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ABSTRACT 

The general theory of magneto-hydrodynamic waves in an ideal conducting 
fluid embedded in a uniform field of magnetic induction, and the application 
of the theory to the systematic analysis of the various modes of propagation in 
incompressible and compressible fluids have been presented by the author in 
two earlier papers [1,2], In these papers, however, no effort was made to include 
the thermodynamics of the situation, which amounts to the tacit assumption 
that the fluid is of zero heat conductivity. In this case the resulting modes are 
of two kinds: isothermal (y-modes) and adiabatic (/>-modes). 

In this paper we first establish the conservation laws of momentum and 
energy for a (macroscopic) compressible fluid with finite viscosity and finite 
thermal and electrical conductivities, which is embedded in a uniform field of 
magnetic induction, and we then derive quite generally the exact (non-
linearized) equation governing the distribution of temperature in such a fluid. 
Next, making use of the linearized magneto-hydrodynamic wave equation in 
the fluid velocity, combined with the resulting heat diffusion equation and with 
the equation of state of the fluid, and applying the mathematical techniques 
developed earlier, we obtain a higher order partial differential equation in the 
fluid temperature from which ensue all the temperature modes. 

In particular, we examine in detail the behavior of plane homogeneous 
waves, and it is shown that a compressible fluid with the indicated properties 
sustains altogether six different modes, two of which are pure shear modes, 
devoid of density, pressure, and hence temperature fluctuations (v-modes), 
while the remaining four are shear-compression waves accompanied neces­
sarily by density, pressure, and temperature fluctuations Q&-modes). The two 
shear modes, which are isothermal, comprise a slightly attenuated Alfv^n wave, 
and a highly attenuated viscous mode, sometimes referred to as a vorticity 
mode. The four shear-compression modes have in general very complex pro­
perties, but in the low frequency and low heat conductivity case they are easily 
identified as (i) a modified (adiabatic) sound wave slightly attenuated; 
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(2) a slightly attenuated modified AlfVen />-wave; (3) a highly attenuated 
viscous wave; and (4) a highly attenuated thermal wave governed in the main 
by the thermal properties of the medium. 

I. INTRODUCTION 
The underlying fundamental notions in the theory of magneto-hydro-
dynamic waves in incompressible fluids were originally due to AlfVen and 
his co-workers [3], but there had been lacking for some time a systematic 
analysis of the linearized, unbounded media, and boundary value problems 
in the field of magneto-hydrodynamic waves in incompressible and 
compressible fluids. To this end we undertook to give, in two earlier 
papers [i,2], hereinafter to be referred to as I and II respectively, such a 
systematic study. The first paper deals mainly with the general theory of 
plane homogeneous waves and of time harmonic cylindrical waves pro­
pagating in a homogeneous and isotropic conducting fluid of infinite extent 
embedded in a uniform field of magnetic induction. The medium is assumed 
to consist of an ideal fluid devoid of viscosity and expansive friction, which 
is characterized (in rationalized mks units) by the rigorously constant 
macroscopic parameters /i, e, and <r, where fie = c~2 and or is the (ohmic) 
conductivity. The second paper deals with the application of the general 
theory to the determination of the modes of propagation and to the com­
putation of the corresponding propagation constants in incompressible and 
compressible fluids. 

However, in these two papers no effort was made to include the thermo­
dynamics of the situation, which amounts to the tacit assumption that the 
fluid is of zero heat conductivity. In this case the resulting modes are of 
two kinds: isothermal (#-modes) and adiabatic (/>-modes). In this paper 
we continue with the purely macroscopic approach, for we believe that the 
results obtained are of considerable value and may serve as a guide to the 
more complicated problems in which the macroscopic approach is no 
longer tenable. The medium is now assumed to be a conducting compres­
sible fluid endowed with finite viscosity and heat conductivity, embedded 
in a uniform field of magnetic induction. 

First, we examine anew the conservation laws of momentum and energy 
and we then derive quite generally the exact (non-linearized) equation 
governing the distribution of temperature in such a fluid. Next, making 
use of the linearized magneto-hydrodynamic wave equation in the fluid 
velocity, combined with the linearized form of the heat diffusion equation 
and with the equation of state of the fluid, and applying the mathematical 
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techniques developed in II, we obtain a higher order partial differential 
equation in the fluid temperature from which ensue all the temperature 
modes. 

