PATH PROPERTIES OF THE PRIMITIVES OF A BROWNIAN MOTION

ZHENGYAN LIN

(Received 16 June 1999; revised 28 June 2000)

Communicated by V. Stefanov

Abstract

Let $\{W(t), t \geq 0$ be a standard Brownian motion. For a positive integer m, define a Gaussian process $$
X_{m}(t)=\frac{1}{m!} \int_{0}^{t}(t-s)^{m} d W(s) .
$$

Watanabe and Lachal gave some asymptotic properties of the process $X_{m}(\cdot), m \geq 1$. In this paper, we study the bounds of its moduli of continuity and large increments by establishing large deviation results.

2000 Mathematics subject classification: primary $60 \mathrm{~F} 15,60 \mathrm{~J} 65,60 \mathrm{G} 15$; secondary 60 G 17 . Keywords and phrases: moduli of continuity, large increments, Brownian motion, primitive.

1. Introduction

Let $\{W(t), t \geq 0\}$ be a standard Brownian motion. For a positive integer m, define a Gaussian process

$$
\begin{equation*}
X_{m}(t)=\frac{1}{m!} \int_{0}^{t}(t-s)^{m} d W(s) \tag{1.1}
\end{equation*}
$$

which was first mentioned by Shepp [4]. This class of processes arises in several domains of applied mathematics. For instance, the process $X_{1}(\cdot)$, which has been studied at length, is the solution of Langevin's equation under certain physical conditions. Wahba [5,6] used $X_{n}(\cdot)$ to derive a correspondence between smoothing by splines and Bayesian estimation in certain stochastic models.

Watanabe [7] established a law of the iterated logarithm for $X_{1}(\cdot)$ (in fact, his result concerns a larger class of Gaussian processes). Lachal [2,3] studied the law of the
iterated logarithm and regular points for $X_{m}(\cdot), m \geq 1$. Moreover, Lachal [2] obtained some integral tests that precisely characterize the upper functions for X_{m}, which is an important result in the asymptotic study of X_{m}.

In this paper we study path behaviour of the process $X_{m}(\cdot)$. By establishing results on large deviations, we investigate the moduli of continuity and large increment properties for $X_{m}(\cdot), m \geq 1$, and give their upper and lower bounds. Note that increments of $X_{m}(\cdot)$ are neither independent nor stationary, moreover $X_{m}(\cdot)$ is also not a stationary process. Usually, stationarity of increments is required for investigating the moduli of continuity and large increments of a process.

First of all, we give some moment results. We have

$$
\begin{equation*}
E X_{m}^{2}(t)=\frac{1}{(m!)^{2}} \int_{0}^{t}(t-s)^{2 m} d s=: b_{m} t^{2 m+1} \tag{1.2}
\end{equation*}
$$

where $b_{m}=(m!)^{-2}(2 m+1)^{-1}$, and for any $h>0$

$$
\begin{align*}
& E\left(X_{m}(t+h)-X_{m}(t)\right)^{2} \tag{1.3}\\
&= \frac{1}{(m!)^{2}} E\left(\int_{0}^{t+h}(t+h-s)^{m} d W(s)-\int_{0}^{t}(t-s)^{m} d W(s)\right)^{2} \\
&= \frac{1}{(m!)^{2}}\left\{E\left(\int_{0}^{t}\left(\sum_{j=1}^{m}\binom{m}{j}(t-s)^{m-j} h^{j}\right) d W(s)\right)^{2}\right. \\
&\left.+E\left(\int_{t}^{t+h}(t+h-s)^{m} d W(s)\right)^{2}\right\} \\
&= \sum_{j=2}^{2 m+1} b_{m j} h^{j} t^{2 m+1-j}
\end{align*}
$$

for some positive $b_{m j}, j=2, \ldots, 2 m+1$, where $b_{m 2}=((m-1)!)^{-2}(2 m-1)^{-1}$. Equality (1.3) implies

$$
\begin{equation*}
E\left(X_{m}(t+h)-X_{m}(t)\right)^{2}=(1+\delta(h / t)) b_{m 2} h^{2} t^{2 m-1} \tag{1.4}
\end{equation*}
$$

where $0<\delta(x) \rightarrow 0$ as $x \rightarrow 0$. Hence

$$
\begin{align*}
E\left(X_{m}(t+h) X_{m}(t)\right) & =\frac{1}{2} E\left\{X_{m}^{2}(t+h)+X_{m}^{2}(t)-\left(X_{m}(t+h)-X_{m}(t)\right)^{2}\right\} \tag{1.5}\\
& =\frac{1}{2} b_{m}\left((t+h)^{2 m+1}+t^{2 m+1}\right)-\frac{1}{2} \sum_{j=2}^{2 m+1} b_{m j} h^{j} t^{2 m+1-j}
\end{align*}
$$

Put $Y_{m}(t)=X_{m}(t) / t^{m-1 / 2}$. By (1.2)

$$
\begin{equation*}
E Y_{m}^{2}(t)=b_{m} t^{2} \tag{1.6}
\end{equation*}
$$

Using (1.2), (1.3) and (1.5) we have

$$
\begin{align*}
E\left(Y_{m}(t\right. & \left.+h)-Y_{m}(t)\right)^{2} \tag{1.7}\\
= & E\left\{\frac{X_{m}(t+h)-X_{m}(t)}{(t+h)^{m-1 / 2}}-\left(\frac{1}{t^{m-1 / 2}}-\frac{1}{(t+h)^{m-1 / 2}}\right) X_{m}(t)\right\}^{2} \\
= & \frac{\sum_{j=2}^{2 m+1} b_{m j} h^{j} t^{2 m+1-j}}{(t+h)^{2 m-1}}+\frac{\left((t+h)^{m-1 / 2}-t^{m-1 / 2}\right)^{2}}{t^{2 m-1}(t+h)^{2 m-1}} b_{m} t^{2 m+1} \\
& -\frac{2\left((t+h)^{m-1 / 2}-t^{m-1 / 2}\right)}{t^{m-1 / 2}(t+h)^{2 m-1}}\left\{\frac{1}{2} b_{m}\left((t+h)^{2 m+1}-t^{2 m+1}\right)\right. \\
& \left.-\frac{1}{2} \sum_{j=2}^{2 m+1} b_{m j} h^{j} t^{2 m+1-j}\right\} \\
= & B_{m} h^{2}+g_{m}(h, t),
\end{align*}
$$

where

$$
\begin{aligned}
& B_{m}=b_{m 2}+b_{m}\left\{\left(m-\frac{1}{2}\right)^{2}-\left(m-\frac{1}{2}\right)(2 m+1)\right\} \\
&=b_{m 2}-b_{m}\left(m-\frac{1}{2}\right)\left(m+\frac{3}{2}\right) \\
& g_{m}(h, t)=O\left(h^{3} t\right) \quad \text { as } h t \rightarrow 0
\end{aligned}
$$

which implies that

$$
\begin{equation*}
E\left(Y_{m}(t+h)-Y_{m}(t)\right)^{2}=(1+o(1)) B_{m} h^{2} \quad \text { as } h t \rightarrow 0 \tag{1.8}
\end{equation*}
$$

