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Abstract

Multicomponent polymer systems are of interest in organic photovoltaic and drug delivery applications, among
others where diverse morphologies influence performance. An improved understanding of morphology classifica-
tion, driven by composition-informed prediction tools, will aid polymer engineering practice. We use a modified
Cahn–Hilliard model to simulate polymer precipitation. Such physics-based models require high-performance
computations that prevent rapid prototyping and iteration in engineering settings. To reduce the required computa-
tional costs, we apply machine learning (ML) techniques for clustering and consequent prediction of the simulated
polymer-blend images in conjunction with simulations. IntegratingML and simulations in such a manner reduces the
number of simulations needed to map out the morphology of polymer blends as a function of input parameters and
also generates a data set which can be used by others to this end. We explore dimensionality reduction, via principal
component analysis and autoencoder techniques, and analyze the resulting morphology clusters. Supervised ML
using Gaussian process classification was subsequently used to predict morphology clusters according to species
molar fraction and interaction parameter inputs. Manual pattern clustering yielded the best results, butML techniques
were able to predict the morphology of polymer blends with ≥90% accuracy.

Impact Statement

By providing predictive tools to polymer engineers that assist in predicting morphological features from easily
knowable (or measurable) input parameters, the need to perform time-consuming and costly experiments to
obtain desired morphological behaviors in such complex systems is reduced. This could reduce the overall
complexity of the research and development (R&D) process for a variety of industries. Applying data-driven
approaches to analyzing simulation data may also help to identify trends and features that are important but might
not otherwise be detected by humans.

1. Introduction

Multicomponent polymer systems are of industrial interest in a variety of applications such as high-
performance plastics (Nauman and He, 1994), membrane systems (Ulbricht, 2006; Yang et al., 2018),
nanoparticle and nano-colloidal systems (Lee et al., 2017; Li et al., 2017), and drug delivery (Lao et al., 2008;
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Inguva et al., 2015). One of the key features considered during the research and development (R&D)
and/or manufacturing process is the morphology of the polymeric particles/blends formed. The morphol-
ogy can profoundly impact the final product’s performance and usability; as for many applications, there
is an optimal morphology that is desired. Understanding the relationship between polymer properties
and their resultant blend morphology will therefore help guide product development from synthesis to
manufacturing steps.

Computational methods provide an excellent tool for modeling various phenomena across various
scales in polymeric systems (Gooneie et al., 2017).Modeling techniques can be applied to understand and
evaluate a variety of thermodynamic and transport properties such as polymer-blendmiscibility. They can
also be used in engineering and manufacturing applications to understand how morphological structures
form or howmaterials respond to processing conditions. On a molecular/atomic scale, techniques such as
molecular dynamics have been widely used in polymer systems to evaluate properties such as the
miscibility and interactions of polymers in a blend or with other species (Prathab et al., 2007; Luo and
Jiang, 2010), diffusion coefficients and transport characteristics (Pavel and Shanks, 2005), composite
elasticity (Han and Elliott, 2007), and nanoparticle morphology (Li et al., 2017). Recent, nonequilibrium
molecular dynamics simulation studies have also considered the effect of shear on the morphology of
anisotropic nanoparticles (Bianchi et al., 2015; Delacruz-Araujo et al., 2016) such as Janus nanoparticles
which are an interesting case within the possibility space of multicomponent polymer systems.

Continuum-based techniques are typically applied at length and timescales orders of magnitude larger
than discrete approaches. Phase-field models, such as the Cahn–Hilliard equation (Cahn and Hilliard,
1958), are useful in capturing the dynamic behavior of structures and morphologies in heterogenous
systems. The Cahn–Hilliard model accounts for various thermodynamic driving forces for morphology
evolution, such as homogenous free energy and interfacial energy, and can also be adapted to further
account for other relevant transport phenomena such as convection (Wodo and Ganapathysubramanian,
2012). Previous continuum-scale simulations of multicomponent polymer systems have focused “uphill”
diffusion, as described by the Cahn–Hilliard equation. Examples of previous applications include systems
of two polymers and one solvent (denoted polymer–polymer–solvent [PPS]) (Alfarraj andNauman, 2007;
Shang et al., 2011), or ternary polymer systems (Nauman and He, 1994; Alfarraj and Nauman, 2007).
Studies that have considered the influence of convective transport in multicomponent systems have only
evaluated a single polymer species precipitating out of solution (Zhou and Powell, 2006; Tree et al.,
2017). Consequently, there is a knowledge gap in the understanding of how systems containing more than
one polymer, that is, polymer-polymer-solvent (PPS) and polymer-polymer-polymer (PPP) systems,
behave in the presence of convective mass transport.

