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ABSTRACT. Most algorithms to extract dry snowpack water equivalent (SWE) from
satellite passive-microwave observations are based on point measurements of SWE or ex-
trapolation of point measurements to the 30 km [ootprint of the satellite observations.
SWE observations on a scale comparable to the satellite observations can be obtained
from airborne gamma-ray attenuation techniques from flight lines that are approximately
10 km long. During the winter of 1989, the NOAA National Operational Hydrologic
Remote Sensing Center (NOHRSC) flew 92 of these flight lines over a 200 x 250 km area
of the Red River basin which is located in the north-central part of the United States of
America. These observations provide a unique dataset of snow water-equivalent determi-
nations on spatial scales similar to the satellite passive-microwave observations as ac-
quired by the Defense Meteorological Satellite Program (DMSP) Special Sensor
Microwave Imager (SSM/I) F-8 satellite. Land-classification determinations from the
Advanced Very High Resolution Radiometer (AVHRR)) show that the eastern part of
the region contains a coniferous forest of vary ing coverage, while the remainder is farm-
land or prairie. SSM/I data, including observations from a no-snow case in the preceding
fall, the flight-line data and the AVHRR data were all co-registered to a common 20 km
grid. The resulting dataset was analyzed using linear regression, artificial intelligence and
general linear models. The results showed that the passive-microwave response was
similar to the response predicted by Mie scattering theory. A comparison of the three
techniques found that the artificial intelligence technique and the general linear model
explained significantly more of the variance in the dataset, as evidenced by R? values of
0.97 compared to (.88 for the linear multiple-regression analysis. Hence, a neural network
approach which was continually trained on new datasets as they became av ailable, could
provide better estimates of snowpack water equivalent than algorithms based on linear-
regression techniques.

INTRODUCTION fective physical temperatures at 4.9, 104, 21.55 and 94 GHz,
and estimates the corresponding emissivities. While these
Satellite passive-microwave observations of snowpacks have measurements have clearly shown the dependence of bright-

the capability of estimating parameter characteristics of the ness temperature on the snowpack properties, it is the spa-

snowpack. England (1974, 1975), Chang and others (1976)
and Tsang and Kong (1977) used the radiative-transfer theo-
ry (Chandrasekhar, 1960) to model the electromagnetic res-
ponse of snow. Chang and others (1976) developed a
scattering model based on Mie scattering theory that pre-
dicts the brightness-temperature response to variations in
snowpack thickness and grain-size. The intensity of the
microwave radiation emitted from a snowpack depends on
its physical temperature, grain-size, density and the under-
lying soil conditions. Snow grains scatter the upwelling
emission and thus the amount of scattering will increase
with snow depth, resulting in a decrease of brightness temp-
erature measured by the microwave radiometer. Extensive
experimental work to measure the interaction of microwave
radiation with the snowpack has been undertaken with a
passive-microwave instrument mounted on a tower 15m
above ground (Mitzler, 1987). The radiometer measures ef-
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tial variation of the snowpack within the SSM/I footprint
that is not a priori known and that is difficult to estimate.
Other studies have been conducted with in-situ snowpack
observations to derive algorithms to determine snow water
equivalent from satellite passive-microwave observations
(Hallikainen and Jolma, 1986; McFarland and others, 1987;
Hall and others, 1991; Goodison and Walker, 1995; Rott and
Nagler, 1995; Josberger and others, 1996). The fraction of the
sensor footprint which is covered with forest adds another
complication to the development of a suitable algorithm.
The vegetation canopy can be represented as a dielectric
mixture consisting of dielectric elements (leaves, stalks and
branches) embedded in a matrix of air (Ulaby and Jedlicka,
1984). A simple model to separate the effect of the forest from
the elfect of snow was proposed for the SMMR (Scanning
37 GHz channel
by Hall and others (1982) and an algorithm to correct for

Multifrequency Microwave Radiometer)
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the absorption of the snow signal by the forest cover was
subsequently proposed by Chang and Chiu (1991).

In the development of snowpack algorithms, the snow-
pack thickness or water equivalent within the satellite foot-
print is generally derived [rom point measurements.
Because of the size of the satellite footprint, which is approx-
imately 30 km for the 37 GHz channel, even a large number
of point measurements on the ground may not correctly re-
flect the snowpack properties across the entire pixel, typi-
cally, there are only a few point measurements within the
satellite footprint (Kunzi and others, 1982; Josberger and
others, 1989; Hall and others, 1991; Hallikainen and Jolma,
1992; Goodison and Walker, 1995). While the resulting corre-
lation between the SWE and the satellite observations can
be high, the snowpack can be very variable across a 30 km
footprint. Algorithms developed from snowpack informa-
tion averaged over spatial scales comparable to the satellite
observations would be more reliable and could validate
other algorithms.

