to\infty} \sup_{0< t\leq 1-h_n} \sup_{0\leq s\leq h_n} \frac{|X_m(t+s)-X_m(t)|}{b_{m2}^{1/2}(t\vee h_n)^{m-1/2}h_n(2\log h_n^{-1})^{1/2}} \leq (1+\varepsilon)^2 \quad \text{a.s.}$$

The procedure from (3.3) to (3.1) is routine, and hence, is omitted.

Next we show (3.2). Let $h_n = n^{-A_n}$ with $A_n = n^{(\log \log n)^{-1}} \uparrow \infty$ as $n \to \infty$. Define

$$Y(i) = \frac{X_m((i+1)h_n) - X_m(ih_n)}{(ih_n)^{m-1/2}}, \quad 0 < i \le n^{A_n} - 1.$$

By (1.4), $EY(i)^2 \ge b_{m2}h_n^2$. We have that, for $i \le j$,

(3.4)
$$E(Y(i)Y(j))$$

$$= \frac{1}{(m!)^{2}(ih_{n})^{m-1/2}(jh_{n})^{m-1/2}} \left\{ \int_{0}^{(i+1)h_{n}} ((i+1)h_{n}-s)^{m}((j+1)h_{n}-s)^{m} ds - \int_{0}^{(i+1)h_{n}} ((i+1)h_{n}-s)^{m}(jh_{n}-s)^{m} ds - \int_{0}^{(ih_{n})} (ih_{n}-s)^{m}((j+1)h_{n}-s)^{m} ds + \int_{0}^{ih_{n}} (ih_{n}-s)^{m}(jh_{n}-s)^{m} ds \right\}$$

$$= h_{n}^{2} \sum_{p=0}^{m} \sum_{q=0}^{m} \binom{m}{p} \binom{m}{q} \frac{1}{(m!)^{2}(2m-p-q+1)(ij)^{m-1/2}} \times \left\{ (i+1)^{2m-q+1}(j+1)^{q} - (i+1)^{2m-q+1}j^{q} - i^{2m-q+1}(j+1)^{q} + i^{2m-q+1}j^{q} \right\}$$

$$= h_{n}^{2} \sum_{p=0}^{m} \sum_{q=0}^{m} \binom{m}{p} \binom{m}{q} \frac{((i+1)^{2m-q+1} - i^{2m-q+1})((j+1)^{q} - j^{q})}{(m!)^{2}(2m-p-q+1)(ij)^{m-1/2}}$$

$$= h_{n}^{2} \sum_{p=0}^{m} \sum_{q=0}^{m} \binom{m}{p} \binom{m}{q} \frac{4(2m-q+1)q(i/j)^{m-q+1/2}}{(m!)^{2}(2m-p-q+1)} (1 + O(1/i)).$$

Let $n_1 = [A_n \log n], Z(i) = Y(e^i), i = 0, 1, ..., n_1,$

$$c_m = \sum_{p=0}^m \sum_{q=0}^m {m \choose p} {m \choose q} \frac{4(2m-q+1)q}{(m!)^2 (2m-p-q+1)},$$

and $D_n = 3 \log \log n$. (3.4) implies that for $i \ge n_1/3$ and $j - i \ge D_n$,

(3.5)
$$E(Z(i)Z(j)) \le h_n^2 c_m e^{-(j-i)/2} (1 + O(1/i)) \le c_m (\log n)^{-1} h_n^2,$$

provided n is large enough. Let $\{\xi_i, i \geq 0\}$ and ζ be independent normal random variables with means zero and $E\xi_i^2 = EZ(i)^2 - c_m(\log n)^{-1}h_n^2 = (1 + o(1))b_{m2}h_n^2$ as $n \to \infty$ (recalling (1.4)), $E\zeta^2 = c_m(\log n)^{-1}h_n^2$. Define $\gamma_i = \xi_i + \zeta$. Then

