Research Synthesis Methods (2025), 00: 1-16
doi:10.1017/rsm.2025.10044

"Research
_Synthesis Methods

RESEARCH ARTICLE @)

Compact large language models for title and abstract
screening in systematic reviews: An assessment of
feasibility, accuracy, and workload reduction

Antonio Sciurti ', Giuseppe Migliara®, Leonardo Maria Siena', Claudia Isonne',

Maria Roberta De Blasiis!, Alessandra Sinopoli®, Jessica Iera'*#, Carolina Marzuillo',
Corrado De Vito', Paolo Villari! and Valentina Baccolini!

! Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Italy
2Department of Life Sciences, Health, and Health Professions, Link Campus University, Italy
3Department of Prevention, Local Health Authority Rome 1, Italy

4Department of Infectious Discases, Istituto Superiore di Sanita, Italy

Corresponding author: Leonardo Maria Siena; Email: leonardo.siena@uniromal.it
Received: 12 May 2025; Revised: 14 July 2025; Accepted: 15 August 2025

Keywords: artificial intelligence; Gemma 2 9B; GPT-40 mini; large language models; Llama 3.1 8B; title and abstract screening

Abstract

Systematic reviews play a critical role in evidence-based research but are labor-intensive, especially during title
and abstract screening. Compact large language models (LLMs) offer potential to automate this process, balancing
time/cost requirements and accuracy. The aim of this study is to assess the feasibility, accuracy, and workload
reduction by three compact LLMs (GPT-40 mini, Llama 3.1 8B, and Gemma 2 9B) in screening titles and abstracts.
Records were sourced from three previously published systematic reviews and LLMs were requested to rate each
record from 0 to 100 for inclusion, using a structured prompt. Predefined 25-, 50-, 75-rating thresholds were used
to compute performance metrics (balanced accuracy, sensitivity, specificity, positive and negative predictive value,
and workload-saving). Processing time and costs were registered. Across the systematic reviews, LLMs achieved
high sensitivity (up to 100%) and low precision (below 10%) for records included by full text. Specificity and
workload savings improved at higher thresholds, with the 50- and 75-rating thresholds offering optimal trade-
offs. GPT-40-mini, accessed via application programming interface, was the fastest model (~40 minutes max.)
and had usage costs ($0.14-$1.93 per review). Llama 3.1-8B and Gemma 2-9B were run locally in longer times
(~4 hours max.) and were free to use. LLMs were highly sensitive tools for the title/abstract screening process.
High specificity values were reached, allowing for significant workload savings, at reasonable costs and processing
time. Conversely, we found them to be imprecise. However, high sensitivity and workload reduction are key factors
for their usage in the title/abstract screening phase of systematic reviews.

Highlights
What is already known?

e [arge language models (LLMs) have shown potential to automate the title/abstract screening process of
systematic reviews, but practical aspects of their usage, such as costs and processing time, should be
considered.
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What is new?

e Compact LLMs can achieve high sensitivity and substantial workload reduction in the title/abstract screening
of different reviews, with reasonable costs and processing time.

Potential impact for RSM readers

e This study provides systematic review authors with a practical, reproducible approach to integrating compact
LLMs into title and abstract screening for their own reviews.

1. Introduction

Systematic reviews are a cornerstone in evidence-based research, offering comprehensive insights into
complex questions, although they demand significant time and effort.! It was estimated that completing
a systematic review may require 67.3 weeks and about 5.3 team members on average.” In particular, the
selection of relevant articles is a key step of the systematic review workflow, yet it is time-consuming
and labor-intensive.’ It is a two-stage process that requires two reviewers or more: based on predefined
inclusion and exclusion criteria, reviewers first screen titles and abstracts of the retrieved records, and
then assess the full texts of the selected records.’ Despite the exhaustive process, usually only a small
fraction of articles are included in the end.”

Artificial intelligence (AI) and machine learning (ML) have emerged as potential solutions to reduce
this workload.” Traditional ML approaches have shown promise in the title/abstract screening, but
these tools rely heavily on human-labeled data and still require significant manual effort, limiting
their scalability and generalizability.”° In contrast, large language models (LLMs) hold the potential
to radically change the systematic review automation scenario.” Thanks to self-attention mechanism-
based architectures and pretraining on vast datasets,” these models allow for conversational interactions
with users and excel at natural language processing (NLP) tasks, such as text annotation,”»'’ and can
screen articles without additional training, achieving comparable or superior performance to traditional
ML methods.''~!* Research on their application in systematic reviews is rapidly expanding, with
most studies focusing on various versions of Generative Pretrained Transformer (GPT) developed by
OpenAlI''~'° and others including open source models as well.'®!”