The airborne snow water-equivalent measurements car-
ried out by NOHRSC provide an alternative data source
that is nearly on the scale of the satellite observations.
Throughout the winter, NOHRSC derives the average
snowpack water equivalent (SWE) along flight lines that
are approximately 10 km long, by measuring the attenua-
tion of naturally emitted terrestrial gamma radiation by
the snowpack (Carroll and Voss, 1984; Carroll and Carroll,
1989). The error associated with these SWE determinations
over agricultural vegetation is 8.2 mm of SWE and over for-

est land use the error is 23.2 mm of SWE. A large number of

these flight lines in a region a few hundred kilometers wide,
flown in a short period of time, would provide a unique
dataset to compare with satellite observations. Such was
the case in 1989, when NOHRSC flew 92 flight lines in the
Red River Valley region in mid-February and early-April
1989. The region spans the boundary between Minnesota
and the Dakotas, has very little relief and the eastern part
is forested while the remainder is open. Hence, the airborne
measurements combine with the physiographic characteris-
tics of the region to provide a unique opportunity of study-
ing a prairie-type snowpack as categorized by Sturm and
others (1995).

THE DATASETS

The datasets used in this study consist of the NOHRSC
flight-line SWE determinations, passive-microwave obser-
vations from the SSM/I carried by the F8 satellite of the
DMSP and land-use classification as determined [rom
observations by the AVHRR. For the Red River Valley
region, NOHRSC flew 92 flight lines in 3 days, 15-17 Febru-
ary 1989. Figure 1 shows the location of the centers of these
lines in the study area and the snow water-equivalent map
obtained with the gamma-ray instrument. The lower left
corner of the area shown is located at 45° N and 99" W. A
similar airborne survey was carried out on 1-2 April 1989.
However, the April observations were not used in this study,
because the surface temperatures as measured by the Na-
tional Weather Service (NWS) stations in the area, were
near 0°CL. This resulted in liquid water in the snowpack
and little correlation between the satellite observations and
the SWE.

The SSM/I is a seven-channel passive-microwave radio-
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Fig. 1. Snow water equivalent map (cm) derived from
NOHRSC flight lines that took place 13-17 February 1989
in the Red River basin. Each cross represents the location of
the center of each flight line. The contour lines and gray tones
show the gridded SWE values dertved by kriging the flight
line data.

meter with vertically and horizontally polarized channels at
19.35,37 and 85.5 GHz, and a vertically polarized channel at
29235 GHz. This study used horizontally (H) polarized
data, because there is an inverse relationship between snow
depth or snow water equivalent and the 37y GHz brightness
temperature as measured by the satellite sensor under dry
snow conditions. The 193 GHz channel can be used to elim-
inate partly the effects of the snow and ground temperature
and the atmospheric quantities such as integrated water
vapor and clouds on changes in brightness temperatures.
The microwave data were obtained from the National
Oceanic and Atmospheric  Administration (NOAA)
National Environmental Satellite, Data, and Information
Service (NESDIS) in %”‘ latitude by %‘ longitude pixels.
The swath from 17 February 1989 covered the region of inter-
est; the early morning pass was used to minimize the influ-
ence of the presence of liquid water in the snowpack. NWS
surface-temperature observations [rom the region show that
the maximum temperatures were approximately —10°C or
less and minimum temperatures were approximately
—25°C. In order to correct for the effect of the vegetation on
the microwave signal, no-snow microwave conditions for the
region were obtained from a satellite pass on 14 November
1988. NWS records from the region show no snow on the
ground at the time and the snowpack began to accumulate
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shortly after this date. Hence, these microwave observations
reflect the soil conditions immediately before being covered
by snow, when maximum and minimum air temperatures
were approximately —1°C and —10°C respectively.

The land-use data were obtained from the Contermi-
nous U.S. Land Cover Characteristics Data Set, 1990 Proto-
type CD-ROM, as derived from AVHRR observations. The
CD is available from the U.S. Geological Survey, EROS
Data Center, Sioux Falls, SD. The land-use classification is
provided in 157 categories for 1 x 1km pixels in a Lambert
Azimuthal Equal Area (LAZE) projection. Because the for-
est in the eastern part of the region consists primarily of con-
iferous trees, which can have a strong effect on the observed
brightness temperatures, we simplified the 1km land use
into a binary classification: 0 for no forest and 1 for forest-
covered. This CD also gave the elevation for each 1 km pixel.