2. Large deviations

First we quote a well-known lemma.
Lemma 2.1 (Fernique). Let $G(t)$ be a Gaussian process on $[0,1]$ with $E G^{2}(t) \leq$ A^{2} and $E(G(t)-G(s))^{2} \leq \sigma^{2}(|t-s|)$, where $\sigma(\cdot)$ is a continuous nondecreasing function satisfying

$$
\int_{1}^{\infty} \sigma\left(e^{-x^{2}}\right) d x<\infty
$$

Then, for $x \geq 2$, we have

$$
P\left\{\sup _{0 \leq t \leq 1}|G(t)| \geq x\left(A+\int_{1}^{\infty} \sigma\left(e^{-y^{2}}\right) d y\right)\right\} \leq c e^{-x^{2} / 2}
$$

where c is an absolute constant.

The following is a large deviation result for small time increments.

PROPOSITION 2.1. For any $\varepsilon>0$, there exist positive numbers h_{0}, x_{0}, c_{1} and C_{1} such that for any $0<h \leq h_{0}$ and $x \geq x_{0}$

$$
P\left\{\sup _{0<t \leq 1-h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{(t \vee h)^{m-1 / 2}} \geq(1+\varepsilon) b_{m 2}^{1 / 2} h x\right\} \leq C_{1}\left(e^{-c_{1} x^{2}}+h^{-1} e^{-x^{2} / 2}\right) .
$$

PROOF. For any $t>0$ and integer $r>0$, let $t_{r}=\left[t 2^{r} / h\right] /\left(2^{r} / h\right)$, and write, for $r h<1-h$,

$$
\begin{align*}
& \sup _{0<1 \leq 1-h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{(t \vee h)^{m-1 / 2}} \tag{2.1}\\
& \quad=\sup _{0<t \leq r h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{(t \vee h)^{m-1 / 2}} \vee \sup _{r h \leq t \leq 1-h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{t^{m-1 / 2}} \\
& \quad=: I_{1} \vee I_{2} .
\end{align*}
$$

Noting $t \vee h \geq(t+h) / 2$, we have

$$
I_{1} \leq 2^{m-1 / 2} \sup _{0<t \leq r h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{(t+h)^{m-1 / 2}} \leq 2^{m+1 / 2} \sup _{0<t \leq(1+r) h}\left|Y_{m}(t)\right|
$$

Let $Z_{m}(t)=Y_{m}((1+r) h t), 0<t \leq 1$. We will use Lemma 2.1 with $A=b_{m}^{1 / 2}(1+r) h$ and $\sigma(s)=\left(2 B_{m}\right)^{1 / 2}(1+r) h s$. Put $D=(1+r)\left(b_{m}^{1 / 2}+\left(2 B_{m}\right)^{1 / 2} \int_{1}^{\infty} e^{-y^{2}} d y\right)$. For any given $\varepsilon>0$, take $r=r(\varepsilon)$ to be specified later on. By Lemma 2.1, we have

$$
\begin{equation*}
P\left\{I_{1} \geq b_{m 2}^{1 / 2} h x\right\} \leq P\left\{\sup _{0<t \leq 1}\left|Z_{m}(t)\right| \geq\left(b_{m 2}^{1 / 2} 2^{-(m+1 / 2)} D^{-1}\right) D h x\right\} \leq C e^{-c_{1} x^{2}} \tag{2.2}
\end{equation*}
$$

for $x \geq x_{0}:=b_{m 2}^{-1 / 2} 2^{m+1 / 2} D$, where $c_{1}=b_{m 2} 2^{-(2 m+1)} D^{-2} / 2$.
Consider I_{2} now. We shall use a method similar to that in [1]. For $r h<t \leq 1-h$, $0 \leq s \leq h$, which implies that

$$
\frac{1}{t^{m-1 / 2}} \leq\left(1+\frac{1}{r}\right)^{m-1 / 2} \frac{1}{(t+s)^{m-1 / 2}} \leq\left(1+\frac{1}{r}\right)^{m-1 / 2} \frac{1}{(t+s)_{r+j+1}^{m-1 / 2}}
$$

for any $j \geq 0$, we have

$$
\begin{align*}
& \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{t^{m-1 / 2}} \tag{2.3}\\
& \quad \leq \frac{\left|X_{m}\left((t+s)_{r}\right)-X_{m}\left(t_{r}\right)\right|}{t^{m-1 / 2}}+\frac{\left|X_{m}\left((t+s)_{r}\right)-X_{m}(t+s)\right|}{t^{m-1 / 2}}
\end{align*}
$$

$$
\begin{aligned}
& +\frac{\left|X_{m}\left(t_{r}\right)-X_{m}(t)\right|}{t^{m-1 / 2}} \\
\leq & \frac{\left|X_{m}\left((t+s)_{r}\right)-X_{m}\left(t_{r}\right)\right|}{t^{m-1 / 2}}+\sum_{j=0}^{\infty} \frac{\left|X_{m}\left((t+s)_{r+j+1}\right)-X_{m}\left((t+s)_{r+j}\right)\right|}{t^{m-1 / 2}} \\
& +\sum_{j=0}^{\infty} \frac{\left|X_{m}\left(t_{r+j+1}\right)-X_{m}\left(t_{r+j}\right)\right|}{t^{m-1 / 2}} \\
\leq & \frac{\left|X_{m}\left((t+s)_{r}\right)-X_{m}\left(t_{r}\right)\right|}{t_{r}^{m-1 / 2}} \\
& +\left(1+\frac{1}{r}\right)^{m-1 / 2} \sum_{j=0}^{\infty} \frac{\left|X_{m}\left((t+s)_{r+j+1}\right)-X_{m}\left((t+s)_{r+j}\right)\right|}{(t+s)_{r+j+1}^{m-1 / 2}} \\
& +\sum_{j=0}^{\infty} \frac{\left|X_{m}\left(t_{r+j+1}\right)-X_{m}\left(t_{r+j}\right)\right|}{t_{r+j+1}^{m-1 / 2}} .
\end{aligned}
$$