Machine learning (ML) has increasingly found use in physical simulations and computational
modeling by complementing or replacing traditional modeling approaches. ML is noted in having
strength in pattern recognition and data mining (Brunton et al., 2020), which correspondingly enables
it to be used for many tasks relevant to physical simulations. Previous studies have appliedML to develop
data-driven surrogate/reduced order models (ROMs) to improve the speed of computations and results
generation (Peherstorfer et al., 2017; Janet et al., 2018; San and Maulik, 2018). ML has also been used to
improve the accuracy of physical simulations by enabling the development of data-driven closures
(Duraisamy et al., 2019) and models (Chmiela et al., 2017), which can capture more data than traditional
first principles or empirical models. Within the material sciences, ML has similarly found increasing use
in a variety of cases ranging from the prediction ofmacroscopic self-assembled structures usingmolecular
properties (Inokuchi et al., 2018) to the prediction of novel permanent magnets (Möller et al., 2018) and in
the optimization of alloy properties (Ward et al., 2018).

In polymer science specifically, ML has been used to optimize polymer-gel screening for injection
wells (Aldhaheri et al., 2017) and solar cells (Jørgensen et al., 2018), to improve polymeric interfacial
compatibilization (Meenakshisundaram et al., 2017), and to classify and predict the physical features of
polymer systems. For instance, supervised feed-forward neural networks have been used to recognize
configurations produced from Monte Carlo simulations of polymer models, distinguishing between
differently ordered states (Wei et al., 2017). Self-folding mechanisms of polymer composite systems

e13-2 Pavan Inguva et al.

https://doi.org/10.1017/dce.2020.14 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2020.14


have also been modeled (Guo et al., 2013). There is however a knowledge gap in the use of ML as a tool
for classifying and predicting polymer-blend morphology. ML techniques are well suited to this end as
they are able to learn complex features from the data, which facilitates pattern recognition and dimen-
sionality reduction (Cai et al., 2018).

Previous work in the broader material science field has typically considered only one aspect of the
pipeline such as employing dimensionality reduction to identify important features that contribute to the
outer structure of nanoparticles (López-Donaire et al., 2012) or applying supervisedML for classification
of new carbon black samples (Fernandez Martinez et al., 2017). The present study hence applies a ML
workflow, comprising the use of dimensionality reduction techniques with a clustering algorithm, to
separate morphological data into clusters of distinct morphologies. Pattern prediction and design-space
mapping are investigated via classification, using Gaussian process classification (GPC) techniques, in
the low-dimensional transformed feature space. The present analysis is restricted to PPP systems and does
not consider the effects of convective mass transfer. The value of the workflow developed in this study is
twofold: (a) the approach is generalizable to additional engineering fields beyond polymer science; and
(b) polymer blends can be studied more expediently as regions of interest (input parameters/morphology)
can be first identified which allows resources (computational/experimental) to be focused.

2. Theory and Methodology

We address the problem set where physics-based simulation outputs need to be predicted from known
input parameters: a workflow for integrating physics-based simulations and ML clustering is outlined in
Figure 1.

2.1. Physics-based Cahn–Hilliard system

The Cahn–Hilliard equation is well suited for modeling polymer-blend precipitation at continuum length
and timescales. Three different polymer species a,b,c are tracked; however, the following derivation is
kept as general as possible to demonstrate the applicability of the model to n component mixtures. We use
a modified Cahn–Hilliard system based on the work of (Petrishcheva and Abart, 2012), which has the
advantage of being able to handle mixtures where the components may have orders of magnitude
difference in diffusivities. The ability of the model to handle components with large differences in
diffusivity is important in modeling systems with polymers and solvents or polymers of significantly
different chain lengths (Alfarraj and Nauman, 2007).

The model used in the present work is also easier to implement than the earlier method of Alfarraj and
Nauman (2007) for handling components with large difference in diffusivity. Alfarraj and Nauman (2007)
introduced a “proportional flux method” within a finite difference scheme to ensure that the sum of fluxes
into a point is zero. The proportional flux method introduces two issues: (a) the method itself is an heuristic
solution without a robust theoretical foundation (Nauman and Savoca, 2001) and (b) many modern partial
differential equation (PDE) solvers, e.g. FEniCS (Logg et al., 2012) and FiPy (Guyer et al., 2009), are
primarily declarative, and ad hoc adjustments to standard discretizations are difficult to implement.