However, as most of these LLMs incur usage costs and demand substantial computational resources,
recent advances, such as quantization, pruning, and distillation techniques, have led to the development
of compact LLMs, also called small language models (SLMs), which balance performance with reduced
costs and computational resource requirements.'“" There is no universally accepted definition of
such reduced models, although some operational definitions have been proposed, mostly based on
the number of the model’s parameters (i.e., the weights and biases that a model learns in its training
and ultimately determine the model’s complexity), with models under 10 billion parameters typically
considered as compact LLMs.>' These lightweight models may offer an opportunity to reduce the
workload of the title and abstract screening phase of systematic reviews in a cost-efficient way,
while maintaining reasonable accuracy. While published studies concentrated on conventional LLMs’
screening performance,'*'>'>~!7 to the best of our knowledge, compact LLMs have not been explored
yet in this context and, a comprehensive assessment of performance, time efficiency, and costs for their
usage is lacking. Therefore, this study aims to assess the performance, required time, and costs of three
compact LLMs, GPT-40 mini, Llama 3.1 8B, and Gemma 2 9B, in screening titles and abstracts from
three previously published systematic reviews.

2. Methods
2.1. Data collection, prompt engineering, and interaction with LLMs
Records were sourced from three previously published systematic reviews. In brief, the first system-

atic review explored the association between vaccine literacy and vaccination intention/status (VL,

https://doi.org/10.1017/rsm.2025.10044 Published online by Cambridge University Press


https://doi.org/10.1017/rsm.2025.10044

Research Synthesis Methods 3

hereinafter),”” while the second review investigated the impact of antibiotic exposure on antibiotic-
resistant Acinetobacter baumannii isolation (AB, hereinafter).”’ The third systematic review examined
the efficacy of vitamin supplements in managing and preventing COVID-19 (COVID-19, here-
inafter).”* Each record was originally screened by title/abstract, and subsequently by full-text and
manually labeled as included or excluded by two authors. Disagreements were resolved by a third
author. Residual duplicate records were removed from the AB and COVID-19 reviews.

Each record’s title and abstract were embedded into a structured prompt. The prompt engineering
strategy was based on structuring prompts into three main components, as proposed by Syriani
et al.'"'>—(i) “context”, (ii) “instructions”, and (iii) “task”:

i. “Context” provided general information about the systematic review topic using a persona
approach.”

ii. “Instructions” detailed screening criteria for determining inclusion or exclusion based on the
title and abstract. The instructions were to rate each record from 0 (least confident) to 100
(most confident), based on inclusion confidence. Both context and instructions were tailored for
each systematic review. A zero-shot prompting approach was employed, that is, examples of
included and excluded records were not provided, and exclusion criteria were avoided to prioritize
sensitivity.' >

iii. “Task” included the title and abstract of the record to be screened.

Examples of used prompts are shown in Table S1 in the Supplementary Material.

The three LLMs were queried using the structured prompts for each record and systematic review.
GPT-40 mini is a proprietary model by OpenAl, which involves usage costs as it operates through
OpenAl’s application programming interface (API), with its exact number of parameters remaining
undisclosed.”’ It was accessed via OpenAl’s API using the oaii R package (ver. 0.5.0)° (GPT-40 mini
ver. 2024-07-18, last date of training October 2023).”” In contrast, Llama 3.1 8B and Gemma 2 9B are
open-source models, with 8 and 9 billion parameters and developed by Meta and Google, respectively,
which can be downloaded and run on local machines, with processing times heavily dependent on the
hardware capabilities.*’*! Llama 3.1 8B (id. 365c0bd3c000, last date of training December 2023)*”
and Gemma 2 9B (id. ff02¢3702f32, last date of training not disclosed)’® were accessed locally via the
Ollama application (ver. 0.5.1),’* using the rollama R package (ver. 0.2.0).

The “context” and “instructions” components of each prompt were supplied to the models as the
system role, and the “task” component as the user role.” Model hyperparameters were standardized
across models. Temperature ranges from 0 to 1 and controls the diversity of the model’s responses,’®
although a deterministic output is not guaranteed.”’ Therefore, we set the same random seed and a
temperature of 0 to maximize reproducibility. The maximum number of output tokens (max_tokens or
num_predict) determines the length of the model’s responses.”®*> It was set to 1 to restrict the amount
of generated text to the required responses, thereby reducing costs and time to responses. As the model
outputs were provided as strings, the responses were converted to their corresponding integers. Invalid
responses, that is, those different from a number between 0 and 100, were registered and set to 0.
Records without abstract were not excluded. If a records’ abstract was missing, only the title was used
in the structured prompt. Finally, responses per minute (that is, the number of requests made to the LLM
in a minute), overall time to responses (that is the overall time needed to screen records), and overall
costs were recorded.