For the first term of the right hand side of (2.3), by (1.4) we have

$$
E\left(\frac{X_{m}\left((t+s)_{r}\right)-X_{m}\left(t_{r}\right)}{t_{r}^{m-1 / 2}}\right)^{2} \leq\left(1+\frac{\varepsilon}{4}\right)^{2} b_{m 2}\left(1+2^{-r}\right)^{2} h^{2} \leq\left(1+\frac{\varepsilon}{3}\right)^{2} b_{m 2} h^{2}
$$

provided $r=r(\varepsilon)$ is large enough. Hence, noting that the number of points lying within the grid $[0, h] \times[r h, 1]$ with step $h / 2^{r}$ is less than $2^{2 r} / h$, we obtain

$$
\begin{align*}
& P\left\{\sup _{r h<t \leq 1-h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}\left((t+s)_{r}\right)-X_{m}\left(t_{r}\right)\right|}{t_{r}^{m-1 / 2}} \geq\left(1+\frac{\varepsilon}{3}\right) b_{m 2}^{1 / 2} h x\right\} \tag{2.4}\\
& \quad \leq \frac{2^{2 r}}{h} \sup _{r h<t \leq 1-h} \sup _{0 \leq s \leq h} P\left\{\frac{\left|X_{m}\left((t+s)_{r}\right)-X_{m}\left(t_{r}\right)\right|}{t_{r}^{m-1 / 2}} \geq\left(1+\frac{\varepsilon}{3}\right) b_{m 2}^{1 / 2} h x\right\} \\
& \quad \leq \frac{2^{2 r}}{h} e^{-x^{2} / 2}
\end{align*}
$$

by recalling the well-known inequality $1-\Phi(x) \leq(1 / \sqrt{2 \pi} x) e^{-x^{2} / 2}$. (Without loss of generality, assume that $x_{0} \geq 1 / \sqrt{2 \pi}$.)

Consider the second term of the right hand side of (2.3). Note the following inequality:

$$
\begin{aligned}
P\left\{\sup _{i \in I} \sum_{j=0}^{\infty} X_{i j} \geq \sum_{j=0}^{\infty} x_{j}\right\} & \leq \sum_{i \in I} P\left\{\sum_{j=0}^{\infty} X_{i j} \geq \sum_{j=0}^{\infty} x_{j}\right\} \\
& \leq \#(I) \sup _{i \in I} P\left\{\exists j \geq 0: X_{i j} \geq x_{j}\right\} \\
& \leq \#(I) \sup _{i \in I} \sum_{j=0}^{\infty} P\left\{X_{i j} \geq x_{j}\right\}
\end{aligned}
$$

where $X_{i j}, i \in I, j=0,1, \ldots$, are random variables and $x_{j}, j=0,1, \ldots$, are real numbers. Moreover, by (1.4) again, we have

$$
E\left(\frac{X_{m}\left(t_{r+j+1}\right)-X_{m}\left(t_{r+j}\right)}{t_{r+j+1}^{m-1 / 2}}\right)^{2} \leq 2 b_{m 2} h^{2} / 2^{2(r+j+1)}
$$

for any $0<t \leq 1$, provided r is large enough. Furthermore, we may demand

$$
\sqrt{2} \sum_{j=0}^{\infty} 2^{-(r+j+1) / 2} \leq\left(1+\frac{1}{r}\right)^{-m+1 / 2} \frac{\varepsilon}{3}
$$

Then we have
(2.5)

$$
\begin{aligned}
& P\left\{\sup _{r h<t \leq 1-h} \sup _{0 \leq s \leq h} \sum_{j=0}^{\infty} \frac{\left|X_{m}\left((t+s)_{r+j+1}\right)-X_{m}\left((t+s)_{r+j}\right)\right|}{(t+s)_{r+j+1}^{m-1 / 2}} \geq\left(1+\frac{1}{r}\right)^{-m+1 / 2} \frac{\varepsilon}{3} b_{m 2}^{1 / 2} h x\right\} \\
& \\
& \leq P\left\{\sup _{r h<t \leq 1} \sum_{j=0}^{\infty} \frac{\left|X_{m}\left(t_{r+j+1}\right)-X_{m}\left(t_{r+j}\right)\right|}{t_{r+j+1}^{m-1 / 2}} \geq \sum_{j=0}^{\infty} \sqrt{2} b_{m 2}^{1 / 2}\left(\frac{h}{2^{(r+j+1) / 2}}\right) x\right\} \\
& \quad \leq \frac{2^{r}}{h} \sum_{j=0}^{\infty} e^{-2^{r+j+1} x^{2} / 2} \leq \frac{2^{r}}{h} e^{-x^{2} / 2}
\end{aligned}
$$

for large r. Similarly, for the third term of the right hand side of (2.3) we have

$$
\begin{equation*}
P\left\{\sup _{r h<t \leq 1-h} \sup _{0 \leq s \leq h} \sum_{j=0}^{\infty} \frac{\left|X_{m}\left(t_{r+j+1}\right)-X_{m}\left(t_{r+j}\right)\right|}{t_{r+j+1}^{m-1 / 2}} \geq \frac{\varepsilon}{3} b_{m 2}^{1 / 2} h x\right\} \leq \frac{2^{r}}{h} e^{-x^{2} / 2} \tag{2.6}
\end{equation*}
$$

Combining (2.3)-(2.6) we obtain

$$
\begin{equation*}
P\left\{I_{2} \geq(1+\varepsilon) b_{m 2}^{1 / 2} h x\right\} \leq\left(2^{2 r}+2^{r+1}\right) \frac{1}{h} e^{-x^{2} / 2} \tag{2.7}
\end{equation*}
$$

(2.2) and (2.7) together imply the conclusion of Proposition 2.1.