DATASET REGISTRATION

‘Io produce co-registered data at the same spatial scale, we
first transformed the satellite microwave data and the flight-
line data into the same projection as that used for the
AVHRR data, the LAZE projection. Then, a kriging tech-
nique was employed to generate 20 x 20 km grids of snow
water-equivalent values and corresponding satellite bright-
ness temperatures. Our analysis only used the data within
the irregularly shaped area in Figure 1, where most of the
flight lines occurred. The same procedure was carried out
for the satellite observations obtained on 14 November
1988, the snow-free situation.

For the land-use classification data, which were already
in the LAZE projection, we simply averaged all of the I km
values within each 20 km gridcell. This produced a [orest-
cover index that varied from 0 to 1. with 0 being completely
open and | being completely forest-covered. Most of the
region is open, consisting of cropland or uncultivated open
land, but the castern part contains significant coniferous
forest cover. Similarly, we defined the ruggedness [or each
grideell as the standard deviation of the 400 1 km elevation
values within each cell. This procedure yielded a total of 164
points that were associated with snow water-equivalent
values.

ANALYSES

We carried out four types of analysis to determine their cap-
ability of predicting snow water equivalent from the micro-
wave measurements. These analyses consist of a multiple
linear regression, a parameter evaluation for an algorithm
containing a vegetation correction, a neural network
approach and a general linear model using standard least
squares methods. To test the different methods, we included
eight variables: the 19y, 37y, and 85y GHz channels, the
22y GHz vertically polarized channel, the difference
between the 19y and 37y GHz channels, the land-classifica-
tion values, the ruggedness and the ruggedness squared.
Then, we examined closely the relationships between 19y
and 37y GHz horizontally polarized data and SWE and
the forest cover. Figure 2 shows a scatter diagram of the
values of 19g minus 37y GHz channels for both the Febru-
ary snow-covered case and the November snow-free case as
a function of the snow water-equivalent measurements de-
rived [rom the gamma-ray techniques.
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Fig. 2. Scatter diagram of the differences in brightness temp-
erature between the 19y and 3Ty GHz channels as a function
of the snow water equivalent from the gamma ray instrument
Jor February 17, 1989, when there was snow and November 14,
1988, when there was no snow.

1. Multiple linear regression

A multiple linear regression of SWE on all eight of the vari-
ables that combined the snow-free and snow-covered obser-
vations, attained an R? of 0.89. Inspection of the T-ratios for
each variable showed that the 19y and 37y GHz frequencies
were by far the most significant variables in the regression.
The remaining variables, including the forest cover, were
found not to affect significantly the regression. This curious
result will be discussed later. Following Chang and others
(1987). who used the brightness-temperature differences
between the 195 and 37y GHz channels to estimate SWE,
a linear regression of SWE on the brightness-temperature
differences was performed and vielded the following regres-
sion equation

SWE (em) = — 0.07 +0.514 (TB19y — TB37y)
with R? = 0.89 (1)

This linear regression had the same R? value as the value
found in the standard multiple regression using all of the
variables and the value of the first coefficient was not statis-
tically different from zero. Equation (1) is very close to the
algorithm derived by Chang and others (1987), who found
a proportionality constant of 0.48 cm K ! for snow with a
density of 300 kg m .

2. Parameter evaluation with a forest-cover
correction

Chang and Chiu (1991) proposed an algorithm that incorpo-
rated a vegetation correction. The correction is based on the
fraction of the pixel that is forest-covered and the 19y and
37n GHz brightness-temperature difference as observed
during snow-free conditions:
SWE (cm) = A[(TB19y — TB37y)
4 F(TBy19% — TB,15337H)] (2)

where TB is the brightness temperature (195 or 37y ), TB,.
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is the brightness temperature for the corresponding snow-
free pixel at 19y or 37y, and F is the fraction of the pixel
covered by forest. For each pixel, we computed A using its
brightness temperatures in the snow-free (TB,,) and snow-
covered case (TB) and its forest cover fraction (F'). To deter-
mine the effects of the forest cover, we also computed an-
other set of A values with F' set to zero for all cases and
then compared the two cases.