We examine, in particular, the structure of plane homogeneous waves 
in a conducting compressible fluid with finite viscosity and heat con­
ductivity, and it is shown that a fluid with the indicated properties sustains 
altogether six different modes, two of which are pure shear waves, devoid 
of density, pressure, and temperature fluctuations (^-modes), while the 
remaining four are shear-compression modes which of necessity are accom­
panied by density, pressure, and temperature fluctuations (/>-modes). 

The two shear modes, which are isothermal, consist of a slightly attenu­
ated Alfven wave and a highly attenuated viscous wave, sometimes 
referred to as a vorticity mode. The four shear-compression modes have in 
general very complex properties, but in the low frequency and low heat 
conductivity case they are readily identified as: (i) a slightly attenuated 
modified (adiabatic) sound wave; (2) a slightly attenuated modified 
Alfven />-wave; (3) a highly attenuated viscous wave, and (4) a highly 
attenuated temperature wave governed in the main by the thermal 
properties of the medium. 

2. CONSERVATION LAWS 

In order to establish the equation governing the distribution of temperature 
in an unbounded magneto-hydrodynamic field we need to examine first 
the conservation laws of momentum and energy as they apply to a rigid 
volume V within a bounding surface S rigorously fixed in the observer's 
inertial frame of reference. The heat diffusion equation then ensues quite 
generally by combining the two conservation laws as indicated below. 

Conservation of momentum 
The law of conservation of momentum states simply that the time rate 

of change of the total mechanical plus electromagnetic momentum con­
tained within the fixed volume V is equal to the mechanical force acting 
across the bounding surface on the fluid contained within the volume, plus 
the influx of both electromagnetic and mechanical momentum across the 
surface S. Expressed in tensor notation the law becomes 

{d\dt)\ (pVi+gi) dr^i Pinda+\ Tinda-\ {pVi) vnda, (1) 
Jv Js Js Js 
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in which the subscript n refers to the outward normal. In the volume 
integral pvi denotes the mechanical momentum density and g^/ieSi the 
electromagnetic momentum density. 

The first surface integral on the right of (i) denotes the total mechanical 
force acting on the fluid contained within the bounding surface as deduced 
from the mechanical stress tensor [4] 

wherein p is the pressure and Jl the coefficient of viscosity, and whose 
(tensor) divergence leads to the familiar Stokes-Navier equation. The 
second surface integral represents the rate at which electromagnetic 
momentum is flowing into the volume and is computed in terms of the total 
Maxwell's electromagnetic stress tensor, Eq. (1-8), which in the present 
notation becomes 

Tik = e(etek - \e*8ik) +/i(HiHk - \H*8ik), (3) 
and in which it is recalled fie = c~2. Finally, the third surface integral on 
the right of (i) represents merely the influx of mechanical momentum 
transported across the surface S by the moving fluid. 

To obtain from (i) the differential form of the law of conservation of 
momentum we first convert all four integrals into simple volume integrals 
by transposing under the sign of integration the time derivative acting on 
the volume integral and by applying the (tensor) divergence theorem to 
the remaining surface integrals. Then, making use of the law of conser­
vation of mass (equation of continuity) 

dp fit + d(pva) jdxa = o, (4) 
we obtain from (i) the differential form 

p(dviidt)+dgiidt=dPjdxa+dTjdxa. (5) 
Finally, introducing into (5) the Lorentz force density of electromagnetic 
origin which, according to Eq. (I-10), can be written in the form 

A'dTJBx.-dgJft, (6) 
we obtain the Eulerian equations of motion, 

p(dvildt)=fi + dPJdxay (7) 
for a compressible fluid with finite viscosity. 

Conservation of energy 
The law of conservation of energy states in the present instance that the 

time rate of change of the total (kinetic plus internal plus electromagnetic) 
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energy stored within the fixed volume Fis equal to the sum of three terms: 
the rate of doing work of the mechanical forces acting on the fluid within 
the surface S, the influx of kinetic plus internal energy transported across 
the bounding surface by the moving fluid, and the influx of heat plus 
electromagnetic energy across the surface S. Expressed in tensor notation 
the law becomes 

(d/dt) j \_\pv* +PU+ Qe* +/iH*)] dr=jsVaPanda 

~ f {\pv2+pU) vnda- \ {qn + Sn) da, (8) 
Js Js 

in which U denotes the intrinsic internal energy of the fluid, q{ the heat 
flow vector, and S{ the familiar Poynting's vector. Once again the subscript 
n refers to the outward normal. 

