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NILPOTENT INNER DERIVATIONS OF THE SKEW 
ELEMENTS OF PRIME RINGS WITH INVOLUTION 

W. S. MARTINDALE, 3RD AND C. ROBERT MIERS 

ABSTRACT. Let R be a prime ring with invoution *, of characteristic 0, with skew 
elements K and extended centroid C. Let a € K be such that (ad a)n — 0 o n £ It is 
shown that one of the following possibilities holds: (a) R is an order in a 4-dimensional 
central simple algebra, (b) there is a skew element À in C such that (a — A)[ V ] = 0, 
(c) * is of the first kind, n = 0 or n = 3 (mod 4), and a^~^+l = 0. Examples are given 
illustrating (c). 

1. Introduction. Since this paper makes substantial use of the extended centroid of 
a prime ring, we begin by briefly recalling this notion (see [4] for details). It is known that 
for a prime ring R there exists a ring of "quotients", Q, characterized by the following 
properties: 

(i)RQQ 
(ii) for q G Q there exists a non-zero ideal U of R such that Uq Ç R, 

(iii) for q G Q if Uq — 0 for some non-zero ideal U of R then q = 0, 
(iv) for any/: RU —• RR, where U is a non-zero ideal of R, there exists q € Q such 

that wg = /(w) for all u £ U. 
The center C of g is called the extended centroid of /? and the ring A = RC + C 
is called the central closure ofR. It is well known that C is a field (containing the 
center of R) and that A is again a prime ring. 

If R is a prime ring with extended centroid C we note a simple fact: if a G /? and 

a = fc + A,fcm = 0, A GC then (ad afm~l (R) = 0. One asks if the converse is true: 

(1) Does (ad af(R) = 0 imply (a - A)[2^] = 0 for some A G C? 

(Here [ ^ ] equals | if n is even and ^ if rc is odd.) With no restriction on the charac
teristic of R the answer to (1) is no. For example, let R = Mp(Zp(tfj the ring of p x p 
matrices over the field of rational functions with coefficients in Zp. R is simple with 
identity so that its extended centroid is just its center ZR = ~Lp(t)lp. Let 
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Then 

ezR 

0 
L0 ••• 0 t. 

so that (aday = ad(ap) = 0. However, if À G Zp(t) were such that a — XI were 
nilpotent there would exist an integer n > 1 such that À n = t. (Of course there does 
exist an extension field of the extended centroid which does contain such a A but we do 
not know if this is always the case.) Therefore it is natural to assume in questions of this 
sort that the characteristic is 0 and throughout this paper we will make this assumption. 
In an earlier paper [7] we were able to answer (1) in the affirmative. 

THEOREM A ([7], P. 182, COROLLARY 1(B)). Let Rhea prime ring thenar 0 and let 
aeRbe such that (ad a)n(R) = 0. Then (a - A )["n^] = Ofor some A G C. 

In case R is simple we remark that Theorem A had been previously proved by Herstein 
[1] and that both he [1] and Kovacs [2] had conjectured the generalization to prime rings. 

The hypothesis being a Lie condition, it seems natural to investigate the analogue of 
Theorem A for prime rings with involution. To be specific we now let R be a prime ring 
of char 0 with involution *, and let K be the Lie ring of skew elements of R under *, and 
we pose the question 

(2) For aeK, does (ada)n(K) = 0 imply that (a - A f~r] = 0 for some A G C? 

One low-dimensional counterexample presents itself immediately, namely, R — M-i(F), 

This type of example aside, we shall see that (2) nearly =transpose, a -1 0 
has an affirmative answer, the only adjustment being that in certain cases the index of 
nilpotency of a — A must be increased by 1. 

In order to state our main theorem accurately (which we shall do at the end of this first 
section) we need to review some notions and facts concerned with central closures, gen
eralized polynomial identities, and involutions, etc. (see [8] for details). In Section 2 we 
collect further lemmas which are needed before we give the proof proper (in Section 3) of 
the Main Theorem. Examples showing that the "expected" result does not always occur 
in certain cases are given in Section 4. 