The Cahn–Hilliard equation, as previously mentioned, models uphill diffusion where the driving force
is gradients in the chemical potential μ rather than concentration. Correspondingly, the flux ji of species i
can be represented as

ji ¼�
X
j

Lij∇μ j, (1)

where each Lij is the species mobility coefficient and L is the square symmetric. The following constraints
are imposed on the flux expression due to the Onsanger reciprocal relations and that the total flux into a
point is zero (Petrishcheva and Abart, 2012):

Lij ¼Lji,
X
i

Lij ¼ 0,
X
i

ji ¼ 0: (2)
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Correspondingly as per Petrishcheva and Abart (2012), ji can be expressed in terms of differences in
chemical potentials,

ji ¼
X
j

Lij∇ μi�μ j

� �
: (3)

Figure 1. Workflow for integrating the physics-based simulation set with machine learning
(ML) dimensionality reduction, clustering, and prediction algorithms.
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As the Gibbs energy functional is scaled by RT, Lij can be expressed with the following relationship:

Lij ¼�Dijxix j, (4)

where xi and x j are the mole fractions of species i and j, respectively. The mobility coefficients Lij are
composition dependent, but the Dij effective diffusion coefficients can be constant.

To obtain the relevant transport equation for each species, we apply the continuity equation,

∂xi
∂t

þ∇ � ji ¼ 0, (5)

where t is the time. To determine an expression for the chemical potential, a generalized Landau–
Ginzburg free energy functional for N components, Gsystem, which accounts for inhomogeneity in the
system is first considered (Cahn and Hilliard, 1958; Nauman and Balsara, 1989),

Gsystem

RT
¼
ð
V

�
g x1,x2,…,xNð Þþ

XN�1

i

κi
2

∇xið Þ2þ
X
j > i

XN�1

i

κij ∇xið Þ ∇x j
� ��

dV , (6)

where g is the homogenous free energy contribution, and κi and κij are the self- and cross-gradient energy
parameters, respectively. To evaluate whether the simulation has reached an equilibrium state, the Gibbs
free energywas determined at each time step as per Equation (6). For polymeric systems, the homogenous
free energy is well represented by the Flory–Huggins equation,

g x1,x2,…,xNð Þ
RT

¼
XN
i

xi
ni
lnxiþ

X
j > i

XN�1

i

χijxix j, (7)

where ni is the polymer chain length and χij is the Flory–Huggins binary interaction parameter. The
generalized chemical potential, applicable for inhomogenous systems, for each species i can be expressed
as the variational derivative of the Gibbs energy functional (Nauman and Balsara, 1989; Cogswell, 2010),

μi ¼
δGsystem

δxi
¼ ∂G
∂xi

�∇ � ∂G
∂∇xi

: (8)

We replace xi with a,b,c to represent the mole fractions of the three species of interest: A, B, and C,
respectively. We can write the following equations for the differences in chemical potentials:

μAB ¼ μA�μB ¼
∂g
∂a

�∂g
∂b

� κA�κABð Þ∇2aþ κB�κABð Þ∇2b, (9)

μAC ¼ μA�μC ¼
∂g
∂a

�∂g
∂c

�κA∇2a�κAB∇2b, and (10)

μBC ¼ μB�μC ¼
∂g
∂b

�∂g
∂c

�κB∇2b�κAB∇2a: (11)

The gradient energy parameters for the PPP system (Nauman and He, 1994) can be evaluated as
follows. We specifically consider the case of all polymer species having the same radius of gyration RG

and diffusivity,

κA ¼ 2
3
R2
GχAC, (12)

κB ¼ 2
3
R2
GχBC, and (13)
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κAB ¼ 1
3
R2
G χACþ χBC� χABð Þ: (14)

The compositional dependence of κi and κij is neglected following an approach commonly used by
similar simulation studies (Nauman and He, 1994; Zhou and Powell, 2006; Alfarraj and Nauman, 2007).
This also simplifies the computations.

Combining the expressions for the chemical potential Equations (9)–(11), species fluxEquations (3)–(4),
and the continuity Equation (5), we arrive at the following transport equations tracking species A and B:

∂a
∂t

¼∇ � DABab∇μABþDACac∇μACð Þ, and (15)

∂b
∂t

¼∇ � �DABab∇μABþDBCbc∇μBCð Þ: (16)

Species C is obtained by using a material balance constraint,

c¼ 1�a�b: (17)

For symmetric PPP systems, where all species diffusivities can be assumed equal, the equation system
given by Equations (15)–(17) reduces to that considered by Nauman and He (1994).

2.1.1. Scaling
We introduce the following scalings:

x¼ dpex, and (18)

t¼ nd2p
DAB

et, (19)

where dp is the characteristic length scale. The chemical potential and Gibbs energy functional are scaled
by RT (denoted from here on as eμi and eg, respectively). We consider the case of a symmetric PPP system
i.e. all the polymer species have the same chain length and diffusivity, thus resulting in the following
equation system:

eμAB ¼eμA�eμB ¼ ∂eg
∂a

�∂eg
∂b

� eκA�eκABð Þe∇2
aþ eκB�eκABð Þe∇2

b, (20)

eμAC ¼eμA�eμC ¼ ∂g
∂a

�∂g
∂c

�eκAe∇2
a�κABe∇2

b, (21)

eμBC ¼eμB�eμC ¼ ∂g
∂b

�∂g
∂c

�eκBe∇2
b�eκABe∇2

a, (22)