 $E\gamma_i^2 = EZ(i)^2$ and $EZ(i)Z(j) \le E\gamma_i\gamma_j$. Let $I = \{i : n_1/3 \le i \le n_1 - 1, i \mod D_n\}$, then $\#(I) \ge n_1/(2D_n)$ for large n. Hence by Slepian's lemma and using the well-known inequality

$$1 - \Phi(x) \ge \frac{1}{\sqrt{2\pi}} \left(\frac{1}{x} - \frac{1}{x^3} \right) e^{-x^2/2},$$

we obtain that for large n

$$(3.6) \ P \left\{ \max_{\substack{n_1/3 \le i \le n_1 - 1 \\ i \bmod D_n}} Z(i) \le (1 - \varepsilon) b_{m2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2} \right\}$$

$$\le P \left\{ \max_{\substack{n_1/3 \le i \le n_1 - 1 \\ i \bmod D_n}} \gamma_i \le (1 - \varepsilon) b_{m2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2} \right\}$$

$$\le P \left\{ \max_{\substack{n_1/3 \le i \le n_1 - 1 \\ i \bmod D_n}} \xi_i \le \left(1 - \frac{\varepsilon}{2}\right) b_{m2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2} \right\}$$

$$+ P \left\{ \zeta \ge \frac{\varepsilon}{2} b_{m2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2} \right\}$$

$$\le \left(1 - P \left\{ \xi_i > (1 - \frac{\varepsilon}{2}) b_{m2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2} \right\} \right)^{n_1/(2D_n)}$$

$$+ \exp \left\{ -\frac{\varepsilon^2 b_{m2}}{4 c_m (\log n)^{-1}} \log \log h_n^{-1} \right\}$$

$$\le \left(1 - \frac{1}{(8\pi \log \log h_n^{-1})^{1/2}} \exp \left\{ - \left(1 - \frac{\varepsilon}{2}\right) \log \log h_n^{-1} \right\} \right)^{n_1/(2D_n)} + n^{-2}$$

$$= \left(1 - \frac{(\log h_n^{-1})^{(1-\varepsilon/2)}}{(8\pi \log \log h_n^{-1})^{1/2}} \right)^{n_1/(2D_n)} + n^{-2}$$

$$\le \exp \left\{ -\frac{(\log h_n^{-1})^{-(1-\varepsilon/2)} n_1}{2D_n (8\pi \log \log h_n^{-1})^{1/2}} \right\} + n^{-2} \le 2n^{-2}.$$

Inequality (3.6) implies

$$\sum_{n=1}^{\infty} P\left\{ \max_{0 \le i \le n_1 - 1} Z(i) \le (1 - \varepsilon) b_{m2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2} \right\} < \infty,$$

and by the Borel-Cantelli lemma it follows that

(3.7)
$$\liminf_{n \to \infty} \max_{0 \le i \le n_1 - 1} \frac{Z(i)}{b_{n,2}^{1/2} h_n (2 \log \log h_n^{-1})^{1/2}} \ge 1 - \varepsilon \quad \text{a.s.}$$

And hence we conclude

Considering $h_{n+1} < h \le h_n$, we have

$$(3.9) \quad \sup_{0 < t \le 1 - h} \frac{|X_{m}(t+h) - X_{m}(t)|}{b_{m2}^{1/2}(t \vee h)^{m-1/2}h(2\log\log h^{-1})^{1/2}} \\ \ge \sup_{h_{n} \le t \le 1 - h} \frac{|X_{m}(t+h_{n}) - X_{m}(t) + X_{m}(t+h) - X_{m}(t+h_{n})|}{b_{m2}^{1/2}t^{m-1/2}h(2\log\log h^{-1})^{1/2}} \\ \ge \sup_{h_{n} \le t \le 1 - h_{n}} \frac{|X_{m}(t+h_{n}) - X_{m}(t)|}{b_{m2}^{1/2}t^{m-1/2}h_{n}(2\log\log h_{n}^{-1})^{1/2}} \\ - 2 \sup_{h_{n} < t \le 1 - (h_{n} - h_{n+1})} \sup_{0 \le s \le h_{n} - h_{n+1}} \frac{|X_{m}(t+h_{n+1} + s) - X_{m}(t+h_{n+1})|}{b_{m2}^{1/2}(t+h_{n+1})^{m-1/2}(h_{n} - h_{n+1})} \\ \times \frac{(t+h_{n+1})^{m-1/2}(h_{n} - h_{n+1})(\log(h_{n} - h_{n+1})^{-1})^{1/2}}{(2\log(h_{n} - h_{n+1})^{-1})^{1/2}t^{m-1/2}h_{n+1}(\log\log h_{n+1}^{-1})^{1/2}}.$$