Let R be a prime ring with involution *, with skew elements K and symmetric elements 
S. It is straightforward to extend * to an involution of the central closure A = RC + C. 
We say that * is of the first kind if * is the identity on C, otherwise it is of the second kind. 
Since our Main Theorem will follow almost immediately from Theorem A in case * is of 
the second kind we now assume for the time being that * is of the first kind. Now let F be 
the algebraic closure of C and form the superstar closure R = A ® F; it is a closed prime 

c 
algebra over F and carries an involution given by (a <g> A )* = a* <g> A, a G A, A G F. 
If R satisfies a generalized polynomial identity (GPI) over C then R is also GPI over F, 
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in which case it is well known that R is a primitive F-algebra with nonzero socle, acting 
densely on an F-vector space V. R always contains a symmetric idempotent e of rank 2 
(unless it is already commutative). The algebra eRe = M2(F) inherits the involution * 
and, by choosing matrix units properly, one shows that * is either the transpose involution 
or the symplectic involution. In the former case there exist symmetric elements of rank 1 
whereas in the latter case this cannot occur. Iff is another symmetric idempotent of rank 2 
it is well known ([8], p. 20, Corollary 2.10) that the involution on fRf is transpose (resp. 
symplectic) if and only if the involution on eRe is transpose (resp. symplectic). For R a 
prime GPI ring with * of the first kind it is therefore a well-defined notion to say that R 
is of transpose type (resp. symplectic type) according to whether the involution on eRe 
is transpose or symplectic, e a rank 2 symmetric idempotent. 

We mention in passing that K/ ZK is always a prime Lie ring, where ZK = {x G K \ 
[JC, K] — 0} , unless R is of transpose type with R = A/4(F) ([8], Corollary 5.12). 

We are now in a position to state the 

MAIN THEOREM. Let R be a prime ring with involution * of characteristic 0. Let 
a G K be a skew element such that 

(3) (ada)n(K) = 0, some n>\. 

1. If * is of the second kind, then there is a skew element À G C such that 
( f l-A)[^] = 0. 

2. If* is of the first kind, then a f~ ] = 0 unless one of the following holds: 
(a) * is of transpose type and R = M2(F). 
(b) n = 0 (mod 4) or n =. 3 (mod 4), * is of transpose type, a[*^] is a rank 1 
symmetric element of R, anda[n%~]+l = 0. 

2. Preliminary results. In this section we gather together several useful lemmas 
and equations in preparation for Section 3. The hypotheses of the Main Theorem are 
always assumed to hold, whenever they are needed. We begin by citing a well known 
basic lemma [4]: 

LEMMA 1. For w, v G R, ifurv — vrufor all r G R, then u, v are C-dependent. 

A corollary to Lemma 1 is 

LEMMA 2 ([5], THEOREM 5). A° (g) A = AtAr, where A° is the opposite algebra of 
c 

A, At (resp. Ar) are the left (resp. right) multiplications of A. 

LEMMA 3 ([8], LEMMA 5.5). If a G R such that [a,K] = 0 then either a lies in the 
center Z ofR or R = MiiF) and * is of transpose type. 

LEMMA 4. IfaeK and aKa = 0 then a = 0. 

PROOF. In view of 2R Ç S + K, then condition implies axaxa — 0 for all x G R, i.e., 
(ax)3 = 0. Thus the element a generates a nil right ideal of bounded index, whence it is 
well known that a = 0. • 
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LEMMA 5. Let * be of the first kind, letO^ b e S be such that b2 = 0 and bKb = 0. 
Then R is GPI of transpose type and b is of rank 1 in R. 