2.2. Statistical analysis

Performance metrics were calculated using predefined inclusion thresholds at the 25-, 50-, and 75-
rating, for each of the three models and estimated against both the original author-labeled screening by
title/abstract as the reference standard. In addition, for each of the three predefined thresholds, inclusion
decisions by each model were combined using a majority voting ensemble strategy, where the final
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Compact LLMs
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Figure 1. Visual example of the inclusion decision process for a single recovd within each systematic
review. (1) The record’s title and abstract are embedded into a structured prompt; (2) The prompt
is fed into each of the three LLMs; (3) Each LLM rates the record with an integer number from
0 to 100, according to the prompt,; (4) If rating meets or exceeds the threshold, record is included
(individual LLM decision, v': included, X: excluded); (5) Individual LLM decisions are combined
through majority voting, (6) Individual LLM decisions and majority voting are compared with the
reviewers’ decision (TP: true positive;, TN: true negative; FP: false positive; FN: false negative), for
performance assessment.

inclusion decision is based on the majority, i.e., the most frequent, decision of the three models.*®
Moreover, we used original author-labeled screening by full-text as an additional reference standard
for a sensitivity analysis.’” This aimed to verify whether all relevant articles would be included by the
models regardless of their performance on title and abstract screening, as truly relevant articles are those
included after full-text screening. An example of the entire inclusion process is shown in Figure 1.

As suggested by Syriani et al.'' performance metrics included sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV), balanced accuracy, and workload saving.
Sensitivity (sometimes referred to as “recall”) measures an LLM’s ability to include all records that
should be included, while specificity expresses the model’s ability to exclude all records that should be
excluded. Conversely, PPV (sometimes referred to as “precision”) shows a model’s ability to include
only articles that should be included and NPV a models’ ability to exclude only articles that should
be excluded. Balanced accuracy, calculated as the arithmetic mean of sensitivity and specificity, is an
overall accuracy metric well suited for assessing imbalanced class situations—the common scenario in
the screening of records in systematic reviews.””° Finally, workload saving is nonstandard metric to
evaluate workload reduction by automated screening tools, expressing records correctly excluded by
the model, out of the total number of screened records.'' A formal description of performance metrics
is provided in Table S2 in the Supplementary Material. The caret R package (ver. 7.0.1)*" was used to
compute the performance metrics.

As a supplementary analysis, Receiver Operating Characteristic (ROC) curves were plotted, and
the area under the curve (AUC) was calculated for each model, using the pROC R package (ver.
1.18.5).*! With records assigned a number ranging from 0 to 100, thresholds for inclusion could be
defined. Optimal thresholds for inclusion were determined according to the Closest Top-Left method,
and performance metrics were computed using the selected thresholds.

All computations were run on a 13™ Gen Intele Core™ 9-13900K 3.00 GHz CPU with 64 GB RAM
and a NVIDIA RTX A2000 12GB RAM GPU, on a 64-bit Windows 11 Pro system. All analyses were
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performed using R Statistical Software (version 4.4.2; R Core Team 2024, R Foundation for Statistical
Computing, Vienna, Austria). Datasets and R code are available on Open Science Framework (OSF)
(https://osf.io/kjnwt).*?

This study was reported according to the TRIPOD + LLM reporting guidelines for studies evaluating
LLMs in classification tasks (Table S3 in the Supplementary Material).*’

3. Results
3.1. Characteristics of systematic reviews

The characteristics of the systematic reviews are presented in Table 1. The VL systematic review
screened 1,757 records by title and abstract, published between 1976 and 2022. In all, 64 records (3.6%)
were included after title/abstract screening, and 18 (1.0%) were included after full-text screening. The
AB systematic review had the largest number of records screened, 21,116 (published between 1956
and 2023), of which 322 (1.5%) were included after screening by title and abstract, and 25 (0.1%) after
the screening by full-text. In the COVID-19 systematic review, 7,693 records were screened by title
and abstract (published between 1985 and 2024), 72 (0.9%) of which were included after title/abstract
screening, and 37 (0.5%) after full-text screening. The three systematic reviews had 8.6% (VL), 7.3%
(AB), and 14.3% (COVID-19) records with a missing abstract.