An analogue of Proposition 2.1 in the large increment case is the following.
PROPOSITION 2.2. Let a_{T} be a function of T with $0<a_{T} \leq T$ and $a_{T} / T \rightarrow 0$ as $T \rightarrow \infty$. Then for any $\varepsilon>0$, there exist positive numbers T_{0}, x_{1}, c_{2} and C_{2} such that for any $T \geq T_{0}$ and $x \geq x_{1}$,
$P\left\{\sup _{0<t \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{\left(t \vee a_{T}\right)^{m-1 / 2}} \geq(1+\varepsilon) b_{m 2}^{1 / 2} a_{T} x\right\} \leq C_{2}\left(e^{-c_{2} x^{2}}+T a_{T}^{-1} e^{-x^{2} / 2}\right)$.
The proof is similar to that of Proposition 2.1, and hence, is omitted.

3. Moduli of continuity

We need another well-known lemma.

Lemma 3.1 (Slepian). Let $G(t)$ and $G^{*}(t)$ be Gaussian processes on $[0, T]$ for some $0<T<\infty$, possessing continuous sample path functions with $E G(t)=$ $E G^{*}(t)=0, E G^{2}(t)=E G^{* 2}(t)=1$, and let $\rho(s, t)$ and $\rho^{*}(s, t)$ be their respective covariance functions. Suppose that we have $\rho(s, t) \geq \rho^{*}(s, t), s, t \in[0, T]$. Then for any real u,

$$
P\left\{\sup _{0 \leq \leq \leq T} G(t) \leq u\right\} \geq P\left\{\sup _{0 \leq \leq \leq T} G^{*}(t) \leq u\right\} .
$$

Put $\log x=\ln (e \vee x)$.

THEOREM 3.1.
(3.1) $\quad \lim \sup \sup _{h \rightarrow 0} \sup _{0<t \leq 1-h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{0}^{1 / 2}(t \vee h)^{m-1 / 2} h\left(2 \log h^{-1}\right)^{1 / 2}} \leq 1 \quad$ almost surely,

$$
\begin{equation*}
\liminf _{h \rightarrow 0} \sup _{0<t \leq 1-h} \frac{\left|X_{m}(t+h)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}(t \vee h)^{m-1 / 2} h\left(2 \log \log h^{-1}\right)^{1 / 2}} \geq 1 \quad \text { almost surely. } \tag{3.2}
\end{equation*}
$$

Remark 3.1. It is interesting to find the exact factors such that equality signs in (3.1) and/or (3.2) hold. For Lévy's moduli of continuity of a Brownian motion $W(\cdot)$, the ' $\left(\log h^{-1}\right)^{1 / 2}$, makes the equality sign in (3.1) hold. For $X_{m}(\cdot)$, there are certain difficulties because its increments are neither independent nor stationary.

Proof. First we prove (3.1). For any given $\varepsilon>0$, by Propositon 2.1, there exist $c_{1}=c_{1}(\varepsilon)>0$ and $C_{1}=C_{1}(\varepsilon)>0$ such that

$$
\begin{aligned}
P\{ & \left.\sup _{0<1 \leq 1-h} \sup _{0 \leq s \leq h} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}(t \vee h)^{m-1 / 2} h\left(2 \log h^{-1}\right)^{1 / 2}} \geq(1+\varepsilon)^{2}\right\} \\
& \leq C_{1}\left(\exp \left\{-2 c_{1}(1+\varepsilon)^{2} \log h^{-1}\right\}+h^{-1} \exp \left\{-(1+\varepsilon)^{2} \log h^{-1}\right\}\right) \\
& \leq C_{1}\left(h^{2 c_{1}}+h^{2 \varepsilon}\right) .
\end{aligned}
$$

Taking $h_{n}=n^{-A}$ with $A>\left(2\left(\varepsilon \wedge c_{1}\right)\right)^{-1}$, we obtain

$$
\sum_{n=1}^{\infty} P\left\{\sup _{0<t \leq 1-h_{n}} \sup _{0 \leq s \leq h_{n}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee h_{n}\right)^{m-1 / 2} h_{n}\left(2 \log h_{n}^{-1}\right)^{1 / 2}} \geq(1+\varepsilon)^{2}\right\}<\infty,
$$

which, in combination with the Borel-Cantelli lemma, implies
(3.3) $\quad \lim \sup \sup _{n \rightarrow \infty} \sup _{0<t \leq 1-h_{n}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{0 \leq h_{n}} b_{m 2}^{1 / 2}\left(t \vee h_{n}\right)^{m-1 / 2} h_{n}\left(2 \log h_{n}^{-1}\right)^{1 / 2} \leq(1+\varepsilon)^{2} \quad$ a.s.

The procedure from (3.3) to (3.1) is routine, and hence, is omitted.
Next we show (3.2). Let $h_{n}=n^{-A_{n}}$ with $A_{n}=n^{(\log \log n)^{-1}} \uparrow \infty$ as $n \rightarrow \infty$. Define

$$
Y(i)=\frac{X_{m}\left((i+1) h_{n}\right)-X_{m}\left(i h_{n}\right)}{\left(i h_{n}\right)^{m-1 / 2}}, \quad 0<i \leq n^{A_{n}}-1
$$

By (1.4), $E Y(i)^{2} \geq b_{m 2} h_{n}^{2}$. We have that, for $i \leq j$,
(3.4) $E(Y(i) Y(j))$

$$
\begin{aligned}
= & \frac{1}{(m!)^{2}\left(i h_{n}\right)^{m-1 / 2}\left(j h_{n}\right)^{m-1 / 2}}\left\{\int_{0}^{(i+1) h_{n}}\left((i+1) h_{n}-s\right)^{m}\left((j+1) h_{n}-s\right)^{m} d s\right. \\
& -\int_{0}^{(i+1) h_{n}}\left((i+1) h_{n}-s\right)^{m}\left(j h_{n}-s\right)^{m} d s \\
& \left.-\int_{0}^{i h_{n}}\left(i h_{n}-s\right)^{m}\left((j+1) h_{n}-s\right)^{m} d s+\int_{0}^{i h_{n}}\left(i h_{n}-s\right)^{m}\left(j h_{n}-s\right)^{m} d s\right\} \\
= & h_{n}^{2} \sum_{p=0}^{m} \sum_{q=0}^{m}\binom{m}{p}\binom{m}{q} \frac{1}{(m!)^{2}(2 m-p-q+1)(i j)^{m-1 / 2}} \\
& \times\left\{(i+1)^{2 m-q+1}(j+1)^{q}-(i+1)^{2 m-q+1} j^{q}-i^{2 m-q+1}(j+1)^{q}+i^{2 m-q+1} j^{q}\right\} \\
= & h_{n}^{2} \sum_{p=0}^{m} \sum_{q=0}^{m}\binom{m}{p}\binom{m}{q} \frac{\left((i+1)^{2 m-q+1}-i^{2 m-q+1}\right)\left((j+1)^{q}-j^{q}\right)}{(m!)^{2}(2 m-p-q+1)(i j)^{m-1 / 2}} \\
= & h_{n}^{2} \sum_{p=0}^{m} \sum_{q=0}^{m}\binom{m}{p}\binom{m}{q} \frac{4(2 m-q+1) q(i / j)^{m-q+1 / 2}}{(m!)^{2}(2 m-p-q+1)}(1+O(1 / i)) .
\end{aligned}
$$