To obtain the differential form of the law of conservation of energy we 
proceed as before by transforming every integral in (8) into a simple volume 
integral. Thus, applying the divergence theorem to the surface integrals 
and again making use of the equation of continuity (4), we obtain the law 
in the form 

dv„ dU 3 ,, 0 T rro\ dlv-P-o) dq„ dS„ , N 

To reduce this equation further we note from (7) that 

pva(dvjdt) =fava + va{dPa/,ldxfi) (10) 

and we recall that, according to Eq. (I-7), we have in the present notation 

fa ». = - J*l° ~ (3/30 (fc2 + i/*W) - dSJdxa. (u) 
Hence, replacing fava in (10) by ( n ) and making use of the resulting 
expression in (9), we obtain the much simpler expression 

dU dqa dva _ J 2 

p-s—£+wf
p«+-t (I2) 

which expresses in differential form the principle of conservation of energy 
for a conducting compressible fluid with finite viscosity. 

Heat diffusion equation 
To deduce from (12) the equation governing the distribution of tem­

perature in a magneto-hydrodynamic field we assume first that the fluid 
is endowed with a constant heat conductivity K. Thus, the heat flow vector 
qt may be written as zr/iTi* \ / \ 
Hx y qi=-K(dTldXi), (13) 
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where T is the absolute temperature, whence the divergence of the heat 
flow vector becomes 

fy«/a*«= -K{d*Tldxl) = -KV*T. ( i 4 ) 

Next, we observe that the second term on the right of (12) may be resolved 
into two terms ~ ~ 

ova n L dv„ , . . 

where the first term denotes the rate at which work is done by the pressure 
p in compressing the fluid inside the surface S, and where 

is the viscous dissipation function (Goldstein, 1943 [5]), a quadratic func­
tion in the velocity components which is always positive definite [6], 

Substituting (14) and (15) into (12) and reverting to Gibbsian vector 
notation we obtain 

p(dUldt)+p(V.Y)=KV2T+Q> + J2l(r, (17) 

which is the equation governing the distribution of temperature in a con­
ducting compressible fluid with finite viscosity and heat conductivity 
embedded in a uniform field of magnetic induction. We note that the 
equation contains two quadratic source terms: the dissipation function O 
due to finite viscosity and the electromagnetic dissipation function J2jcr 
due to finite electrical conductivity. From a purely macroscopic point of 
view Eq. (17) is exact, having assumed that the fluid is endowed with a 
constant thermal conductivity K and a constant ohmic conductivity <r. 
To apply (17) to a specific case it is of course necessary to invoke an equation 
of state linking the intrinsic energy U to the temperature and to other 
pertinent thermodynamic variables. 

3 . LINEARIZED EQUATIONS 
The foregoing discussion is quite general and in order to apply the theory to 
the determination of the plane wave modes in a compressible fluid with 
finite viscosity and heat conductivity we must of course linearize (17) and 
relate it to the magneto-hydrodynamic wave equation applicable to the 
present case. 

Assuming at the outset that we can neglect the electric displacement 
current (e = o), and confining our attention exclusively to time harmonic 
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waves, we obtain from Eq. (1-66) the linearized magneto-hydrodynamic 
wave equation 

V»(F/cr + *5v,) = - f o / i F + ^ V f v , - V,V,.v,), (18) 

in which B0 denotes the externally applied uniform field of magnetic in­
duction and in which the vector F, as deduced from Eqs. (I-21) and (7), 
becomes in the present instance 

V=-ia>p0v+Vp-ip0vVV.v-p0vV*v9 (19) 

where p0 denotes the equilibrium density and v the kinematic viscosity. 
Next, we take up the linearization of the heat diffusion equation (17). 