3.2. Performance metrics

Performance metrics computed based on 25-, 50-, and 75-rating thresholds and majority voting of
models are shown in Table 2. When using the title/abstract screening as a reference, in the VL review
the 75-rating threshold provided the highest balanced accuracy for the Llama 3.1 8B and Gemma 2
9B models (84.1% and 86.0%, respectively), while GPT-40 mini had the highest balanced accuracy
using the 50-rating threshold (87.0%). Both the 25- and 50-rating thresholds yielded sensitivity above
90%, while specificities and workload savings were above 80% with the 75-rating threshold. In the
AB review, the 50-rating threshold provided the highest balanced accuracy values for the GPT-40 mini
(82.4%) and Gemma 2 9B (84.8%) models, with higher sensitivities (74.5% and 89.8%, respectively),
but lower specificities (90.3% and 79.9%, respectively) and workload savings (89.0% and 78.7%,
respectively), compared to the 75-rating threshold. In contrast, Llama 3.1 8B had consistently 56.2%
balanced accuracy, 99.7% sensitivity, and around 12.7% specificity and workload savings across all
three thresholds. In the COVID-19 review, the 50-rating threshold achieved the highest balanced
accuracy for all the models (90.1% GPT-40 mini, 91.2% Llama 3.1 8B, and 88.9% Gemma 2 9 B),
compared to the other thresholds. Sensitivities ranged between 87.5% and 93.1% using both 25- and 50-
rating thresholds, and between 73.6% and 91.7% using the 75-rating threshold. Specificities, instead,
were the highest, all above 90%, using the 75-rating threshold, with workload savings following a
similar pattern. PPVs were lower than 10% with a 25-rating threshold across all systematic reviews and
did not exceed 16% and 26% with a 50- and 75-rating threshold, respectively, while NPVs remained
consistently around 99%. In general, the majority voting approach using a 50-rating threshold achieved
performance comparable or better than the individual models, with balanced accuracies above 80%,
sensitivities exceeding 90%, and specificities ranging from 68.3% and 91.7%. Similarly, using a 50-
rating threshold, workload savings ranged between 65.9% and 90.8%.

When using records screened by full-text as a reference, balanced accuracy values were similar
to the values observed with the title/abstract screening as a reference for the 25-rating threshold in
all reviews, and in general slightly higher with a 50- and 75-rating threshold. Notably, all the three
thresholds reached a 100% sensitivity for at least one LLM across the three reviews, with the 50- and
75-rating thresholds having overall higher specificities and workload savings. PPVs were consistently
below 5% for the 25- and 50-rating thresholds, and did not exceed 11% with a 75-rating threshold. In
detail, at 100% sensitivity, workload saving ranged between 12.5% and 88.5%, at a 25- and 50- rating
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Table 1. Characteristics of systematic reviews.

Records Records
Record included by included by
Overall publication title/abstract full-text Records with
Systematic records time range, screening, N screening, N missing
review Author, year Title screened, N years (%) (%) abstract, N (%)
VL Isonne “How well does vaccine 1,757 19762022 64 (3.6) 18 (1.0) 151 (8.6)
etal., literacy predict intention
20247 to vaccinate and
vaccination status? A
systematic review and
meta-analysis”
AB De Blasiis “Impact of antibiotic 21,116 1956-2023 322 (1.5) 25(0.1) 1,544 (7.3)
etal., exposure on antibiotic-
20247 resistant Acinetobacter
baumannii isolation in
intensive care unit
patients: a systematic
review and
meta-analysis”
COVID-19 Sinopoli “The efficacy of 7,693 1985-2024 72 (0.9) 37 (0.5) 1,100 (14.3)
etal., multivitamin, vitamin A,
2024 vitamin B, vitamin C,

and vitamin D
supplements in the
prevention and
management of
COVID-19 and long-
COVID: an updated
systematic review and
meta-analysis of
randomized clinical
trials”

Note: VL: vaccine literacy; AB: 4. baumannii; COVID-19: coronavirus disease 2019.
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Table 2. LLM performance metrics, expressed as percentage (%), by systematic review.

Records screened by title/abstract used as a reference

25-rating threshold

50-rating threshold

75-rating threshold

Systematic review LLM bAcc Sens Spec PPV NPV WS bAcc Sens Spec PPV NPV WS bAcc Sens Spec PPV NPV WS
VL GPT-4omini 80.3 96.9 63.8 9.2 99.8 61.5 87.0 93.8 80.3 153 99.7 77.4 847 78.1 913 254 99.1 88.0
Llama 3.1 8B 81.5 96.9 66.0 9.7 99.8 63.6 81.5 96.9 66.0 9.7 99.8 63.6 84.1 82.8 854 17.7 99.2 82.3
Gemma2 9B 644 93.8 351 52 993 339 713 93.8 488 6.5 99.5 47.1 86.0 87.5 84.6 17.7 99.4 81.5
Majority voting 78.2 98.4 57.9 8.1 99.9 558 82.6 969 683 104 99.8 659 86.3 84.4 883 21.4 99.3 85.1
AB GPT-4omini 76.3 98.8 53.8 3.2 100.0 53.0 82.4 74.5 90.3 10.7 99.6 89.0 81.3 71.4 91.1 11.0 99.5 89.7
Llama 3.1 8B 56.2 99.7 12.7 1.7 100.0 12.5 56.2 99.7 12.7 1.7 100.0 12.5 56.2 99.7 12.8 1.7 100.0 12.6
Gemma?29B 833 932 734 52 999 723 84.8 89.8 799 6.5 99.8 78.7 75.1 543 958 16.8 99.3 944
Majority voting 76.1 99.4 52.8 3.2 100.0 52.0 84.7 90.4 789 6.2 99.8 77.7 81.8 73.3 90.3 10.5 99.5 88.9
COVID-19 GPT-4omini 86.5 87.5 85.5 54 99.9 847 90.1 87.5 92.7 102 99.9 91.8 89.4 819 96.9 20.2 99.8 96.0
Llama 3.1 8B 91.2 93.1 893 7.6 999 88.5 91.2 93.1 89.3 7.6 99.9 885 90.8 91.7 90.0 8.0 999 89.2
Gemma?2 9B 86.1 91.7 804 42 999 79.7 88.6 889 883 6.7 99.9 874 850 73.6 96.4 16.0 99.7 955
Majority voting 92.1 97.2 86.9 6.5 100.0 86.1 93.1 944 91.7 9.7 99.9 90.8 90.6 84.7 96.4 182 99.9 955