Let $n_{1}=\left[A_{n} \log n\right], Z(i)=Y\left(e^{i}\right), i=0,1, \ldots, n_{1}$,

$$
c_{m}=\sum_{p=0}^{m} \sum_{q=0}^{m}\binom{m}{p}\binom{m}{q} \frac{4(2 m-q+1) q}{(m!)^{2}(2 m-p-q+1)}
$$

and $D_{n}=3 \log \log n$. (3.4) implies that for $i \geq n_{1} / 3$ and $j-i \geq D_{n}$,

$$
\begin{equation*}
E(Z(i) Z(j)) \leq h_{n}^{2} c_{m} e^{-(j-i) / 2}(1+O(1 / i)) \leq c_{m}(\log n)^{-1} h_{n}^{2} \tag{3.5}
\end{equation*}
$$

provided n is large enough. Let $\left\{\xi_{i}, i \geq 0\right\}$ and ζ be independent normal random variables with means zero and $E \xi_{i}^{2}=E Z(i)^{2}-c_{m}(\log n)^{-1} h_{n}^{2}=(1+o(1)) b_{m 2} h_{n}^{2}$ as $n \rightarrow \infty$ (recalling (1.4)), $E \zeta^{2}=c_{m}(\log n)^{-1} h_{n}^{2}$. Define $\gamma_{i}=\xi_{i}+\zeta$. Then
$E \gamma_{i}^{2}=E Z(i)^{2}$ and $E Z(i) Z(j) \leq E \gamma_{i} \gamma_{j}$. Let $I=\left\{i: n_{1} / 3 \leq i \leq n_{1}-1, i\right.$ $\left.\bmod D_{n}\right\}$, then $\#(I) \geq n_{1} /\left(2 D_{n}\right)$ for large n. Hence by Slepian's lemma and using the well-known inequality

$$
1-\Phi(x) \geq \frac{1}{\sqrt{2 \pi}}\left(\frac{1}{x}-\frac{1}{x^{3}}\right) e^{-x^{2} / 2}
$$

we obtain that for large n

$$
\begin{align*}
P\left\{\begin{array}{l}
\left.\max _{\substack{n_{1} / 3 \leq i \leq n_{1}-1 \\
i \\
\bmod D_{n}}} Z(i) \leq(1-\varepsilon) b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}\right\} \\
\leq
\end{array}\right. & P\left\{\max _{\substack{n_{1} / 3 \leq \leq \leq n_{1}-1 \\
i \bmod D_{n}}} \gamma_{i} \leq(1-\varepsilon) b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}\right\} \tag{3.6}\\
\leq & P\left\{\max _{\substack{n_{1} / 3 \leq i \leq n_{1}-1 \\
i \\
\bmod D_{n}}} \xi_{i} \leq\left(1-\frac{\varepsilon}{2}\right) b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}\right\} \\
& +P\left\{\zeta \geq \frac{\varepsilon}{2} b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}\right\} \\
\leq & \left(1-P\left\{\xi_{i}>\left(1-\frac{\varepsilon}{2}\right) b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}\right\}\right)^{n_{1} /\left(2 D_{n}\right)} \\
& +\exp \left\{-\frac{\varepsilon^{2} b_{m 2}}{4 c_{m}(\log n)^{-1}} \log \log h_{n}^{-1}\right\} \\
\leq & \left(1-\frac{1}{\left(8 \pi \log \log h_{n}^{-1}\right)^{1 / 2}} \exp \left\{-\left(1-\frac{\varepsilon}{2}\right) \log \log h_{n}^{-1}\right\}\right)^{n_{1} /\left(2 D_{n}\right)}+n^{-2} \\
= & \left(1-\frac{\left(\log h_{n}^{-1}\right)^{(1-\varepsilon / 2)}}{\left(8 \pi \log \log h_{n}^{-1}\right)^{1 / 2}}\right)^{n_{1} /\left(2 D_{n}\right)}+n^{-2} \\
\leq & \exp \left\{-\frac{\left(\log h_{n}^{-1}\right)^{-(1-\varepsilon / 2)} n_{1}}{\left.2 D_{n}\left(8 \pi \log \log h_{n}^{-1}\right)^{1 / 2}\right\}+n^{-2} \leq 2 n^{-2} .}\right.
\end{align*}
$$

Inequality (3.6) implies

$$
\sum_{n=1}^{\infty} P\left\{\max _{0 \leq i \leq n_{1}-1} Z(i) \leq(1-\varepsilon) b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}\right\}<\infty
$$

and by the Borel-Cantelli lemma it follows that

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \max _{0 \leq i \leq n_{1}-1} \frac{Z(i)}{b_{m 2}^{1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}} \geq 1-\varepsilon \quad \text { a.s. } \tag{3.7}
\end{equation*}
$$

And hence we conclude

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \sup _{h_{n} \leq t \leq 1-h_{n}} \frac{X_{m}\left(t+h_{n}\right)-X_{m}(t)}{b_{m 2}^{1 / 2} t^{m-1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}} \geq 1-\varepsilon \quad \text { a.s. } \tag{3.8}
\end{equation*}
$$