∂a
∂t

¼ e∇ � abe∇eμABþace∇eμAC� �
, and (23)

∂b
∂t

¼ e∇ � �abe∇eμABþbce∇eμBC� �
: (24)

Equations (20)–(24) model the polymer-blend demixing dynamics and form the final set of equations
to be solved.
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2.1.2. Numerical implementation
Numerical solution of the Cahn–Hilliard equation is challenging due to the fourth-order derivative: hence,
the equation is typically treated as a set of coupled second-order PDEs (Jokisaari et al., 2017) as shown in
the equation system of Equations (20)–(24). The system was reformulated to variational form and solved
with an open-source finite-element solver, FEniCS (Logg et al., 2012).

An unstructured squaremesh of domain-length 40 dimensionless units was generated with a resolution
of 80 cells along each domain boundary. Periodic boundary conditions were applied on the left and right
boundaries and Neumann conditions were applied to the top and bottom domains. Unknown variables
were treated implicitly and a backward Euler method was applied for time discretization. PPP cases were
simulated for a duration ofet¼ 400 with a time step of Δet¼ 0:02, corresponding to a physical duration of
t¼ 16s. Physical parameters were set to RG ¼ 200�10�10m and dp ¼RG,DAB ¼ 10�11m2s�1. Values of
χij simulated ranged from 0.003 to 0.009 via automated batch scripting (Di Tommaso et al., 2017). In total,
1,140 simulation runs were performed, representing a total of five independent input parameters. The
entire simulation process took ~80,000 core-hours. Benchmarking and model validation are discussed in
the supplementary material.

2.2. Machine learning

2.2.1. Methodology and workflow
TheMLworkflow consisted of three steps: (a) dimensionality reduction, (b) clustering, and (c) supervised
learning. Dimensionality reduction is required to address the curse of dimensionality (Kriegel et al.,
2009), which can make clustering of high-dimensional data, such as raw simulation images, prohibitively
expensive. Clustering on the low-dimensional processed data was used to identify morphologies.
Supervised ML, using GPC, was then used to determine a relationship between the physical input
parameters and the resultant morphology.

2.2.2. Dimensionality reduction
Each simulation generates a high-resolution color image of the physical morphology, where RGB image
channels form a proxy for species molar fraction (i.e., subject to the material balance of Equation (17)).
Prior to dimensionality reduction, each image was preprocessed to 200�200 pixel resolution. The
dimensionality reduction itself was applied using three candidate techniques: (a) principal component
analysis (PCA), (b) t-distributed stochastic neighbor embedding (t-SNE), and (c) autoencoder compres-
sion (Wang et al., 2016). The three techniques used are representative of the three broad categories of
techniques for dimensionality reduction available: (a) matrix decomposition or linear techniques,
(b) manifold learning or nonlinear techniques, and (c) artificial neutral network (ANN)-based techniques.
PCA and t-SNE were implemented using scikit-learn (Pedregosa et al., 2011), while the autoencoder was
implemented using Keras (Chollet et al., 2018).

For PCA and t-SNE pipelines, the set of species concentration fields was extracted as three grayscale
images (200�200); image arrays were then flattened and concatenated into a one-dimensional array of
length 120,000 (3�200�200) representing each simulation result. For the autoencoder, the prepro-
cessed color images were used as direct inputs.

Principal component analysis (PCA). For a set of input arrays, the q principal components (PCs) form
the orthonormal axes onto which the retained variance under projection is maximal. The PCA pipeline
within scikit-learn was undertaken using the probabilistic model of Tipping and Bishop (1999): the
number of retained PCs, q, was varied between 0 and 100, corresponding to the dimensionality of the
embedding.

t-distributed stochastic neighbor embedding (t-SNE). Nonlinear dimensionality reduction was
undertaken in scikit-learn using the t-SNE technique (Maaten and Hinton, 2008; Wattenberg et al.,
2016). The number of embedding dimensions was varied from 2 to 10, while the perplexity was varied
from 5 to 50.
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Autoencoder compression.An autoencoder (Lecun et al., 1998) is a specific type of ANN that consists
of two sections: (a) an encoder that compresses high-dimensional data to low-dimensional “bottleneck”
representation and (b) a decoder that recovers the original data from the encoded data (Hinton, 2006).
Autoencoders are highly suitable for dimensionality reduction, with performance often exceeding
alternative techniques such as PCA (Hinton, 2006; Wang et al., 2016). Autoencoders are ideal for image
analysis applications (Chen et al., 2017); moreover, the hidden-layer nodes at the ANN bottleneck can be
exploited for downstream clustering pipelines.