(Continued)
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Table 2. (Continued).
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Records screened by full-text used as a reference

25-rating threshold 50-rating threshold 75-rating threshold
Systematic
review LLM bAcc Sens Spec PPV NPV WS bAcc Sens Spec PPV NPV WS bAcc Sens Spec PPV NPV WS
VL GPT-4omini  81.1 100.0 62.2 2.7 100.0 61.6 89.2 100.0 784 4.6 100.0 77.6 949 100.0 89.7 9.1 100.0 88.8

Llama3.1 8B 822 100.0 64.4 2.8 100.0 63.7 822 100.0 64.4 2.8 100.0 63.7 89.1 944 837 57 999 829
Gemma29B 61.6 889 343 14 99.7 340 683 889 477 1.7 99.8 472 858 889 827 50 999 81.8
Majority voting 782 100.0 564 2.3 100.0 55.8 833 100.0 66.6 3.0 100.0 66.0 933 100.0 8.5 7.1 100.0 85.7
AB GPT-4omini 76.5 100.0 53.1 0.3 100.0 53.0 92.7 96.0 89.5 1.1 100.0 8.3 931 96.0 90.2 1.2 100.0 90.1
Llama3.1 8B 563 100.0 12,5 0.1 100.0 12.5 563 100.0 12,5 0.1 100.0 12.5 563 100.0 12.6 0.1 100.0 12.6
Gemma29B 863 1000 725 0.4 100.0 72.4 89.5 100.0 789 0.6 100.0 78.8 956 96.0 952 23 100.0 95.1
Majority voting 76.1 100.0 52.1 0.2 100.0 52.0 89.0 100.0 78.0 0.5 100.0 77.9 92.7 96.0 8.4 1.1 100.0 89.3
COVID-19 GPT-4omini 91.3 973 852 3.1 100.0 84.8 948 973 924 58 100.0 92.0 97.0 973 96.7 123 100.0 96.2
Llama3.1 8B 94.5 100.0 8.0 42 100.0 88.5 94.5 100.0 8.0 42 100.0 88.5 94.8 100.0 89.7 4.5 100.0 89.2
Gemma29B 874 94.6 80.1 22 100.0 79.7 913 946 879 3.7 1000 875 940 919 96.1 10.3 100.0 95.7
Majority voting 93.3 100.0 86.5 3.5 100.0 8.1 957 100.0 913 5.3 100.0 90.9 98.1 100.0 96.1 11.0 100.0 95.6

Note: 25-, 50- and 75-ratings were used as thresholds.
LLM: large language model; bAcc: balanced accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative predictive value; WS: workload saving; VL: vaccine literacy; AB: 4.
baumannii; COVID-19: coronavirus disease 2019; GPT: generative pretrained transformer.
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Figure 2. LLMs ratings ROC curves, by systematic review. (a) VL; (b) AB; (c) COVID-19.
Note: LLM: large language model; VL: vaccine literacy; AB: Acinetobacter baumannii; COVID-19: coronavirus disease 2019; AUC: area under

the curve; GPT: generative pretrained transformer.

threshold, and between 12.6% and 89.2% at a 75-rating threshold, while PPV ranged between 0.1%
and 4.2%, at a 25- and 50- rating threshold, and between 0.1% and 9.1% at a 75-rating threshold. In
this scenario, the majority voting approach yielded perfect sensitivity for all of the reviews and reached
specificities between 52.1% and 86.5% using the 25-rating threshold, between 66.6% and 91.3% using
the 50-rating threshold, and between 86.5% and 96.1% using the 75-rating threshold. Workload savings
showed a similar pattern.

3.3. Optimal rating threshold analysis

Overall, AUCs over 0.75 were reached across different systematic reviews (Figure 2). Optimal rating
thresholds varied by model and review, with GPT-40 mini showing a 47.5-rating optimal threshold for
the VL and COVID reviews, and a 35.7-rating optimal threshold for the AB review. Llama 3.1 8B had
65-, 97- and 55-rating optimal thresholds for the VL, AB, and COVID-19 review, respectively. Optimal
threshold ratings for Gemma 2 9B models were 75 (VL), 55 (AB), and 35 (COVID-19).