Considering $h_{n+1}<h \leq h_{n}$, we have

$$
\begin{align*}
\sup _{0<t \leq 1-h} & \frac{\left|X_{m}(t+h)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}(t \vee h)^{m-1 / 2} h\left(2 \log \log h^{-1}\right)^{1 / 2}} \tag{3.9}\\
\geq & \sup _{h_{n} \leq t \leq 1-h} \frac{\left|X_{m}\left(t+h_{n}\right)-X_{m}(t)+X_{m}(t+h)-X_{m}\left(t+h_{n}\right)\right|}{b_{m 2}^{1 / 2} t^{m-1 / 2} h\left(2 \log \log h^{-1}\right)^{1 / 2}} \\
\geq & \sup _{h_{n} \leq t \leq 1-h_{n}} \frac{\left|X_{m}\left(t+h_{n}\right)-X_{m}(t)\right|}{b_{m 2}^{1 / 2} t^{m-1 / 2} h_{n}\left(2 \log \log h_{n}^{-1}\right)^{1 / 2}} \\
& \quad-2 \sup _{\sup _{n}<t \leq 1-\left(h_{n}-h_{n+1}\right)} \sup _{0 \leq s \leq h_{n}-h_{n+1}} \frac{\left|X_{m}\left(t+h_{n+1}+s\right)-X_{m}\left(t+h_{n+1}\right)\right|}{b_{m 2}^{1 / 2}\left(t+h_{n+1}\right)^{m-1 / 2}\left(h_{n}-h_{n+1}\right)} \\
& \times \frac{\left(t+h_{n+1}\right)^{m-1 / 2}\left(h_{n}-h_{n+1}\right)\left(\log \left(h_{n}-h_{n+1}\right)^{-1}\right)^{1 / 2}}{\left(2 \log \left(h_{n}-h_{n+1}\right)^{-1}\right)^{1 / 2} t^{m-1 / 2} h_{n+1}\left(\log \log h_{n+1}^{-1}\right)^{1 / 2}} .
\end{align*}
$$

By the derivative calculus for the function $f(x)=x^{-A_{x}}$, we have

$$
h_{n}-h_{n+1}=h_{n+1} \frac{A_{n} \log n}{n \log \log n}(1+o(1))
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \sup _{h_{n}<t \leq 1-\left(h_{n}-h_{n+1}\right)} \frac{\left(t+h_{n+1}\right)^{m-1 / 2}\left(h_{n}-h_{n+1}\right)\left(\log \left(h_{n}-h_{n+1}\right)^{-1}\right)^{1 / 2}}{t^{m-1 / 2} h_{n+1}\left(\log \log h_{n+1}^{-1}\right)^{1 / 2}}=0
$$

Consequently we conclude (3.2) by (3.8), (3.9) and (3.1). This completes the proof of Theorem 3.1.

4. Large increments

THEOREM 4.1. Let a_{T} be a continuous function of T with $0<a_{T} \leq T$ and suppose that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sup _{n-1<t \leq n} a_{t}}{\inf _{n-1<t \leq n} a_{t}}=1 \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \log \left(T / a_{T}\right) / \log \log T=\infty \tag{4.2}
\end{equation*}
$$

Then
(4.3) $\quad \lim \sup \sup _{T \rightarrow \infty} \sup _{0<t \leq T-a_{T}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \left(T / a_{T}\right)\right)^{1 / 2}} \leq 1 \quad$ a.s.

If, instead of (4.2), for any $\varepsilon>0$ there exists $T_{0}>0$ such that for $T>T_{0}$

$$
\begin{align*}
&\left(\log \frac{T}{a_{T}}\right)^{(\log \log \log T)^{1 / \varepsilon}} \geq \log T, \tag{4.4}\\
&\left(\log a_{T}\right)^{2(1-\varepsilon) \log \log \log a_{T}} \geq \log T, \tag{4.5}
\end{align*}
$$

then

$$
\begin{equation*}
\liminf _{T \rightarrow \infty} \sup _{0<t \leq T-a_{T}} \frac{\left|X_{m}\left(t+a_{T}\right)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \log \left(T / a_{T}\right)\right)^{1 / 2}} \geq 1 \quad \text { a.s. } \tag{4.6}
\end{equation*}
$$

Proof. First we prove (4.3). Let $\theta>1$ and for integers k and j let

$$
\begin{equation*}
A_{k j}=\left\{T: \theta^{k-1}<T \leq \theta^{k}, \theta^{j-1}<a_{T} \leq \theta^{j}\right\} . \tag{4.7}
\end{equation*}
$$

In the sequel, we always consider k and j such that $A_{k j}$ is non-empty. For any $A>0$, by condition (4.2), there exists k_{0} such that for $k \geq k_{0}$

$$
\log \theta^{k-j} / \log \log \theta^{k} \geq A,
$$

that is,

$$
\begin{equation*}
j \leq k-\left[(A / \log \theta) \log k+\theta_{1}\right]=: k_{1}, \tag{4.8}
\end{equation*}
$$

where $\theta_{1}=A(\log \log \theta) / \log \theta$. Then, noting that $b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \left(T / a_{T}\right)\right)^{1 / 2}$ is an increasing function of both T and a_{T}, we have
(4.9) $\limsup _{T \rightarrow \infty} \sup _{0 \ll \leq T-a_{T}} \sup _{0 \leq s \leq a_{T}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \left(T / a_{T}\right)\right)^{1 / 2}}$

$$
\begin{aligned}
& \leq \limsup _{k \rightarrow \infty} \sup _{-\infty<j \leq k_{1}} \sup _{0<i \leq \theta^{k}-\theta^{j-1}} \sup _{0 \leq \leq \leq \theta^{j}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee \theta^{j-1}\right)^{m-1 / 2} \theta^{j-1}\left(2 \log \theta^{k-j}\right)^{1 / 2}} \\
& \leq \limsup _{k \rightarrow \infty} \sup _{-\infty<j \leq k_{1}} \sup _{0<t \leq \theta^{k+1}-\theta^{j}} \sup _{0 \leq s \leq \theta^{j}} \frac{\theta^{m+1 / 2}\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee \theta^{j}\right)^{m-1 / 2} \theta^{j}\left(2 \log \theta^{k-j}\right)^{1 / 2}} .
\end{aligned}
$$