PROOF. The condition bKb = 0 implies that bxb = bx*b for all x G R. Thus bxbyb = 
bx*by*b = b(ybx)*b — b(ybx)b for all je, y G /?, and hence for all x,y £ R. In particular /? 
is GPI. Writing this equation in the form (bxb)yb = by(bxb) we conclude from Lemma 1 
that bxb = \xb, Xx G F, for all x G R. Recalling that R acts densely on an F-space V, we 
claim that rankZ? = 1. Indeed, suppose rankZ? > 2. We may select vi, V2 G V such that 
w\ = v\b, W2 = V2& are F-independent. By density there exists r G R such that w\r = vi 
and W2̂  = 0. Thus v\brb = wi whereas V2̂ rZ? = 0. In particular frrfr ̂  0 which implies 
that Ar ^ 0. But then we have the contradiction 0 = vibrb — \rvib = Arw2, and so Z? 
must be of rank 1 as claimed. Next we claim b G eRe for some symmetric idempotent 
of rank 2. Indeed, we first write bR = fR, where/ is a rank 1 idempotent. Then/ = 6r 
for some r E R,f* = r*b, and we note/*/ = 0. Then e = / +/* — ff* is the desired 
symmetric idempotent. Since eRe contains a rank 1 symmetric element, namely b, we 
have earlier noted that * must be of transpose type, and the proof of Lemma 5 is now 
complete. • 

We now turn our attention to the basic condition (3) and first remark that in expanded 
form it may be rewritten as 

(4) £ ( - i y I . )an~Jk^ = 0 for all k G K. 

Adopting the notation at (resp. ar) to stand for the left (resp. right) multiplication deter
mined by a, we note that {at + ar)(s) = as + sa G K for all s G 5, and as a consequence 
we see from (3) that 

(5) (at - ar)
n(at + ar)(s) = 0 for all s G S. 

(5) together with (3) yields 

(6) (at-arnat+arXR) = 0. 

Setting m = n — 1 we may also write (6) as 

(7) (a] - a2
r){at - ar)

m(R) = 0. 

Translating (7) via Lemma 2 to an equation in A° (8) A we first have 
c 

(a2 0 l ) £ ( - i y r\am-^cj - (f^(-iy(m)am-j 0 A l ® a2) = 0 

which can finally be rewritten as 

where it is understood that (™) = 0 if j < 0orj> m. Returning to (7) we have as a 
direct consequence 

(9) (ada2)n(R) = [(a2), - (a2)r]\R) = 0 

and so by Theorem A we have 

am+2-j ® d = 0 
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LEMMA 6. a2 — n is nilpotentfor some /x G C. 

3. Proof of the Main Theorem. Suppose first that * is of the second kind, i.e., 
C contains a non-zero skew element \i. There exists a *-ideal U ^ 0 of R for which 
the *-ideal V = pU Ç R. We write W C US + UK (the "symmetric" and "skew" 
components of U) and note that (ad a)" vanishes on both UK and pUs. It follows that 
(adtf)w(V) = 0 whence by [3] (see also [6]) (ada)n(R) — 0. By Theorem A we then have 
(a-X)[n~] = Ofor some À G C. It follows that the minimum polynomial for a over 
C is of the form (x - A)m = JC"1 - A ^ - 1 + • • •. We write A = /i + r , /i G #, r G S, 
and proceed to show that r = 0. If m is even (resp. odd) the skew (resp. symmetric) 
component of (a — A )m — 0 is —mram~l + • • • = 0. By the minimality of m it follows 
that r = 0 and so part 1 of the Main Theorem has been proved. (We should remark that 
for involutions of the second kind this proof shows that for any a G R, (ada)n(K) = 0 
implies (a — A ) [ ^ ] = 0 but the A will not necessarily be in K in this case.) • 

We assume henceforth that * is of the first kind. In view of Lemma 3 the case n — 1, 
namely, [a, K] = 0, forces R = M2(F) with * of transpose type, which is conclusion 2(a). 

Next we analyze the situation in which a2 = 0. Without loss of generality we can 
assume n = 2, in which case (4) reduces to aKa = 0. By Lemma 4 we reach the contra
diction a = 0, and so we may assume henceforth that a2 ^ 0. 

By Lemma 6 a2 — A is nilpotent for some A G C, and we set s — a2 — A. 
Suppose first that s — 0, i.e., a2 — A ^ 0. Thus a2, and hence a, is invertible in A. 

We write (4) as 

(10) ank + ln^n-2ka2 + • • • = ln)an-lka + ( 3 V " 3 * * 3 + ' ' ' 

for all k £ K. Substituting A for a2 in (10) and using char/? = 0 and the fact that 
1 + Q + . . . = (»") + g ) + . . . we have torn = 2^even: 

(11) Xqk=Xq~laka 

and for « = 2g + 1 odd: 

(12) \qak= Xqka 

In either case (just multiply (11) on the right by a) we are led to ak = ka for all k E K, 
since À ^ 0 . This is simply « = 1 which we have already handled. 