When using optimal rating thresholds and title/abstract screening as a reference (Table 3), balanced
accuracy ranged from 76.7% to 91.3% across the three systematic reviews. Sensitivity was higher than
80% across all the three reviews and specificity ranged from 70.4% to 92.7%. Workload saving showed
a pattern similar to specificity, ranging from 69.3% to 91.8%. PPVs were low for all models across
the three reviews, not exceeding 17.7%, while NPVs were always above 99%. Overall, the COVID-19
review showed the highest balanced accuracy, sensitivity, and specificity values for each of the three
models (89.1%-91.3% balanced accuracy, 87.5%-93.1% sensitivity, and 88.0%-92.7% specificity).

Using full-text screening as a reference, balanced accuracy rose to 82.8%-94.8%, as well as the
sensitivity, with at least one model per review achieving perfect sensitivity (GPT-40 mini for the VL
review, Gemma 2 9B for the AB review, and Llama 3.1 8B for the COVID-19 review), while specificity
went down slightly. NPV values were consistently above 99%, but lower PPVs were reached (0.4%—
5.8%).

Finally, the optimal rating thresholds for different models achieved a performance similar to the
majority voting approach with a 50-rating threshold for all reviews.

3.4. Invalid responses, requests per minute, overall time to responses, and costs

GPT-40 mini generated no invalid responses across any of the systematic reviews (Table 4). However,
low proportions of invalid responses were observed for Llama 3.1 8B and Gemma 2 9B (0.1%-0.3%).
GPT-40 mini had the highest responses per minute rate (500 per minute), leading to the shortest overall
time to responses (~3 minutes for VL, ~42 minutes for AB, and ~ 15 minutes for COVID-19 systematic
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Table 3. LLM performance metrics, expressed as percentage (%), by systematic review.

Records screened by title/abstract used as a reference

Systematic Optimal rating

review LLM threshold bAcc Sens Spec PPV NPV WS

VL GPT-40 mini 47.5 870 938 803 153 997 774
Llama 3.1 8B 65.0 84.1 828 854 177 992 823
Gemma 2 9B 75.0 86.0 875 846 177 994 815

AB GPT-40 mini 37.5 838 919 757 55 998 745
Llama 3.1 8B 97.0 76.7 829 704 42 99.6 693
Gemma 2 9B 55.0 849 898 80.0 65 998 788

COVID-19  GPT—40 mini 47.5 90.1 875 927 102 999 918
Llama 3.1 8B 55.0 91.3 931 896 78 999 887
Gemma 2 9B 35.0 89.1 903 88.0 6.6 999 871

Records screened by full-text used as a reference

Systematic Optimal rating

review LILM threshold bAcc Sens Spec PPV NPV WS

VL GPT-40 mini 47.5 89.2 100.0 784 4.6 100.0 77.6
Llama 3.1 8B 65.0 89.1 944 837 5.7 999 829
Gemma 2 9B 75.0 85.8 889 827 50 99.9 81.8

AB GPT-40 mini 37.5 85.4 96.0 747 04 100.0 74.7
Llama 3.1 8B 97.0 82.8 96.0 697 04 100.0 69.6
Gemma 2 9B 55.0 89.5 100.0 79.0 0.6 100.0 78.9

COVID-19 GPT-40 mini 47.5 94.8 97.3 924 58 100.0 92.0
Llama 3.1 8B 55.0 946 1000 892 43 100.0 88.8
Gemma 2 9B 35.0 91.1 946 876 3.6 100.0 872

Note: Optimal rating thresholds were used.

LLM: large language model; bAcc: balanced accuracy; Sens: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: negative
predictive value; WS: workload saving; VL: vaccine literacy; AB: 4. baumannii; COVID-19: coronavirus disease 2019; GPT: Generative
Pretrained Transformer.

reviews, respectively). Llama 3.1 8B had a consistent response rate of ~110—118 per minute across all
reviews, with the overall time notably longer, especially for the AB review (~3 hours 11 minutes).
Gemma 2 9B had the slowest response rate (~82—87 per minute) and the longest times across all three
reviews, reaching the longest observed overall time in the AB review (~4 hours 15 minutes). Finally,
overall costs for using GPT-40 mini varied between 0.14 and .93 USD per review, while Llama 3.1 8B
and Gemma 2 9B were free to use.

4. Discussion

In the selection process of articles for systematic review articles, the primary concern is the com-
pleteness of results, meaning that all relevant articles should be included.***> In other words, the
cost of excluding relevant articles (i.e., producing false negatives) is generally considered higher than
including irrelevant ones (i.e., producing false positives). Therefore, we believe that the sensitivity
of a model should be prioritized, while its imprecision can be tolerated. The results of our study
align with these desiderata, showing that, at least for the reviews under examination, the LLMs used
are highly sensitive tools for the screening of citations, capable of achieving perfect sensitivity for
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Table 4. Characteristics of LLMs, invalid responses, responses per minute, overall time to responses and overall costs, by LLM and systematic review.