Although it is possible to proceed quite generally with an arbitrary equation 
of state for the fluid, we find it convenient to assume initially that the fluid 
obeys the law of perfect gases, 

p={y-i)cvPTy (20) 

where cv is the specific heat at constant volume and 7 the ratio of specific 
heats, y = cp/cv. In this case the internal energy depends only on the 
absolute temperature, dU=cvdT. 

Hence, letting /?0, p0, and T0 denote the constant values of the chosen 
thermodynamic variables corresponding to the equilibrium state, and 
letting p, p, and T denote from now on the small departures from the 
equilibrium state, we obtain from (17), upon dropping all quadratic terms, 
the linearized form . „—» t - \ T, . ^ , x 

(KV2 + i<op0cv)T=p0V.v, (21) 
which yields V.v once we know the temperature distribution. Finally, 
to make the system determinate in the three dependent variables p, Ty 

and V.v we need, in addition to (18) and (21), the expression 

i<op=p0V.v+(y-i) io)p0cvT, (22) 

which is readily deduced by eliminating the (excess) density p with the 
aid of the linearized forms of (4) and (20). 

It now remains to make use of the foregoing equations to determine the 
structure of the plane wave modes which can exist in the presence of finite 
viscosity and heat conductivity. For the purpose, we adopt here the 
elementary plane wave solutions illustrated in Figs. I-i and II-12 and 
described in detail in §§II-2 and II-4«i. It is shown that the solutions 
generated by the velocity vector v b Eq. (II-11), lead in the present instance 
to two distinct pure shear velocity modes, which are devoid of density, 
pressure, and temperature fluctuations, and which are therefore isothermal. 
Similarly, the solutions generated by the linear combination v, Eq. (II-33), 
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lead in this case to four distinct shear-compression pressure modes, which 
are necessarily accompanied by density, pressure, and temperature 
fluctuations, and which therefore will henceforth be referred to as tem­
perature modes. 

4 . ISOTHERMAL MODES 

Following the techniques outlined in §II-i, we first insert (19) into (18), 
and we then proceed to the reduction of the resulting vector equation (18) 
to three scalar equations by seeking the z-component, the divergence, 
and the z-component of the curl. This last procedure yields the equation 

{[1 -ia(i -iqV)] V» + A" - V?} (4- V x v) =0 (23) 

in which the unit vector ez denotes the direction of the externally applied 
magnetic field. Here, ka is the wave number associated with Alfven's 
phase velocity W F , - ^ ^ (24) 

and a and q are two convenient parameters, 

a = ii)p^\<rB\ and q = v/o), (25) 

which measure respectively the hydromagnetic coupling and the viscous 
damping. The parameter 0, which vanishes in the limit of infinite con­
ductivity, is dimensionless, whereas q has the dimensions of a cross-section 
and vanishes when the kinematic viscosity goes to zero. As a check, it is 
observed that (23), after putting q = o, becomes identical to Eq. (II-4) 
upon placing e = o. 

Next, we observe that for plane waves the velocity vector Vj, Eq. (II-11), 
is perpendicular to the plane defined by the direction of the magnetic field 
and the vector propagation constant k. Therefore, as shown in Eq. (II-12), 
this vector is divergenceless (pure shear) and has no z component; further­
more, assuming that the vector k does not coincide with the direction of 
the magnetic field, we have in (23) that ez. V x v is non-zero. Hence, to 
satisfy (23) we need merely replace V by ik and, equating the bracket to 
zero, we obtain the quadratic in k2 

aqk* + (cos2 0 - id) k2-k2
a = o, (26) 

in which 6 denotes the angle between the vector k and the direction of the 
magnetic field (Fig. I-i). As a check we note that, putting q = o in (26), 
yields immediately the limiting (e -> o) form of Eq. (II-13). 

Equation (26) has two distinct roots in k2 and therefore leads to two shear 
modes. The exact roots of (26) can be readily written down, but we prefer 