Autoencoder architectures can be labeled using a convention T–N, where T denotes the layer type and
N is the number of layers. Layer types explored presently include (a) densely connected (denoted
“Dense”) and (b) convolutional (denoted “Conv”). The simplest autoencoder architectures consist of
an input layer and an output layerwith one ormoreDense layers in a stacked fashion: Dense–1 has a single
dense encoder layer which also serves as the bottleneck, while Dense–2 and Dense–3 contain additional
layers. More complex architectures, such as LeNet–5 (Lecun et al., 1998), apply a combination of Dense
and Conv layers.

All candidate autoencoders were trained on the full preprocess image data set, enabling autoencoder
compression to be implemented into the same workflow, Figure 1, as PCA and t-SNE dimensionality
reduction. Due to the small data set size, the conventional split into training and validation sets
(Petscharnig et al., 2017; Chen and Huang, 2019) for evaluating clustering accuracy was not undertaken.
A summary of all explored autoencoder types and hyperparameters is given in the supplementary
material. Hyperparameter optimization for the dense autoencoderswas performed using TalosAutonomio
(2019) (fractional random search over 10–15% of the grid; 10 epochs), while convolutional autoencoders
were tuned manually.

2.2.3. Clustering
To implement a purely unsupervised learning pipeline, the clustering method and/or use of an appropriate
metric, heuristic, or algorithm should be able to estimate the optimal number of clusters. Scikit-learn
implements a variety of clustering algorithms, such as affinity propagation, spectral clustering, hierar-
chical clustering, and k-means, which can be used to this end.

The popular clustering algorithm k-means as implemented in scikit-learn was used to carry out
clustering as a means of measuring “sign of life.” Sign-of-life in this case refers to there being initially
positive results from a naive application of a clustering algorithm which then justifies further exploration.
To this end, k-means was found to be as effective as any of the clustering algorithms outlined above and
was used as the default clustering algorithm for all the embeddings generated by the various dimension-
ality reduction techniques.

The k-means algorithm works by clustering the datapoints into k groups by minimizing the within-
cluster sum of squares (WCSS) (Yuan and Yang, 2019). The algorithm requires an initialization method
(set to “k-means++”) and a predetermined number of clusters, k. Evaluating an appropriate number for k is
one of the main challenges when using k-means and the elbow method was used. The elbow method
involves running k-means for a range of k values and calculating the distortion or the total sum of square
errors (Yuan andYang, 2019). Ideally, when the number of clusters nears the real number of clusters, there
is an inflexion in the distortion, showing as an “elbow” in a plot of distortions vs. k.

For the clustering of the t-SNE embedding of the Conv–3/4/5 autoencoder bottleneck values, k-means
was ill-suited as it is unable to effectively identify clusters where the cluster shape is non-globular. In this
case, affinity propagation was used (Frey and Dueck, 2007). Affinity propagation does not require the
declaration of the number of clusters to perform clustering, but rather it performs clustering based on
passing messages between the datapoints which represents the fitness of one sample to exemplify the
other until a set of exemplars are identified, representing the final number of clusters (Frey and Dueck,
2007). The implementation of affinity propagation in scikit-learn was used and it has two main
hyperparameters: the preference which refers to the strength of a datapoint to be an exemplar and the
damping ratio which was set to .9 for stability.
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2.2.4. Supervised learning
A scikit-learnGPCmodel was trained on the initial concentrations (a0, b0) and corresponding cluster label.
A test set (20% of the data) was used to check if the classifier returned the correct cluster, given the specific
parameters. Radial basis functions (RBFs) with a length scale of 1:0were selected for the Gaussian process
kernel. The data augmentation process is described in the results and discussion section. To perform the
prediction, the initial species concentrations (a0, b0) were varied within a specific range (a0∈ 0:1,0:8½ �,
b0∈ 0:1,0:45½ �) and passed into the trained GPC to evaluate the morphology maps as shown in Figure 10.

3. Results and Discussion

3.1. Polymer demixing simulation results

The numerical stability of Cahn–Hilliard solution methods is a known issue, especially when using the
Flory–Huggins free-energy function at higher χij values (Brunswick et al., 1998). Three possible
simulation states were identified as shown in Table 1: simstate demonstrating the impact of numerical
issues on the solution of the physical model, either the simulation would diverge prematurely due to
numerical instability (State 3a), or even though the input parameters were selected such that the physical
system is in the chemical spinodal, no demixing would occur (State 2). The present data set of 629 images
was restricted to samples from States 1 to 3b. A representation of how the Gibbs energy evolved with time
for each of the three cases is shown in Figure 2.

Table 1. Different states that a simulation could take. Images from states 1 to 3b are used in the data set.

State identity
(State ID) Description

1 Gsystem decreased over time and appeared to taper off: solutions converged for the full simulation periodet and a
pattern formed.