Context window,

Invalid responses,

Responses per minute,

Overall time

LLM N parameters N tokens Systematic review N (%) N/min to responses  Overall costs
VL 0(0.0) 500/min* ~3 min® ~0.14 USD*
GPT-40 mini ~ Not disclosed 128,000 AB 0(0.0) ~42 min* ~1.93 USD*
COVID-19 0(0.0) ~15 min* ~1.02 USD*
VL 5(0.3) ~117/min” ~14 min” Free
Llama 3.1 8B 8 billion 128,000 AB 3(0.0) ~110/min® ~3 h 11 min”
COVID-19 7(0.1) ~118/min” ~1 h 4 min"
VL 5(0.3) ~83/min” ~20 min” Free
Gemma 2 9B 9 billion 8,192 AB 19 (0.1) ~82/min” ~4 h 15 min”
COVID-19 10 (0.1) ~87/min” ~1 h 28 min"

Note: LLM: large language model; GPT: generative pretrained transformer; VL: vaccine literacy; AB: Acinetobacter baumannii; COVID-19: coronavirus disease 2019; USD: United States dollar.
2 GPT-40 mini has a fixed rate of 500 requests per minute and a limitation of 10,000 requests per day maximum®’ and a pricing of 0.15 USD/million input tokens and 0.6 USD/million output tokens on API usage tier 1*°.

b Requests per minute and overall times are based on computations run on the local machine.
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including relevant records (i.e., full-text documents). Conversely, LLMs were also found to be highly
imprecise, tending to overinclude irrelevant records. In addition, it is essential that high sensitivity
is accompanied by reasonable specificity, and consequently, by significant workload savings. In line
with this, we observed sufficient specificities and high NPVs, indicating that the models are much
better at excluding irrelevant articles, which implies significant workload savings. These results may
be partly due to our prompt design, which was aimed to maximize the models’ sensitivity, and partly
to the typical class imbalance in systematic reviews, where the proportion of included articles is low,
as observed in Syriani’s'’>'” and Sanghera’s’® experiments. However, performances characterized by
high sensitivity, specificity, NPV, and low precision are consistent with similar studies that employed
multiple models'” or different versions of GPT only.'""'> In addition, no single model consistently
outperformed the others across individual reviews; some performed better in certain cases, while the
majority voting approach provided more balanced performance. Thus, combining multiple models’
decisions could help overcome the limitations of a single model.*®

In parallel with performance, practical aspects of LLM usage should be considered. In this study,
GPT-40 mini, presented as the most cost-effective OpenAl model accessible via API,”’+*® was the fastest
among the tested models, with a total cost of approximately 3 USD (Table 4). However, it is important
to note that OpenAl API usage as a tier 1 user imposes a daily limit of 10,000 requests,’’ which
restricts the number of records that can be screened in one day. For very large corpora, this limitation
requires splitting requests over several days or sending requests in batch.*® Another drawback is that
API usage requires an internet connection, which may imply stability issues. Moreover, proprietary
models, like those by OpenAl, do not fully disclose their characteristics and are subject to updates and
deprecations,”” which can severely hinder the reproducibility of results.”’ On the other hand, Llama
3.1 8B and Gemma 2 9B performed screening less quickly than GPT-40 mini, but certainly faster than
a human reviewer. In addition, these open-source models can be run on conventional local machines,
although they have minimum system requirements,”’' and processing times are significantly influenced
by hardware availability, such as the presence of a compatible GPU.>”

This study has strengths and limitations. First, this study has explored the potential of compact LLMs
for title and abstract screening in systematic reviews, including models that can be run on conventional
local machines. In contrast, most existing studies have focused primarily on larger, noncompact GPT
models from OpenAl>***** Likewise, one of the main strengths is the practical approach, aimed at
not only assessing the performance of LLMs, but also processing time and costs, which may be a
major bottleneck for their usage, especially in resource-limited settings. Moreover, we tried to mitigate
the retrospective nature of the automated title/abstract screening evaluation,’” by using predetermined
25-, 50- and 75-rating thresholds, along with a majority-voting ensemble strategy to combine different
models’ decisions. This approach achieved performance results comparable to those obtained using
optimal thresholds, with the 50- and 75-rating thresholds serving as reasonable proxies for optimal
thresholds in the explored systematic reviews. Indeed, when adopting a prospective approach, an
optimal threshold is unknown, and it is likely that different models have different optimal rating
thresholds. Using a 50-rating threshold with a majority voting method may be a reasonable option to
assess LLMs’ performance in a prospective setting. Third, the reviews under consideration were diverse
by topic, inclusion criteria, and size, and the LLM could be flexibly adapted to different contexts, while
still reducing workloads and identifying relevant articles. In this regard, we observed that the COVID-
19 review exhibited the highest sensitivity and specificity values across all models, compared to the
other reviews. This may be since randomized controlled trials (RCTs) were an inclusion criterion in the
COVID-19 review, and RCTs typically have stricter reporting standards and a more structured abstract
format, compared to studies with different designs.’® In relation to this, the agreement on inclusion
between models at different thresholds could be used as a way to quantify the quality of abstract
writing—that is, if similar accuracy is achieved across different rating thresholds, it may indicate high
overall abstract clarity.

