GYCLIC MAPS FROM SUSPENSIONS TO SUSPENSIONS

C. S. HOO

1. Introduction. In [7] Varadarajan defined the notion of a cyclic map $f: A \rightarrow X$. The collection of all homotopy classes of such cyclic maps forms the Gottlieb subset $G(A, X)$ of $[A, X]$. If $A=S^{1}$, this reduces to the group $G\left(X, x_{0}\right)$ of Gottlieb [5]. We show that a cyclic map f maps ΩA into the centre of ΩX in the sense of Ganea [4]. If A and X are both suspensions, we then show that if $f: A \rightarrow X$ maps ΩA into the centre of ΩX, then f is cyclic. Thus for maps from suspensions to suspensions, Varadarajan's cyclic maps are just those maps considered by Ganea. We also define $G(\Sigma A, \Sigma X)$ in terms of the generalized Whitehead product [1]. This gives the computations for $G\left(S^{n+k}, S^{n}\right)$ in terms of Whitehead products in $\pi_{2 n+k}\left(S^{n}\right)$.

We work in the category of spaces with base points and having the homotopy type of countable $C W$-complexes. All maps and homotopies are with respect to base points. For simplicity, we shall frequently use the same symbol for a map and its homotopy class.

Given spaces X and Y we denote the set of homotopy classes of maps from X to Y by $[X, Y]$. For any space X, we denote by $e: \Sigma \Omega X \rightarrow X$ the map whose adjoint is the identity map of ΩX and by $e^{\prime}: X \rightarrow \Omega \Sigma X$ the map which is the adjoint of the identity map of ΩX, where Ω and Σ are the loop and suspension functors respectively.
2. We first state some definitions and results we shall need to prove our results. Let $f: A \rightarrow X$ be a map. We say that f is cyclic [7] if we can find a map $F: X \times A \rightarrow X$ such that $F j=\nabla(1 \vee f)$ where $j: X \vee A \rightarrow X \times A$ is the inclusion of the wedge product into the cartesian product, and $\nabla: X \vee X \rightarrow X$ is the folding map. The set of all homotopy classes of such cyclic maps is the subset $G(A, X)$ of $[A, X]$.

If $f: A \rightarrow X$ is a map, then for every space Z, we have a homomorphism $(\Omega f)_{\#}:[Z, \Omega A] \rightarrow[Z, \Omega X]$. Let $X b A$ be the flat product, that is, the fibre of the inclusion $j: X \vee A \rightarrow X \times A$. Then in [4], Ganea proved the following result.

Theorem 1. The following are equivalent:
(i) $(\Omega f)_{\#}$ maps $[Z, \Omega A]$ into the centre of the group $[Z, \Omega X]$.
(ii) $\nabla(1 \vee f) i \simeq *$.

Any such map satisfying either of these conditions is referred to by Ganea as mapping ΩA into the centre of ΩX.

Received July 6, 1971. This research was supported by NRC Grant A3026.

Theorem 2. Let $f: A \rightarrow X$ be a cyclic map. Then f maps ΩA into the centre of ΩX.

Proof. Let $q: X \vee A \rightarrow C$ be the cofibre of the inclusion $i: X b A \rightarrow X \vee A$. Then we have a map $r: C \rightarrow X \times A$ such that $r q=j: X \vee A \rightarrow X \times A$. Since f is cyclic, we have a map $F: X \times A \rightarrow X$ giving the following diagram with commutative triangles:

Clearly $\nabla(1 \vee f) i \simeq *$. Hence f maps ΩA into the centre of ΩX.
Theorem 3. Let $f: \Sigma A \rightarrow \Sigma X$ map $\Omega \Sigma A$ into the centre of $\Omega \Sigma X$. Then f is cyclic.