2 Solutions converged for the full simulation periodet, but Gsystem appeared to remain constant: simulations
with this State ID did not generate any patterns.

3a Gsystem initially decreased and a pattern began to emerge; however, the simulation diverged andwas terminated
early: the pattern was unusable.

3b Gsystem decreased and started to plateau with the simulation generating a usable pattern; however, the solution
did not converge for the full simulation periodet.

Figure 2. Representative solutions for each Gibbs energy state. The state ID for each line is annotated
next to the line for reference.
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3.2. Dimensionality reduction and clustering

The effectiveness of each dimensionality reduction and clustering technique is summarized in Figure 3:
techniques were assessed.

3.2.1. Principal component analysis (PCA)
The image set could not be partitioned into distinct embedded-space clusters via PCA. As shown in
Figure 4, the number of clusters evaluated by k-means consistently remained between 5 and 6 independent
of the number of retained PCs, demonstrating that the application of PCA here is ineffective. PCAwas not
capable of learning distinguishing features of the system as a number of clusters, each with a distinct
morphology, did not emerge.

Figure 3.Dimensionality reduction and clustering results—Red:Method is unable to yield useful results;
Yellow: Method is able to yield results of some significance; however, the method is still inadequate;

Green: Method that yielded the best results.

Figure 4. Captured variance and optimal cluster number: the optimal number of clusters remained
between 5 and 6 independent of the number of principal components (PCs) retained.
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Figure 5 shows how the clustering took place in two-dimensional (2D) space: each cluster contained a
variety of morphologies and was therefore not distinct. Each cluster was, however, consistent in terms of
the predominant continuous phase. This is evidenced in the sample images for each cluster. For example,
cluster 0 contains globular dispersed-phase patterns; however, a mixture of core–shell (one component
encapsulates the other), single-component (one component is present), andmiscible (both components are
mixed) patterns are present in the globular structure. A detailed description of the various observed
morphologies and exemplar images is available in the supplementary material. Similar clustering
behavior was observed when retaining higher numbers of PCs.

3.2.2. t-distributed stochastic neighbor embedding (t-SNE)
For t-SNE dimensionality reduction techniques, the variance in the optimal number of clusters was
observed to increase with the number of embedding dimensions as shown in Figure 6. For almost all
values of perplexity, the optimal number of clusters was 5 for two embedding dimensions and 7–8 for
three embedding dimensions. A maximum in the number of clusters was observed for the combination of
7 embedding dimensions and perplexity 10.

Clustering in three or more embedding dimensions resulted in outlier clusters which contained only
1–2 datapoints (not shown). Clusters of outlying datapoints in the embedded space distorted the k-means
process. The optimal number of clusters is also more sensitive to the perplexity values, which is reflected
in the increasing variance in the number of optimal clusters. A visual inspection of the images from each
cluster for sample cases revealed poorer clustering performance compared to PCA or t-SNE in two
embedding dimensions with clusters having more variation in the types of morphologies and the species
of the continuous phase present.

Use of two embedding dimensions resulted in more consistent clustering performance, with the
optimal number of clusters mostly remaining at 5: a representative example can be seen in Figure 7.
The dimensionality reduction and clustering performance was comparable to PCA; while there was
significant mis-clustering within each cluster, each cluster was generally consistent with regards to the
continuous-phase species present. Ultimately, both PCA and t-SNE techniques were unable to capture an
adequate number of features to describe the diverse morphologies arising from ternary-polymer blends,
prompting the exploration autoencoders as an alternative unsupervised ML workflow.

3.2.3. Autoencoders
The performance of each autoencoder architecture tested is shown in table: autoencoder together with
reconstructed images and representative loss and accuracy values. Increasing the size and depth of
the Dense autoencoders, which increases the number of tuneable parameters, did not improve the loss
and accuracy values, which plateau at ~ 0.01 and~ 0.6, respectively, for the optimal set of

Figure 5. Principal component analysis (PCA) dimensionality reduction (2 principal components
retained) with k-means clustering (6 clusters). Sample images from each cluster are shown.
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hyperparameters. The reconstructed image quality remains consistently poor. Autoencoders with Dense
layers only generated poor embeddings of the images and were not further explored.

Conv autoencoder architectures performed significantly better than Dense architectures as evidenced
by the reconstructed images in Table 2. The accuracy and reconstructed image quality increased with the
number of bottleneck embedding dimensions. A dimensionality of ≳500 is necessary to reconstruct both

Figure 6. Number of clusters as a function of number of embedding dimensions and perplexity.
Configurations with 4, 6, and 9 embedding have been omitted for clarity. The variance in the optimal
number of clusters is shown in parentheses below the x-axis. The variance generally increases with the

number of embedding dimensions.