On the other hand, limitations must be acknowledged. First, the small number of systematic reviews
considered restricts the generalizability of our findings, and they should be interpreted with caution.
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Indeed, the limited number of reviews may have introduced a potential selection bias, as the specific
reviews we analyzed do not fully represent the spectrum of available literature. A broader or different
sample of reviews, spanning a wider range of disciplines and topics, may have achieved different
conclusions. Nonetheless, in our view, these results are promising and informative, as the reviews
we selected were intentionally diverse in research question, study design involved, and complexity,
contributing to the ever-growing evidence in this area. As a second limitation, the choice of compact
LLMs, with a reduced number of parameters, was primarily driven by cost, time, and hardware
considerations, and LLMs with a higher number of parameters may achieve better results.”’ On a
similar note, we adopted a zero-shot prompting strategy, which is considered the simplest and most
conservative.''*'> However, as noted in other studies, model performance heavily depends on the type
of prompt used, and, although there is no universal approach to prompt optimization,” it is possible
that different prompt engineering approaches could yield better performance. Moreover, the majority
of records across reviews were published before the LLMs’ knowledge cut-off point—i.e., the end of
their training was disclosed. This raises the possibility that the models were trained on these records,
potentially influencing our findings, as transparency in training sources is often lacking.”” A prospective
approach to title and abstract screening could help clarify the impact of different knowledge cut-offs
on the models’ performance. In addition, as the agreement between human reviewers in the original
screening was not recorded, we could not compare LLMs with human reviewers and, thus, assumed the
human screening to be the ground truth. However, other studies'’»'? found that in corpora with a low
proportion of included records and a low proportion of decision conflicts between human reviewers,
LLMs tend to show high sensitivity and low precision, as observed in our case, which may indirectly
indicate a high level of agreement between human reviewers, although a certain degree of disagreement
on false positives between human reviewers and LLMs should be expected.

5. Conclusions

In light of this and other studies,'>'**" from a technical standpoint, LLMs can feasibly be employed
for screening records by title and abstract in systematic reviews. However, the Cochrane Collaboration
underlines the need for validation of LLMs in systematic reviews.! As suggested in other works,' >’ a
potential application of LLMs for title and abstract screening, especially when the number of identified
records is extremely large, appears to be as a first-screener or triage tool. In this role, the model performs
an initial screening of titles and abstracts, leaving the human reviewers with the records included by the
model for full-text screening. This approach may be very convenient in the context of rapid reviews,
where balancing workload reduction and completeness is crucial.”®>” However, for this approach to be
fully reliable, LLMs must show perfect sensitivity—otherwise, relevant records may be permanently
missed. Another, more conservative, approach is to use LLMs as a second-screener for title and abstract
screening—that is, to combine the model’s decisions with those of human reviewers either “in parallel”
(i.e., inclusion results from either the LLM’s or the human’s decision) or “in series” (i.e., inclusion
requires agreement between both the LLM and the human).”® These two schemata increase overall
sensitivity or precision at each other’s expense, respectively. Rating thresholds may further refine
this trade-off, with lower thresholds allowing for higher sensitivity and higher thresholds improving
precision. Moreover, as the volume of published literature continues to grow, the workload associated
with screening in systematic reviews is expected to rise significantly,’’ with title and abstract screening,
already one of the most error-prone stages of the systematic review process’' becoming increasingly
susceptible to mistakes as the number of records expands.®’ In our view, given the need to preserve
sensitivity, combining human and LLM decisions “in parallel” may be the most reasonable way to
integrate these models into the systematic review workflow, as this approach may rescue potentially
relevant studies overlooked by the human reviewer, enhance confidence in excluding irrelevant records,
when both agree on exclusions, and ultimately increase sensitivity. In contrast, with an “in series”
combination of decisions, relevant records may be lost due to errors from either the human reviewer or
the LLM—or, at least, conflicting decisions between the human screener and LLM should be resolved
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by a third human opinion. Nevertheless, to ensure the safe and effective integration of LLMs into
systematic review workflows, further investigation is essential, particularly through studies adopting a
prospective approach to the assessment of title and abstract screening.
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