22 

https://doi.org/10.1017/S0074180900237583 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900237583


to examine the limiting form of the roots when aqk^^i, which corresponds 
to the case of high electrical conductivity, low viscosity, and moderately 
low frequencies. In this case, the roots of (26) are given approximately, to 
first order of small quantities, by 

k2 ~ k« [1 aqk^ 
+ ~ cos2 d — ia \ (cos2 6 — id) 2 

' + / ffi-J* (*8) 
(cos20-za)2J v ' 

from which we can readily deduce the corresponding phase velocities and 
attenuation factors. The first mode, characterized by the wave number 
k+, is an ordinary Alfven wave slightly attenuated by the presence of finite 
conductivity and finite viscosity. The second mode, governed by k_, is a 
highly attenuated pure shear or vorticity mode characteristic of viscous 
layer phenomena. Both modes are solenoidal and, according to (21), 
isothermal. Therefore, as pointed out before, these modes are entirely 
devoid of density, pressure, and temperature fluctuations. Finally, we 
note in passing that, if cos2 6<^a, then the leading terms of (27) and (28) 
become respectively 

k\ «i(o/i(r and WL «ijq = icojv, (29) 
indicating that in this limit the Alfven wave degenerates into a 'skin' wave 
governed in the main by the electromagnetic properties of the medium, 
whereas the viscous mode becomes a true vorticity mode characterized 
mainly by the kinematic viscosity. 

5. T E M P E R A T U R E MODES 

Continuing with the method of attack outlined in the preceding section, 
we first insert (19) into (18) and then proceed to compute the z-component 
and the divergence of the resulting vector equation. In this manner we 
obtain two scalar equations involving the variables vz9 V. v, and the (excess) 
pressure/?. Combining these two equations we first eliminate vz> obtaining 
a single equation in V.v and/>. Next, making use of (22) we eliminatep 
in terms of V.v and T to obtain finally, instead of Eqs. (II-7) and (II-8), 
the more involved expressions 

yAf(i-t?V*) Vg=-(i-liqy%) (dfe) (V. v) - (ia>l T0) (dT/dz), (30) 

{[V2 + (*2«-*'«V2) (i-*yV»)] [W + Y*l{i-faV)]-(i-faY® V*V?} 

x (V. v) + [32/3z2 + (A2 - iaV2) (1 - iqV2)] (io>/ T0) V2 7*= o, (31) 

(27) 

and *2_; cos2 6 — ia 
aq 
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in which we now have the additional variable T. In these equations we have 
introduced, in addition to the wave number ka and the parameters a and q, 
as defined by (24) and (25), the wave number associated with the (adiabatic) 
velocity of sound in the medium ks = a)IVs> V% = yp0lp0. As a check we 
observe that, in the absence of viscosity (q = o) and in the adiabatic limit 
of vanishing heat conductivity (K -> o), making use of (21) to eliminate T, 
equations (30) and (31) reduce respectively to the limiting (e -> o) form of 
Eqs. (II-7) and (II-8). Finally, to obtain the higher order partial differential 
equation governing the distribution of temperature we need only substitute 
(21) into (31) to eliminate V. v; however, no purpose is served by writing 
down this more complicated equation, since we wish to examine plane 
waves at once. 

For the purpose, we choose a velocity vector v which lies in the plane of 
the wave normal and the direction of the externally applied field in accord­
ance with Eqs. (II-33) and (II-34), as illustrated in Fig. II-12. We observe 
that these shear-compression modes, Eqs. (II-33) and (II-34), are such that 
4 . V x v = o; hence, (23) is identically satisfied, and we must now make use 
of (31) and (21) to determine the various temperature modes. To this end 
we substitute (21) into (31), and replacing V by zk, we obtain finally 
a fourth-order algebraic equation in k2, 

P 2 ~ ( ^ + ^ 2 ) ( 1 + * ' # ) ] [*2-y*2(i+f*?*2)] 

- (1 -¥qykl) Ml} (k*-i(oPocjK) 

~{[k*-(kl + iak*) (1 +iqk*)]c-kl} ( y - i ) i<op0cvk*IK=o, (32) 

which has four distinct roots and which, therefore, yields four shear-
compression modes accompanied by density, pressure, and temperature 
fluctuations; that is, the counterpart of the pressure modes discussed in § II-4. 