We now assume that s — a2 — X ^ 0 and first treat the situation in which A ^ 0. 
Again a2, and hence a, is invertible, since A ^ 0 and s is nilpotent. If r is the index of 
nilpotency of s we know that r > 2 and 1, s, s2,..., sr~l are C-independent symmetric 
elements. We now return to (8) and conclude that 

(13) E 
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this being the " symmetric 0 symmetric " (resp. "skew (g) symmetric ") component of 
(8) if n = m + 1 is odd (resp. even). Setting q = [ ^ ] and recalling a2 = s + A we 
rewrite (13) as 

(14) §L\2/7 \2j-2 (5 + A ) " 0 ( 5 +Ayr = 0, 

noting that if n = m + 1 were even an a ® 1 was cancelled. In particular the coefficient 
of the 1 0 ^ term must be 0, that is: 

(15) £ 
7=0 

2,7 ~ 12/ - 2 
A«-''(/A;",) = 0. 

Cancelling A' ' from (15) (since A ^ 0) we have 

(16) 

Expanding (16) we have 

7=0 

+ 2 

m\ m 
2j ~\2j-2 

+ 3 

= 0. 

which reduces to the contradiction 

m\ m\ m\ 
0 + 2 + 4 + 

- 0. 

It follows that A = 0 and so a2 is nilpotent. Therefore a is nilpotent and accord
ingly we may choose r such that ar ^ 0, ar+{ = 0, noting that l,a,a2,...,,ar are C-
independent. It is now convenient to write (8) in the form 

(17) 

where each f3j ^ 0 except in the one case when n is odd mdj = ^ . From (17) we know 
a is algebraic of degree < n + 1 and therefore r < n + l . I f r > [ ^ 1 + 1 we rewrite (17) 
as 

J2l3jan+l-j®ai = 0 

and conclude in particular that an+x~r — 0, since f3r ^ 0 and 1, a,..., ar are independent. 
But this says that r < n+ 1 — r, which gives the contradiction r < ^ . Therefore we 
have shown in any case 

(18) r ^R i = 0 
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S+l For n even (18) says that a 
k^K. For n odd (18) says that a~ 

(19) 

0 and consequently (4) reduces to a^ka^ = 0 for all 
i + i 0 and (4) reduces to 

a 2 ka 2 = a 2 ka 2 

for all fc G K. Multiplying (19) on the right by a yields a^ka^ = 0. Thus in any case 
tft-2~]W~2~l = 0. For n = 1 (mod 4) or n = 2 (mod 4) «[VI ç ^ and so by Lemma 4 
fl[SH = 0. For n = 0 (mod 4) or n = 3 (mod 4) a[S?~] is symmetric and, if a[^] is not 
already 0, an application of Lemma 5 completes the proof of the Main Theorem. • 

4. Examples. In this section we shall construct for each n = 0 (mod 4) and each 
n = 3 (mod 4) examples to show that possibilities (2b) of the Main Theorem can actu
ally occur. 

Let F be the complex numbers and consider the following matrices over F: 

A = 
1 1 
i i 

B = Al 1 i 

1 i 
D 

One readily checks that D is of rank 1 and that 

(i) AkBk = a*D, a * / 0 for all k 
(20) ^ 

(H) £A = 0 

In the matrix ring Mq[M2if)) — M2q(F) we set 

ro A 
0 A 

u=ua 
0 A 

0J 

0 
£ 0 

B 

0 
£ 0 

It is straightforward to verify 

(21) (0 Uq = 0, 

07) Uq~x = 

0 0 A*"1 

0 

0 

, m uq-

0 Aq-2 0 

0 A«-2 

0 

0 

with similar results for V*, V9"1, V*~2. 
We now set W = ^ = ^ - V .̂ Using (20(ii)) we note that W = 0. From this we 

easily obtain an expression for the powers of W: 

(22) wm = (u- v)m = £(-iytr-V. 
y=0 
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For n = 0 (mod 4) we set q = \ + 1 and for n = 3 (mod 4) we set q = ^ + 1. Letting 
R = M2q{F) = MqiMiiF)) with transpose involution, we will show that the skew matrix 
W = Wq € R has the properties we want: 

(a) 10 VI is a rank 1 symmetric matrix 

(b) W^]+l = 0 
(c) (ad W)n(L) = 0 for all skew matrices L (i.e., property (3) holds). 