Figure 7. t-distributed stochastic neighbor embedding (t-SNE) results in two-dimension (2D) with
perplexity 30 and 5 clusters. Sample images from each cluster are shown. The clustering performance is
similar to the results from using principal component analysis (PCA). There is a variety of different

morphologies present in each cluster, but the species of the continuous phase is comparatively consistent.
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the morphology and continuous-phase species identity. A set of reconstructed images and loss/accuracy
results for Conv–3, 4, 5 autoencoders is presented in the supplementary material for a range of bottleneck
filter values. The addition of a Dense layer at the bottleneck of the Conv–Dense autoencoders increased
the number of required parameters (≥109): hence, only Conv–4, 5 Dense–2, 1 autoencoders were tested
due to their tractable memory requirements. Conv–Dense performance was comparable to Dense–1, 2, 3
architectures and was not further explored.

Table 2. Autoencoder performance for each architecture. Results for Dense–2 and Conv–Dense architectures have been omitted due
to similarity with other Dense autoencoders. Dense and Conv–Dense autoencoders were observed to have lower accuracies and
produce poorer image reconstructions than Conv autoencoders.

Autoencoder architecture Encoding dimensionality Loss / Accuracy Sample 1 Sample 2

Original images 200,200,3ð Þ¼ 120,000 0 / 1.0

Dense–1 500 0.0111 / 0.5982

Dense–1 5,000 0.0119 / 0.6000

Dense–3 20 0.0204 / 0.6039

Conv–3 (4 filters) 25,25,4ð Þ¼ 2,500 4:5042�10�4 / 0.9654

Conv–4 (4 filters) 13,13,4ð Þ¼ 676 0.0012 / 0.9280

Conv–5 (4 filters) 7,7,4ð Þ¼ 196 0.0050 / 0.7949
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Clustering via k-means was performed directly on the Conv autoencoder bottleneck as shown in
Figure 8. Performance was found to be comparable with the other dimensionality reduction techniques
tested (PCA and t-SNE): clustering on the full embedding yielded a similar number of clusters as the
previous approaches.

As the dimensionality of the bottleneck was comparatively high (~ 100–~1,000), stacking of addi-
tional dimensionality reduction techniques to further reduce the data dimensionality was performed
(Maaten and Hinton, 2008). Applying PCA and retaining two PCs was not effective, yielding clustering
performance comparable to applying PCA or t-SNE directly. Further dimensionality reduction was
applied to the bottleneck values using t-SNE with a final two-dimensional embedding. The resulting
datapoint distribution shown in Figure 9a almost exactly coincides with the composition a0 and b0: by
following the “S” shape curve from the bottom and the value of a0 increases. This result was consistent
across the various Conv autoencoders and the results from the combination of the Conv–4 (4 Filters)
bottleneck and t-SNE is presented in Figure 9.

Clustering via k-means techniques is ill-suited due to the shape of the embedded data shown in
Figure 9b,c: the clusters cannot be ellipsoidal/spherical. Two alternative options were tested as shown in
Figure 3: (a) manual clustering following the composition trend and (b) affinity propagation.

Affinity propagation (with optimal preference �250) resulted in 24 clusters each of comparable size
(Figure 9b), while manual clustering following the composition trend yielded 21 clusters of varying sizes
(Figure 9c). The clustering carried out by affinity propagation and manual clustering following the
composition trend had ~ 30% of ~ 17.6% of the datapoints within each cluster not corresponding to the
majority morphology of that cluster. Furthermore, both clustering techniques resulted in non-unique
clusters as different clusters would have the same majority morphology: this reduces the inherent value
of each cluster as a bin to capture a distinct morphological class, adversely impacting the usability of
the cluster labels for the subsequent supervised ML tasks. The majority pattern of each cluster for both
manual clustering following the composition trend and affinity propagation clustering from the Conv–
4(4 Filters)—t-SNE dimensionality reduction is presented in the supplementary material together with a
separate direct manual clustering of the high-resolution images based on the morphology.

We speculate that it may be possible to obtain further improvements in the clustering performance for
this case by adopting classical image analysis and feature-engineering approaches. However, such
approaches are beyond the scope of the present work as the premise of applying unsupervised ML is

Figure 8. k-means clustering on Conv–4 (4 filters) embedding (a plane of k¼ 4 clusters is shown for
reference). Performing k-means clustering directly on the Conv autoencoder bottleneck values consis-

tently resulted in 4–6 clusters.
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defeated when feature engineering is performed. Classical feature engineering and extraction identify
defined features such as edges or shapes; hence, classical image analysis is conceptually similar tomanual
clustering. In addition, while the dimensionality reduction and clustering sections of the proposed
workflow had limited success in the present study, the workflow is generalizable and can be implemented
with minimal modification. However, performing feature engineering constrains the workflow as it
requires the features to be re-engineered for each new problem.