By the derivative calculus for the function $f(x) = x^{-A_x}$, we have

$$h_n - h_{n+1} = h_{n+1} \frac{A_n \log n}{n \log \log n} (1 + o(1)).$$

Therefore,

$$\lim_{n\to\infty} \sup_{h_n < t \le 1 - (h_n - h_{n+1})} \frac{(t + h_{n+1})^{m-1/2} (h_n - h_{n+1}) (\log(h_n - h_{n+1})^{-1})^{1/2}}{t^{m-1/2} h_{n+1} (\log\log h_{n+1}^{-1})^{1/2}} = 0.$$

Consequently we conclude (3.2) by (3.8), (3.9) and (3.1). This completes the proof of Theorem 3.1.

4. Large increments

THEOREM 4.1. Let a_T be a continuous function of T with $0 < a_T \le T$ and suppose that

$$\lim_{n \to \infty} \frac{\sup_{n-1 < t \le n} a_t}{\inf_{n-1 < t \le n} a_t} = 1$$

and

(4.2)
$$\lim_{T\to\infty}\log(T/a_T)/\log\log T=\infty.$$

Then

(4.3)
$$\limsup_{T \to \infty} \sup_{0 < t \le T - a_T} \sup_{0 \le s \le a_T} \frac{|X_m(t+s) - X_m(t)|}{b_{m_2}^{1/2} (t \vee a_T)^{m-1/2} a_T (2\log(T/a_T))^{1/2}} \le 1 \quad a.s.$$

If, instead of (4.2), for any $\varepsilon > 0$ there exists $T_0 > 0$ such that for $T > T_0$

$$\left(\log \frac{T}{a_T}\right)^{(\log \log \log T)^{1/\epsilon}} \ge \log T,$$

$$(4.5) \qquad (\log a_T)^{2(1-\varepsilon)\log\log\log a_T} \ge \log T,$$

then

(4.6)
$$\lim_{T \to \infty} \inf_{0 < t \le T - a_T} \frac{|X_m(t + a_T) - X_m(t)|}{b_{m2}^{1/2} (t \vee a_T)^{m-1/2} a_T (2 \log \log(T/a_T))^{1/2}} \ge 1 \quad a.s.$$

PROOF. First we prove (4.3). Let $\theta > 1$ and for integers k and j let

$$(4.7) A_{ki} = \{T : \theta^{k-1} < T \le \theta^k, \ \theta^{j-1} < a_T \le \theta^j \}.$$

In the sequel, we always consider k and j such that A_{kj} is non-empty. For any A > 0, by condition (4.2), there exists k_0 such that for $k \ge k_0$

$$\log \theta^{k-j} / \log \log \theta^k > A$$
,

that is,

$$(4.8) j \le k - [(A/\log \theta) \log k + \theta_1] =: k_1,$$

where $\theta_1 = A(\log \log \theta)/\log \theta$. Then, noting that $b_{m2}^{1/2}(t \vee a_T)^{m-1/2}a_T(2\log(T/a_T))^{1/2}$ is an increasing function of both T and a_T , we have

$$(4.9) \lim \sup_{T \to \infty} \sup_{0 < t \le T - a_T} \sup_{0 \le s \le a_T} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \vee a_T)^{m-1/2} a_T (2 \log(T/a_T))^{1/2}}$$