We first take up the case n = 0 (mod 4), in which q= \ + 1. By (22), (21i), (21ii), 
and (20i) we see that 

w[Sr] = w% = (-1)4 c/ïyï 
0 0 At 

0 
- ( - 1 ) 

(-1)4 

A4^4 0 

0 0 

0 

a 

0 
£ï 0 

D 0 
0 0 a / 0 

which establishes (a). Expansion of W"+l by (22), in conjunction with (21i), implies (b). 
Because of (b), showing that (ad W)n(L) = 0, L skew, reduces to showing that W^LWi = 

0. But, already knowing that W* — oc \ \ 

matrix calculation 

, we see that this follows from the simple 

r o i l 
[-1 0J 

[1 i 
[i - l = 

"0 0" 
0 0 

We have thereby shown (c) and thus completed the case n = 0 (mod 4). 
Now suppose n = 3 (mod 4), with q = ^ + 1. The same proof as in the case n = 0 

(mod 4) (with n + 1 playing the role of n) goes through to establish (a) and (b). In view 
of (b), since n is odd, showing (ad W)n(L) = 0. L skew, reduces to showing 

n_x }W~LW— + n+1 \W~LW- = 0. 

In other words, in order to establish (c) it suffices to show 

(23) W^LW"^1 = W^LW"-?, Lskew. 

To this end we first compute W V . Expanding WV by means of (22) and using (21i) we 
see that 

(24) WV = (_l)9-2f/9-lV9-2 + (_1^-l^-2v9-
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Now, using (21ii), (21iii) and (20i), we may expand (24) into: 

0 

W^ = (-1)* 

0 0 Aq~l 

0 

0 

0 

• ( - i r 1 

0 
0 Bq~2 

0 Aq~2 0 

0 Aq~2 

0 

0 

0 

0 

0 
Bq~X 0 

(-1)* 

0 Aq-lBq-2 0 
0 0 0 + (-l)*~1 

0 0 
Aq~xW~2 0 

0 0 

a 

0 {-\)qAD 
{-\)q~lDB 0 

0 0 

On the other hand we already know (in establishing (b)) that 

n+\ 
2 = 6 

r D 0 
0 0 

o" 
= 6 

0 0. 

It is now clear that in order to show (23)it suffices to prove 

(25) D 0 
0 0 

M E 
-E1 N 

0 AD 
-DB 0 

0 AD 
-DB 0 

M 
-E1 

D 0 
0 0 

where M, Af, E are 2 x 2 matrices with M and Af skew. In turn showing (25) reduces to 
verifying the two equations 

(26) DMAD = 0 

(27) DEDB = ADÉD. 

(DBMD = 0 follows from (26) by taking transposes.) 

To show (26) we may take M = 
-1 0 

and simply verify that 

r o i l 
[ - 1 OJ 

ri il 
[i i \ 

[1 i 
[i -1 = 

0 0 
0 0 

To show (27) we set E — 

1 i 
i - 1 

x y 
Z W 

and verify that 

x y 
Z H> 

1 i 
i - 1 

1 i 
1 I 

= 
1 1 
/ i 

1 i 
i - 1 

x y 
z w 

1 I 

/ - 1 
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We have thus constructed, for each n = 0 or n = 3 (mod 4), an element W lying in 
a matrix ring R = Rn — Miq(F) satisfying (a), (b), (c). We remark that, at the cost of 
adding some more notation, we could just as well have formed a single ring R, namely 
the ring consisting of all countably infinite sized "corner" matrices over F of the form 

\A 0] 
[O 0J 

where A is an n x n matrix, n varies, and the 0's are approxpriate size infinite blocks. 
The involution is again traspose and the elements Wq all lie in this ring. Thus a ring 
illustrating possibility 2(b) of the Main Theorem need not be PI (although indeed it must 
be GPI). 
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