Using Proposition 2.2 and (4.8) we have

$$
\begin{aligned}
& P\left\{\sup _{-\infty<j \leq k_{1}} \sup _{0<t \leq \theta^{k+1}-\theta^{j}} \sup _{0 \leq s \leq \theta^{j}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee \theta^{j}\right)^{m-1 / 2} \theta^{j}\left(2 \log \theta^{k-j}\right)^{1 / 2}} \geq(1+\varepsilon)^{2}\right\} \\
& \quad \leq C_{2} \sum_{j=-\infty}^{k_{1}}\left(\exp \left\{-2 c_{2}(1+\varepsilon)^{2} \log \theta^{k-j}\right\}+\theta^{k-j+1} \exp \left\{-(1+\varepsilon)^{2} \log \theta^{k-j}\right\}\right) \\
& \quad \leq C_{2} \sum_{j=-\infty}^{k_{1}}\left(\theta^{-2 c_{2}(1+\varepsilon)^{2}(k-j)}+\theta^{-2 \varepsilon(k-j)+1}\right) \\
& \quad \leq c\left(\theta^{-2 c_{2}(1+\varepsilon)^{2}\left[(A / \log \theta) \log k+\theta_{1}\right]}+\theta^{-2 \varepsilon\left[(A / \log \theta) \log k+\theta_{1}\right]+1}\right) \leq c k^{-2}
\end{aligned}
$$

for some $c>0$ by taking $A=(\log \theta) /\left(c_{2}(1+\varepsilon)^{2} \wedge \varepsilon\right)$. Hence, from the Borel-Cantelli lemma we obtain

$$
\limsup _{k \rightarrow \infty} \sup _{-\infty<j \leq k_{1}} \sup _{0 \leq t \leq \theta^{k+1}-\theta^{j}} \sup _{0 \leq s \leq \theta^{j}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee \theta^{j}\right)^{m-1 / 2} \theta^{j}\left(2 \log \theta^{k-j}\right)^{1 / 2}} \leq(1+\varepsilon)^{2} \quad \text { a.s. }
$$

which, in combination with (4.9), implies (4.3) by arbitrariness of $\theta>1$.
Next we show (4.6). Let $A_{j}=j^{(\log \log j)^{-1}}$ again, and let $B_{0}=0, B_{j}=j^{A_{j}}$, $j=1,2, \ldots, C_{k j}=\left\{T: B_{k-1}<T \leq B_{k}, B_{j-1}<a_{T} \leq B_{j}\right\}$. By condition (4.4), for any $A>0$, there exists an integer j_{0} such that for $j \geq j_{0}$

$$
\begin{equation*}
\log \left(B_{k} / B_{j}\right) \geq\left(\log B_{k}\right)^{(\log \log k)^{-\Lambda}} \geq A_{k}^{(\log \log k)^{-A}} \tag{4.10}
\end{equation*}
$$

On the other hand, by the derivative calculus for the function $g(x)=\log B_{x}$, we have

$$
\log B_{k}-\log B_{j} \leq 2(k-j) \frac{A_{k} \log k}{k \log \log k}
$$

which, in combination with (4.10), implies that

$$
j \leq k-\left[\frac{k \log \log k}{2 \log k} A_{k}^{-1+(\log \log k)^{-1}}\right]=: k_{2}
$$

Noting that $b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \log \left(T / a_{T}\right)\right)^{1 / 2}$ is an increasing function of both T and a_{T} we can write
(4.11) $\quad \liminf _{T \rightarrow \infty} \sup _{0<t \leq T-a_{T}} \frac{\left|X_{m}\left(t+a_{T}\right)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \log \left(T / a_{T}\right)\right)^{1 / 2}}$

$$
\geq \liminf _{k \rightarrow \infty} \inf _{1 \leq j \leq k_{2}} \inf _{T \in C_{k j}} \sup _{0<t \leq T-a_{T}} \frac{\left|X_{m}\left(t+a_{T}\right)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee a_{T}\right)^{m-1 / 2} a_{T}\left(2 \log \log \left(T / a_{T}\right)\right)^{1 / 2}}
$$

$$
\geq \liminf _{k \rightarrow \infty} \inf _{1 \leq j \leq k_{2}} \sup _{0<t \leq B_{k-1} / 2} \frac{\left|X_{m}\left(t+B_{j}\right)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee B_{j}\right)^{m-1 / 2} B_{j}\left(2 \log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}}
$$

$$
-\limsup \sup _{k \rightarrow \infty} \sup _{0<t \leq B_{k} \rightarrow\left(B_{j}-B_{j-1}\right)} \sup _{0 \leq s \leq B_{j}-B_{j-1}} \frac{\left|X_{m}(t+s)-X_{m}(t)\right|}{b_{m 2}^{1 / 2}\left(t \vee\left(B_{j}-B_{j-1}\right)\right)^{m-1 / 2}\left(B_{j}-B_{j-1}\right)}
$$

$$
\times \frac{\left(t \vee\left(B_{j}-B_{j-1}\right)\right)^{m-1 / 2}\left(B_{j}-B_{j-1}\right)\left(\log \left(B_{k} /\left(B_{j}-B_{j-1}\right)\right)\right)^{1 / 2}}{\left(2 \log \left(B_{k} /\left(B_{j}-B_{j-1}\right)\right)\right)^{1 / 2}\left(t \vee B_{j}\right)^{m-1 / 2} B_{j}\left(\log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}}
$$

$$
=: J_{1}-J_{2}
$$

By the derivative calculus for the function $h(x)=B_{x}$, we have

$$
\frac{B_{j}-B_{j-1}}{B_{j}} \leq \frac{2 A_{j} \log j}{j \log \log j}
$$

The last inequality and condition (4.5) imply that, as $k \rightarrow \infty$,

$$
\log B_{k} \leq(1+o(1)) \log B_{k-1} \leq 2\left(\log B_{j}\right)^{2(1-\varepsilon) \log \log \log B_{j}} \leq 2\left(A_{j} \log j\right)^{2(1-\varepsilon) \log \log j}
$$

Hence

$$
\begin{align*}
& \frac{\left(t \vee\left(B_{j}-B_{j-1}\right)\right)^{m-1 / 2}\left(B_{j}-B_{j-1}\right)\left(\log \left(B_{k} /\left(B_{j}-B_{j-1}\right)\right)\right)^{1 / 2}}{\left(t \vee B_{j}\right)^{m-1 / 2} B_{j}\left(\log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}} \tag{4.12}\\
& \quad \leq \frac{B_{j}-B_{j-1}}{B_{j}}\left(\log B_{k}\right)^{1 / 2} \leq \frac{2 \sqrt{2} A_{j} \log j}{j \log \log j} \cdot\left(A_{j} \log j\right)^{(1-\varepsilon) \log \log j} \\
& \quad=\frac{2 \sqrt{2} A_{j}(\log j)^{1+(1-\varepsilon) \log \log j}}{j^{\varepsilon} \log \log j} \rightarrow 0 \quad \text { as } j \rightarrow \infty
\end{align*}
$$