$$\leq \lim \sup_{k \to \infty} \sup_{-\infty < j \le k_1} \sup_{0 < t \le \theta^k - \theta^{j-1}} \sup_{0 \le s \le \theta^j} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \vee \theta^{j-1})^{m-1/2} \theta^{j-1} (2 \log \theta^{k-j})^{1/2}}$$

$$\leq \lim \sup_{k \to \infty} \sup_{-\infty < j \le k_1} \sup_{0 \le t \le \theta^{j+1} - \theta^j} \sup_{0 \le s \le \theta^j} \frac{\theta^{m+1/2} |X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \vee \theta^j)^{m-1/2} \theta^j (2 \log \theta^{k-j})^{1/2}}.$$

Using Proposition 2.2 and (4.8) we have

$$P\left\{ \sup_{-\infty < j \le k_1} \sup_{0 < t \le \theta^{k+1} - \theta^j} \sup_{0 \le s \le \theta^j} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \vee \theta^j)^{m-1/2} \theta^j (2 \log \theta^{k-j})^{1/2}} \ge (1+\varepsilon)^2 \right\}$$

$$\leq C_2 \sum_{j=-\infty}^{k_1} \left(\exp\left\{ -2c_2(1+\varepsilon)^2 \log \theta^{k-j} \right\} + \theta^{k-j+1} \exp\left\{ -(1+\varepsilon)^2 \log \theta^{k-j} \right\} \right)$$

$$\leq C_2 \sum_{j=-\infty}^{k_1} \left(\theta^{-2c_2(1+\varepsilon)^2(k-j)} + \theta^{-2\varepsilon(k-j)+1} \right)$$

$$\leq c \left(\theta^{-2c_2(1+\varepsilon)^2[(A/\log \theta) \log k + \theta_1]} + \theta^{-2\varepsilon[(A/\log \theta) \log k + \theta_1] + 1} \right) \le ck^{-2}$$

for some c > 0 by taking $A = (\log \theta)/(c_2(1+\varepsilon)^2 \wedge \varepsilon)$. Hence, from the Borel-Cantelli lemma we obtain

$$\limsup_{k \to \infty} \sup_{-\infty < j \le k_1} \sup_{0 \le t \le \theta^{k+1} - \theta^j} \sup_{0 \le s \le \theta^j} \frac{|X_m(t+s) - X_m(t)|}{b_{m2}^{1/2} (t \vee \theta^j)^{m-1/2} \theta^j (2 \log \theta^{k-j})^{1/2}} \le (1+\varepsilon)^2 \quad \text{a.s.}$$

which, in combination with (4.9), implies (4.3) by arbitrariness of $\theta > 1$.

Next we show (4.6). Let $A_j = j^{(\log \log j)^{-1}}$ again, and let $B_0 = 0$, $B_j = j^{A_j}$, $j = 1, 2, \ldots, C_{kj} = \{T : B_{k-1} < T \le B_k, B_{j-1} < a_T \le B_j\}$. By condition (4.4), for any A > 0, there exists an integer j_0 such that for $j \ge j_0$

$$(4.10) \qquad \log(B_k/B_j) \ge (\log B_k)^{(\log \log k)^{-A}} \ge A_k^{(\log \log k)^{-A}}.$$

On the other hand, by the derivative calculus for the function $g(x) = \log B_x$, we have

$$\log B_k - \log B_j \le 2(k-j) \frac{A_k \log k}{k \log \log k},$$

which, in combination with (4.10), implies that

$$j \leq k - \left[\frac{k \log \log k}{2 \log k} A_k^{-1 + (\log \log k)^{-\lambda}} \right] =: k_2.$$