3.3. Morphology prediction

The manual cluster identities obtained by performing manual clustering directly on the high-resolution
images were used to train a prediction model. Even though affinity propagation clustering and manual
clustering following the composition trendon theConv–t-SNE embedding as outlined in Figure 3was able to
identify clusters with reasonable accuracy (Figure 9b), each cluster did not represent an intrinsicmorphology.
Therefore, the manual labels were deemed to be more appropriate for downstream supervised learning.

The simulation has a total of eight parameters: the composition which is controlled by a0, b0, the
polymer chain lengths Ni for i¼ 1,2,3, and the binary interaction parameters χij for i, jð Þ¼ 1,2ð Þ, 1,3ð Þ,
and 2,3ð Þ. Polymers of the same chain length, Ni ¼ 1,000 for all i, were considered in this study, which

(a)

(b) (c)

Figure 9. (a) Reduced datapoints labeled by initial composition: each group of constant a0,b0ð Þ contains
mulitple simulations with varying χij (half of the cluster labels are omitted for clarity); (b) affinity

propagation clustering on Conv–4 (4 filters) with t-distributed stochastic neighbor embedding (t-SNE);
(c) manual clustering on Conv–4 (4 filters) with t-SNE embedding: applying t-SNE to the bottleneck

values of Conv autoencoders arranged the datapoints based on initial composition. Affinity propagation
yielded k¼ 21, while manual clustering following the trend yielded k¼ 24 clusters.
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resulted in a total of five independent variables. For ease of visualization, 2D slices of the five-
dimensional (5D) space are presented when we consider how the composition affects the morphology
for different cases of interaction parameters. The entire image data set together with corresponding
simulation parameters is available in the supplementary material.

The quantity of raw data for a given slice was approximately 25–50 datapoints. The low count was
deemed inadequate for stable predictions (whereby the prediction quality becomes independent of the
data quantity), and data augmentation was hence applied. Performing additional simulation runs was not
considered due to computational limitations and anticipated numerical instability issues. Data augmen-
tation was performed under the assumption that slight perturbations in a0 and b0 do not change the
morphology of the polymer blend. The size of the data set was increased threefold by considering
a0� ε,b0� εð Þ for ε∈ 0:002,0:005f g. The associated uncertainty introduced to the prediction was
bounded by 5%. This comes about when considering the smallest datapoint a0 ¼ 0:1, b0 ¼ 0:1 and the
largest change of �0:005. The ℓ2 norm changes by 5% in this case and is lower for all other datapoints.

As shown as Figure 10, the prediction process was able to yieldmapswhereby input values of a0 and b0
could be mapped to distinct morphological clusters using the cluster numbers from the manual clustering
process. The test data have been overlaid onto each plot for reference. The prediction accuracy for the first
case presented where χij ¼ χik ¼ χjk ¼ 0:003 was found to be 100%. The second case where χij ¼ χjk ¼
0:006 and χik ¼ 0:003 had a prediction accuracy of 93%. The high performance of theGPC inmapping the
regimes demonstrates the capability of supervised ML techniques for morphology prediction.

4. Conclusion

Physics-based simulations of ternary polymer demixing were implemented using Cahn–Hilliard theory
and a numerical solver. Despite difficulties due to numerical instabilities, a comprehensive data set was
generated that covers meaningful parameter ranges, including Flory–Huggins interaction parameters and
molecular size.

The performance of conventional dimensionality reduction techniques (PCA and t-SNE) when
clustering the simulation results into distinct categories was inadequate for use in downstream supervised
learning tasks. Application of ML to the present simulation set remains a challenging task: the techniques
struggled to identify unique polymer-blend features that are important for morphology characterization. It
may well be possible to apply more sophisticated clustering techniques; the time and cost investments
may significantly exceed those of direct manual labeling and yield comparatively poorer results.
SupervisedML using GPCwas used to predict the polymer-blendmorphology to within≥ 93% accuracy;
the accuracy is anticipated to increase with the addition of further simulation training data.

(a) (b)

Figure 10. Prediction of blend morphology for (a) χij ¼ χik ¼ χjk ¼ 0:003 and
(b) χij ¼ χjk ¼ 0:006,χik ¼ 0:003.
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The data set (included in the supplementary material) enables users to obtain reasonable first predictions
of polymer-blend morphologies for polymers with comparable physical parameters, bypassing computa-
tionally expensive simulations: resources can hence be targeted at regions of interest in the physical
parameter space. The present framework can be readily extended for ternary polymer blends with modified
physical properties. Extension is also envisioned for entirely different systems, including polymer-polymer
(PP) and PPS systems, and the coupling of Navier–Stokes models for prediction of shear on polymer-blend
morphology.
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