Figure 3 shows the results for the two cases; the indivi-
dual values of A are plotted as a function of the forest frac-
tion for each pixel. The small circles (o) are values with no
correction and the pluses (+) are the values with the forest
correction. Because of the large number of pixels with no
forest, there is little difference between the average value
for cach case. However, segregating the A values with re-
spect to forest fraction shows the non-negligible effect of the
forest cover (plotted along the abscissa in Figure 3). The
bold diamond symbol and the bold plus symbol show the
average value of A, respectively for the cases without and
with forest correction. The corresponding bars give the
standard deviation. For F' = (), all values were used in the
average for I/ = 0.1 only those values from pixels with a forest
cover of 0.1 or greater were used, etc. With no forest correc-
tion, the average value of A increases as the forest fraction
increases. However, with the forest correction, the average
value of A remains essentially constant at 0.512 cm K for all
forest covered conditions. This value is not statistically differ-
ent from the value of 0.514 cm K found above, or from the
theoretical results of Chang and others (1976).
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Fig. 3 Variation of the A coefficient defined in Equation (2)
as a_function of the fraction of forest cover. The values com-
puted with forest correction are represented with circles (o),
and the values computed with no correction correction are refr-
resented with pluses (+ ). The bold symbols give the average
values for each case and the bars give the standard deviation
of the averages. See the text for further explanation.
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3. Neural network

We also carried out a neural-network analysis as described
by Wasserman (1989) to determine il an artificial intelligence
approach would provide a more accurate algorithm. The
initial input data consisted of the eight variables: the bright-
ness temperatures from the four passive-microwave channels
(19g, 22y, 37y, and 85y GHz), the 19y — 37y GHz differ-
ence in brightness temperature, the forest cover, the rugged-
ness and the ruggedness squared. The architecture of the
network can be described as 3-1-1: all eight inputs were
read into the input layer; the nodes in the input layer were
then fed into a layer of three “hidden nodes” which were in
turn fed into a one-node output layer. The activation func-
tions between input and hidden layer, and between the hid-
den and output layer, were similar to the usual “squashed
sigmoid” and are therefore constrained to values between
~1 and 1. The networks were implemented in MATLAB
(Mathworks, 1994), using the neural-network toolbox, and
the MATLAB “tansig” function was used for the sigmoid-
activation function.

[o train the network, the dataset was randomly parti-
tioned into two parts, two-thirds for training and one-third
for testing. The technique described by Lee (1995) was used
to normalize snow water-equivalent values and each of the
eight inputs. A similar process was used for the February
dataset containing only snow readings and also for trials
limiting the inputs for comparison. The networks were
trained for 10 000 epochs on the training set with a learning
rate of 0.01. Greater values for the training rate resulted in
exponential growth of the error function. In training, the
error function dropped rapidly until about epoch 1000,
and then dropped slowly from then on. Each training/test-
ing cycle was performed ten times so that the variation
caused by different initial weights for back propagation
could be examined.

Several tests were performed using two different data-
sets: a dataset composed of hoth the data acquired during
the February snow period and the November no-snow
period, and a second dataset consisting only of the snow-
covered case for February. With these two datasets, we per-
formed four different analyses that are presented inTable 1,
where we compare the results obtained with the neural net-
work to the R? values obtained using a standard multiple
linear regression (MLR). For the analysis, we started by
using the eight initial inputs, then we eliminated two inputs
at a time, starting with the inputs that were found to be less
significant in the standard multiple-regression analysis. The
first two inputs we eliminated were the 22y and 85y GHz
channels, which did not significantly decrease the R* values
in the training or the test sets when compared to the values
using the eight inputs. Then, the two ruggedness parameters
were climinated and finally the 19y and 37y GHz channels
were taken out. When the ruggedness parameters were
eliminated, the R? value for the training set decreased by
0.005 but the R? values for the test set increased by approx-
imately 002 when compared to the preceding test sets.
Finally, when the only two input parameters that remained
were the brightness-temperature difference between 19y
and 37y GHz, and the fraction of vegetation cover, both
R? values for training set and the test set decreased signifi-
cantly when compared to the other values. Note that for the
third case with 19y, 37g and 195-37y GHz, and the forest
fraction, MLR will automatically eliminate the difference
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Table 1. R? values from the neural-network analysis and from
the multiple linear-regression analysis ( MLR) for various
data inputs. The upper part is for the case with both snow
and no-snow data, while the lower part is for the case with
snow only