Noting that $b_{m2}^{1/2}(t \vee a_T)^{m-1/2}a_T(2\log\log(T/a_T))^{1/2}$ is an increasing function of both T and a_T we can write

$$(4.11) \lim \inf_{T \to \infty} \sup_{0 < t \le T - a_T} \frac{|X_m(t + a_T) - X_m(t)|}{b_{m2}^{1/2}(t \vee a_T)^{m-1/2}a_T(2\log\log(T/a_T))^{1/2}}$$

$$\geq \lim \inf_{k \to \infty} \inf_{1 \le j \le k_2} \inf_{T \in C_{kj}} \sup_{0 < t \le T - a_T} \frac{|X_m(t + a_T) - X_m(t)|}{b_{m2}^{1/2}(t \vee a_T)^{m-1/2}a_T(2\log\log(T/a_T))^{1/2}}$$

$$\geq \lim \inf_{k \to \infty} \inf_{1 \le j \le k_2} \sup_{0 < t \le B_{k-1}/2} \frac{|X_m(t + B_j) - X_m(t)|}{b_{m2}^{1/2}(t \vee B_j)^{m-1/2}B_j(2\log\log(B_k/B_j))^{1/2}}$$

$$-\lim \sup_{k \to \infty} \sup_{0 < t \le B_k - (B_j - B_{j-1})} \sup_{0 \le s \le B_j - B_{j-1}} \frac{|X_m(t + s) - X_m(t)|}{b_{m2}^{1/2}(t \vee (B_j - B_{j-1}))^{m-1/2}(B_j - B_{j-1})}$$

$$\times \frac{(t \vee (B_j - B_{j-1}))^{m-1/2}(B_j - B_{j-1})(\log(B_k/(B_j - B_{j-1}))^{1/2}}{(2\log(B_k/(B_j - B_{j-1})))^{1/2}(t \vee B_j)^{m-1/2}B_j(\log\log(B_k/B_j))^{1/2}}$$

$$=: J_1 - J_2.$$

By the derivative calculus for the function $h(x) = B_x$, we have

$$\frac{B_j - B_{j-1}}{B_i} \le \frac{2A_j \log j}{j \log \log j}.$$

The last inequality and condition (4.5) imply that, as $k \to \infty$,

$$\log B_k \leq (1+o(1))\log B_{k-1} \leq 2(\log B_i)^{2(1-\varepsilon)\log\log\log B_i} \leq 2(A_i\log j)^{2(1-\varepsilon)\log\log j}.$$

Hence

$$(4.12) \qquad \frac{(t \vee (B_{j} - B_{j-1}))^{m-1/2} (B_{j} - B_{j-1}) (\log(B_{k}/(B_{j} - B_{j-1})))^{1/2}}{(t \vee B_{j})^{m-1/2} B_{j} (\log\log(B_{k}/B_{j}))^{1/2}}$$

$$\leq \frac{B_{j} - B_{j-1}}{B_{j}} (\log B_{k})^{1/2} \leq \frac{2\sqrt{2}A_{j} \log j}{j \log\log j} \cdot (A_{j} \log j)^{(1-\varepsilon)\log\log j}$$

$$= \frac{2\sqrt{2}A_{j} (\log j)^{1+(1-\varepsilon)\log\log j}}{j^{\varepsilon} \log\log j} \to 0 \quad \text{as } j \to \infty.$$

Then by (4.3) and (4.12) we obtain

$$(4.13) J_2 = 0 a.s.$$

Consider J_1 and for fixed k, define

$$Y_j(i) = \frac{X_m((i+1)B_j) - X_m(iB_j)}{(iB_i)^{m-1/2}}, \quad 0 < i \le B_k/B_j - 1, \ j = 0, 1, \dots, k_2.$$

Furthermore, let $Z_j(i) = Y_j(e^i)$, $i = 0, 1, ..., k_3 - 1$ with $k_3 = [\log(B_k/B_j)]$. Similarly to (3.5), we have

$$EZ_{j}(i_{1})Z_{j}(i_{2}) \leq c'_{m}(\log\log k)^{-A-2}B_{j}^{2}$$

for some $c'_m > 0$ and any $i_1 \ge k_3/3$, $i_2 - i_1 \ge D'_k := 3(A+2) \log \log \log k$. Let $\{\xi_{ij}, i \ge 0\}$ and ξ_j be independent normal random variables with means zero and $E\xi_{ij}^2 = EZ_j(i)^2 - c'_m(\log \log k)^{-A-2}B_j^2$, $E\xi_j^2 = c'_m(\log \log k)^{-A-2}B_j^2$. Then, similarly to (3.6), using (4.10) with $A > 6/\varepsilon$ we obtain for all large k