No attempt will be made here to examine in detail the exact roots of 
(32), which probably can only be handled numerically, but we can apply 
to (32) various tests of its validity and we can examine the limiting form of 
the roots in various cases of practical interest. As a first test, let us make 
the externally applied field vanish; i.e. let us remove all hydromagnetic 
coupling (B0 = 0). In this case, both k% and a become infinite as l?^2, which 
reduces (32) to the simpler equation 

[*2-yA2(i +f;?*2)] (k*-iG>p0cJK) - ( y - 1) ia>p0cvk*IK=o, (33) 

from which ensue the acoustic, vorticity, and thermal modes characteristic 
of an acoustic field with finite thermal conductivity. As an example, let us 
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examine (33) in the limit of small frequencies (0) -> o); in this case we obtain 
from (33), as long as K remains finite, a mode with the wave number 

*■**»(!-*#»)-», (34) 
which corresponds to an adiabatic sound wave slightly attenuated by the 
presence of finite viscosity. On the other hand, in the limit of very large 
frequencies (<o -> 00), we deduce from (33) a mode with the wave number 

A«*rA»(i-ta7Aj)-\ (35) 
which represents, for small viscosities, a slightly attenuated sound wave 
propagating with the isothermal phase velocity. 

As a second test, let us examine the limiting form of (32) in the case of 
infinite electrical conductivity (a = 6), zero viscosity (y = o), and zero heat 
conductivity (K = o). In this case (32) reduces to 

(*■-#)(**-*»)=*»& (36) 
which fully confirms the limiting (e->o) form of Eq. (II-36) and from which 
we deduced in § II-4 the properties of the ideal magneto-acoustic modes. 

Finally, to illustrate with one example the application of (32) to special 
cases of practical interest, we propose to examine the limiting form of 
(32) in the case of vanishingly small heat conductivity. Thus, letting K -> o 
in (32), we obtain the cubic in k2 

[*■-(A£ + M*») (1 +iqk*)] [#-Aj(i + fijA«)] = (1 - « ) ml, (37) 
which now supersedes our earlier Eqs. (II-41) and (II-43), and from 
which ensue three shear-compression temperature modes: a modified 
(adiabatic) sound wave, a modified Alfven pressure wave, and a modified 
vorticity mode. The fourth temperature mode, which has disappeared 
from (32) by putting JC = o, is seen to be governed mainly by the thermal 
properties of the medium and is, therefore, a highly attenuated wave. 

Other cases of interest that can be examined profitably include infinitely 
high heat conductivity, which according to (21) leads to an isothermal 
temperature distribution, and the cases of both high and low frequencies. 
In all cases the computations can be greatly simplified if we can assume 
that the fluid possesses extremely high electrical conductivity (a<^i) and 
very low viscosity (qk\<4.1), for then familiar perturbation methods such 
as were employed in II are available to us. Finally, to complete the dis­
cussion we observe that, once the wave number k has been determined 
from (32) or from any of its limiting forms for a particular shear-com­
pression mode, then the corresponding angular parameter <f> which defines 
the chosen linear combination (II-33) can be readily obtained by applying 
the technique outlined in §4*1. 
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Discussion 
Spitzer: How many modes vanish if the coefficient of viscosity goes to zero? 
Banos: With finite viscosity I get six modes, two shear modes and four 

temperature modes. With vanishing viscosity one shear mode and three 
temperature modes remain. 

Swann: You have referred to the thermodynamics involved in the derivations. 
When the mechanism is expressed explicitly in terms of viscosity one needs no 
thermodynamics in the ordinary sense of the word except when you use the 
equation of a perfect gas. Am I right in saying that you do not use thermo­
dynamics except in that case? 

Baiios: Yes. 
Schatzman: What would come out of the equations if the conductivity 

depends on the temperature and the density? 
Banos: This is a difficult question which I cannot answer immediately. 
Swann: A perturbation method could perhaps give the answer. 
Spitzer: Professor Banos has given a very complete and elegant analysis of 

infinitesimal waves in a fluid—van de Hulst's category IB . An interesting 
result on finite hydromagnetic waves in a plasma has been obtained by Kruskal, 
Rosenbluth and others in the U.S.A.; this provides at least one result under 
category 11 c. The analysis considers a solitary hydromagnetic disturbance, 
traveling perpendicular to the magnetic field, in a plasma in which no 
collisions occur. The orbits of the charged particles in the time variable magnetic 
field are taken into account; the gas temperature is assumed zero. The analysis 
goes through without difficulty for a velocity up to twice the Alfven velocity for 
infinitesimal disturbances. At this critical velocity the magnetic field rises to 
three times its value in front of and behind the pulse. 
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