Newral netwaork MLR
All Data Average R? Range of R?
All 8 inputs
Training 0.980 0.976-0.983 0.889
Test 0933 0.921-0.953
22y and 85y GHz omitted
Training 0980 0.979-0.982 0.889
g 1.1 0944 0.923-0.963
Only 19y, 3Tu, 19—37n GHz, and forest value
Training 0975 0.974-0979 0.888
Test 0.966 0.961-0.970
Only 19437y GHz and forest value
Training 0.968 0.966-0.974 0.888
Test 0.933 0.923-0.959
Snow case
AlL 8 inputs
Training 0.850 0.822-0.876 0.599
Test 0.691 0.621-0.762
22y and 85y GHz omatted
Training 0.846 0.794-0.854 0.598
Test 0684 0.607-0718
Only 19y, 3Ty, 19437y GHz, and forest value
Training 0.813 0.810-0.816 0.582
Test 0,706 0.679-0.733
Only 19y-3Ty GHz and forest value
Training 0.720 0711-0.738 0.511
Test 0.601 0.557-0.645

input, because it is a linear combination of the previous two
inputs,

For the cases using both the snow-free and snow-covered
data (left side of the table), the regression coefficient was
quite high for both the neural network and the MLR
analysis. For the neural-network analysis, the R? values for
the training data decreased slightly as the number of inputs
decreased, and the results were slightly lower for the test
data. For the MLR study, the R? values remained nearly
constant as inputs were eliminated, showing that the 19y
and 37y GHz data were dominant in the regression.

When the dataset with only snow was considered (right
side of Table 1), the R? values decreased significantly for
both the necural network and the MLR analyses, from
approximately 0.97 to 0.85 or less for the neural network
results and from 0.89 to 0.60 or less for the MLR results.
This behavior 1s a result of the limited range of SWE in this
study, from 6 and 16 cm, and the non-uniform distribution of
data over this range. For this case, the neural network
approach greatly outperformed the MLR as evidenced by
R? values that were 0.2 greater. For both analyses, the corre-
lation decreased as the number of inputs decreased.

4. General linear models

The combined snow-covered and snow-free data were also
analyzed by traditional least-squares regression models
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(using second order terms and interactions) to give a stan-
dard of comparison for the neural network methods. In the
cases where all data were used (snow and no-snow), the
results are essentially the same as those obtained by the
neural network methods (R? in the range of 098 on the full
and training sets, and R? = 0.95 on the test set). The optimal
models make use of the 19y, 37y and 85 GHz inputs and
the forest fraction. Analysis of the 19y and 373 GHz obser-
vations from the snow-covered case only gave an R” of 0.52.
When the forest cover was added, the R rose to (.69,

In modeling the data which are restricted to cases with
snow on the ground and using the full set of variables, the
success of the least-squares models again was comparable
to that cited above for the neural network models (with
some decline in effectiveness when the 855 GHz variable
was deleted). Figure 4 shows the smoothed variation of snow
water equivalent vs the difference in brightness temperature
191337y GHz for the snow-only data. The smoothed plot is
distinctly sigmoidal in shape, which corresponds to usual
tbetween layerst activation function used in neural network
models in this study. 1o construct models of a more tradi-
tional (statistical) type that have increased effectiveness,
we would probably have to turn to weighted regression
models or projection pursuit regression models,
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Fig. 4. Smoothed variation of snow water equivalent as a func-
tion of the difference in brightness temperature 1975-37y.
This sigmoidal curve was obtained with a general linear
model.

CONCLUSIONS

Snow water-equivalent estimates acquired in February 1989
from the attenuation by snow of gamma radiation measured
from aircraft are compared to brightness temperatures
measured with SSM/I during the same period over the
Red River basin. The snow water equivalent measured with
the aircraft gamma-ray instrument are a unique dataset
since the aircraft data are at a spatial scale similar to the
SSM/I data. These measurements (shown in Figures 1 and
2) represent a limited range of snow conditions (SWE
between 6 and 16 cm) which are a limitation to our study.
For a prairie-type snowpack as found in the Red River
arca, conventional algorithms based on the 195-37; GHz
difference from both the snow-covered and snow-free cases,
can be used to estimate the snowpack water equivalent from
satellite passive-microwave observations. An algorithm that
includes the forest-cover fraction for each pixel further im-

123


https://doi.org/10.3189/1998AoG26-1-119-124

Josberger and others: Snowpack water equivalent estimates of the Red River basin, U.S.A.

proves the SWE estimates. A neural-network approach can
reproduce the observations to a high degree of accuracy, as
reflected by R? values of 0.98. Similar results were found
using a general linear model. One has to bear in mind that
this experiment, which uses only a limited range of SWE
shows great promise for determining accurate SWE esti-
mates from passive-microwave observations, The technique
should be further refined by expanding the range of SWE
and including grain-size measurements.
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