$$(4.14) \qquad P\left\{ \inf_{\substack{0 \le j \le k_2 \frac{k_3}{3} \le i \le k_3 - 1 \\ m \text{od } D'_k}} Z_j(i) \le (1 - \varepsilon) b_{m2}^{1/2} B_j (2 \log \log(B_k/B_j))^{1/2} \right\}$$

$$\le \sum_{j=0}^{k_2} \left(\exp\left\{ -\frac{(\log(B_k/B_j))^{-(1-\varepsilon/2)} k_3}{2D'_k (8\pi \log \log(B_k/B_j))^{1/2}} \right\}$$

$$+ \exp\left\{ -\frac{\varepsilon^2 b_{m2}}{4c'_m (\log \log k)^{-A-2}} \log \log(B_k/B_j) \right\} \right)$$

$$\le c \sum_{j=0}^{k_2} \left(\exp\left\{ -\frac{(\log(B_k/B_j))^{\varepsilon/2}}{D'_k (8\pi \log \log(B_k/B_j))^{\varepsilon/2}} \right\}$$

$$+\exp\left\{-\frac{\varepsilon^2 b_{m2}}{4c_m'}(\log\log k)\log k\right\}\right).$$

It is easy to see that

$$D'_{k} = o(\log(B_{k}/B_{i})), \quad \log\log(B_{k}/B_{i}) = o(\log(B_{k}/B_{i})).$$

So for large k,

$$\exp\left\{-\frac{(\log(B_k/B_j))^{\varepsilon/2}}{D_k'(8\pi \log\log(B_k/B_j))^{1/2}}\right\} \le \exp\{-(\log(B_k/B_j))^{\varepsilon/3}\}.$$

Combining it with (4.14) implies

$$\sum_{k=1}^{\infty} P\left\{\inf_{0 \le j \le k_2} \max_{0 \le i \le k_3 - 1} Z_j(i) \le (1 - \varepsilon) b_{m2}^{1/2} B_j (2 \log \log(B_k/B_j))^{1/2}\right\} < \infty.$$

Hence

$$(4.15) J_1 \ge 1 - \varepsilon \quad \text{a.s.}$$

Combining (4.15) with (4.13) we conclude that (4.4) holds. This completes the proof of Theorem 4.1.

Acknowledgements

The author would like to thank the referee for valuable suggestions. The project was supported by NSFC (19571021) and NSFZP (199016).

References

- [1] M. Csörgő and P. Révész, Strong approximations in probability and statistics (Academic Press, New York, 1981).
- [2] A. Lachal, 'Local asymptotic classes for the successive primitives of Brownian motion', Ann. Probab. 25 (1997), 1712-1734.
- [3] ——, 'Regular points for the successive primitives of Brownian motion', J. Math. Kyoto Univ. 37 (1997), 99-119.
- [4] L. A. Shepp, 'Radon-Nikodym derivatives of Gaussian measures', Ann. Math. Statist. 37 (1966), 321-354.
- [5] G. Wahba, 'Improper priors, spline smoothing and the problem of guarding against model error in regression', J. Roy, Statist. Soc. Ser. B 40 (1978), 364-372.
- [6] ——, 'Bayesian 'confidence intervals' for the cross-validated smoothing spline', J. Roy. Statist. Soc. Ser. B 45 (1983), 133-150.

[7] H. Watanabe, 'An asymptotic property of Gaussian processes I', Trans. Amer. Math. Soc. 148 (1970), 233-248.

Department of Mathematics
Zhejiang University, Xixi Campus
Hangzhou
Zhejiang 310028
P. R. China
e-mail: zlin@mail.hz.zj.cn