Then by (4.3) and (4.12) we obtain

$$
\begin{equation*}
J_{2}=0 \quad \text { a.s. } \tag{4.13}
\end{equation*}
$$

Consider J_{1} and for fixed k, define

$$
Y_{j}(i)=\frac{X_{m}\left((i+1) B_{j}\right)-X_{m}\left(i B_{j}\right)}{\left(i B_{j}\right)^{m-1 / 2}}, \quad 0<i \leq B_{k} / B_{j}-1, j=0,1, \ldots, k_{2}
$$

Furthermore, let $Z_{j}(i)=Y_{j}\left(e^{i}\right), i=0,1, \ldots, k_{3}-1$ with $k_{3}=\left[\log \left(B_{k} / B_{j}\right)\right]$. Similarly to (3.5), we have

$$
E Z_{j}\left(i_{1}\right) Z_{j}\left(i_{2}\right) \leq c_{m}^{\prime}(\log \log k)^{-A-2} B_{j}^{2}
$$

for some $c_{m}^{\prime}>0$ and any $i_{1} \geq k_{3} / 3, i_{2}-i_{1} \geq D_{k}^{\prime}:=3(A+2) \log \log \log k$. Let $\left\{\xi_{i j}, i \geq 0\right\}$ and ζ_{j} be independent normal random variables with means zero and $E \xi_{i j}^{2}=E Z_{j}(i)^{2}-c_{m}^{\prime}(\log \log k)^{-A-2} B_{j}^{2}, E \zeta_{j}^{2}=c_{m}^{\prime}(\log \log k)^{-A-2} B_{j}^{2}$. Then, similarly to (3.6), using (4.10) with $A>6 / \varepsilon$ we obtain for all large k

$$
\begin{align*}
& P\left\{\begin{array}{l}
\left.\inf _{\substack{0 \leq j \leq k_{2} k_{3} / 3 \leq i \leq k_{3}-1 \\
i \bmod D_{k}^{\prime}}} Z_{j}(i) \leq(1-\varepsilon) b_{m 2}^{1 / 2} B_{j}\left(2 \log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}\right\} \\
\quad \leq \sum_{j=0}^{k_{2}}\left(\exp \left\{-\frac{\left(\log \left(B_{k} / B_{j}\right)\right)^{-(1-\varepsilon / 2)} k_{3}}{2 D_{k}^{\prime}\left(8 \pi \log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}}\right\}\right. \\
\left.\quad+\exp \left\{-\frac{\varepsilon^{2} b_{m 2}}{4 c_{m}^{\prime}(\log \log k)^{-A-2}} \log \log \left(B_{k} / B_{j}\right)\right\}\right) \\
\quad \leq c \sum_{j=0}^{k_{2}}\left(\exp \left\{-\frac{\left(\log \left(B_{k} / B_{j}\right)\right)^{\varepsilon / 2}}{D_{k}^{\prime}\left(8 \pi \log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}}\right\}\right.
\end{array} .\left\{\begin{array}{l}
\end{array}\right)\right. \tag{4.14}
\end{align*}
$$

$$
\left.+\exp \left\{-\frac{\varepsilon^{2} b_{m 2}}{4 c_{m}^{\prime}}(\log \log k) \log k\right\}\right)
$$

It is easy to see that

$$
D_{k}^{\prime}=o\left(\log \left(B_{k} / B_{j}\right)\right), \quad \log \log \left(B_{k} / B_{j}\right)=o\left(\log \left(B_{k} / B_{j}\right)\right)
$$

So for large k,

$$
\exp \left\{-\frac{\left(\log \left(B_{k} / B_{j}\right)\right)^{\varepsilon / 2}}{D_{k}^{\prime}\left(8 \pi \log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}}\right\} \leq \exp \left\{-\left(\log \left(B_{k} / B_{j}\right)\right)^{\varepsilon / 3}\right\}
$$

Combining it with (4.14) implies

$$
\sum_{k=1}^{\infty} P\left\{\inf _{0 \leq j \leq k_{2}} \max _{0 \leq i \leq k_{3}-1} Z_{j}(i) \leq(1-\varepsilon) b_{m 2}^{1 / 2} B_{j}\left(2 \log \log \left(B_{k} / B_{j}\right)\right)^{1 / 2}\right\}<\infty
$$

Hence

$$
\begin{equation*}
J_{1} \geq 1-\varepsilon \quad \text { a.s. } \tag{4.15}
\end{equation*}
$$

Combining (4.15) with (4.13) we conclude that (4.4) holds. This completes the proof of Theorem 4.1.

Acknowledgements

The author would like to thank the referee for valuable suggestions. The project was supported by NSFC (19571021) and NSFZP (199016).

References

[1] M. Csörgố and P. Révész, Strong approximations in probability and statistics (Academic Press, New York, 1981).
[2] A. Lachal, 'Local asymptotic classes for the successive primitives of Brownian motion', Ann. Probab. 25 (1997), 1712-1734.
[3] -_, 'Regular points for the successive primitives of Brownian motion', J. Math. Kyoto Univ. 37 (1997), 99-119.
[4] L. A. Shepp, 'Radon-Nikodym derivatives of Gaussian measures', Ann. Math. Statist. 37 (1966), 321-354.
[5] G. Wahba, 'Improper priors, spline smoothing and the problem of guarding against model error in regression', J. Roy. Statist. Soc. Ser. B 40 (1978), 364-372.
[6] -_, 'Bayesian 'confidence intervals' for the cross-validated smoothing spline', J. Roy. Statist. Soc. Ser. B45(1983), 133-150.
[7] H. Watanabe, 'An asymptotic property of Gaussian processes I', Trans. Amer. Math. Soc. 148 (1970), 233-248.

Department of Mathematics
Zhejiang University, Xixi Campus
Hangzhou
Zhejiang 310028
P. R. China
e-mail: zlin@mail.hz.zj.cn