Proof. We have $\nabla(1 \vee f) i \simeq$. By Lemma 5.1 of [2], it follows that $[e, f e]=0$, where $e: \Sigma \Omega \Sigma X \rightarrow \Sigma X, f e: \Sigma \Omega \Sigma A \rightarrow \Sigma X$. Now in [3], Ganea showed that there is a map $\gamma: \Omega \Sigma X \wedge \Omega \Sigma X \rightarrow \Omega \Sigma X$ such that the composite $\gamma q: \Omega \Sigma X \times \Omega \Sigma X \rightarrow \Omega \Sigma X \wedge \Omega \Sigma X \rightarrow \Omega \Sigma X$ is the commutator of the two projections $\Omega \Sigma X \times \Omega \Sigma X \rightarrow \Omega \Sigma X$ in the group [$\Omega \Sigma X \times \Omega \Sigma X, \Omega \Sigma X]$. Then by Lemma 2.1 of $[\mathbf{2}]$, it follows that $[e, f e]=0$ if and only if $\gamma\{\Omega e \wedge \Omega(f e)\} \simeq *$. If we use the same notation $e^{\prime}: \Omega X \rightarrow \Omega \Sigma \Omega X, e^{\prime}: \Omega A \rightarrow \Omega \Sigma \Omega A$ for the obvious embeddings, then we have $(\Omega e) e^{\prime} \simeq 1_{X}$. Hence we have

$$
\gamma\left(1_{\Omega \Sigma_{X}} \wedge \Omega f\right) \simeq *
$$

Hence by the same Lemma 2.1 of [2], we have $\left[1_{\Sigma x}, f\right]=0$. Now let $i_{1}: \Sigma X \rightarrow \Sigma X \vee \Sigma A, i_{2}: \Sigma A \rightarrow \Sigma X \vee \Sigma A$ be the usual inclusions. Then $\nabla\left(1_{\Sigma X} \vee f\right)\left[i_{1}, i_{2}\right]=\left[1_{\Sigma X}, f\right]=0$. Since the cofibre of $\left[i_{1}, i_{2}\right]: \Sigma(X \wedge A) \rightarrow$ $\Sigma X \vee \Sigma A$ is $(\Sigma X \vee \Sigma A) \cup C \Sigma(X \wedge A) \simeq \Sigma X \times \Sigma A$, it follows that we can find a map $F: \Sigma X \times \Sigma A \rightarrow \Sigma X$ such that $F j=\nabla(1 \vee f)$ where $j: \Sigma X \vee \Sigma A \rightarrow \Sigma X \times \Sigma A$ is the inclusion. Hence f is cyclic.

Remark 1. In the course of the proof, we have shown that if $f: \Sigma A \rightarrow \Sigma X$ maps $\Omega \Sigma A$ into the centre of $\Omega \Sigma X$, then $\left[1_{\Sigma X}, f\right]=0$. Conversely, it is obvious that if $\left[1_{\Sigma X}, f\right]=0$, then f is cyclic. Thus we have the following corollary.

Corollary 3. Let $f: \Sigma A \rightarrow \Sigma X$. Then the following are equivalent.
(i) f is cyclic.
(ii) f maps $\Omega \Sigma A$ into the centre of $\Omega \Sigma X$.
(iii) $\left[1_{\Sigma_{X}}, f\right]=0$.

Remark 2. We can apply this result to spheres. Then we see that the computations of Varadarajan [7, Theorem 4.1] on $G\left(S^{k}, S^{k}\right)$ are just the well known results on the Whitehead product $[\iota, \iota]$. Further, the corollary could be applied to compute $G\left(S^{n+k}, S^{n}\right)$, for various k. The result depends on the computation of the Whitehead product on spheres. These have been extensively computed by Mahowald [6] and others.

We conclude by stating another result. We recall the following definition from $[7], P(\Sigma A, X)=\left\{\alpha \in[\Sigma A, X] \mid[\alpha, \beta]=0\right.$ for all $\beta \in\left[\Sigma^{k} A, X\right]$ and all $k \geqq 1\}$. Varadarajan proves that for all $k \geqq 1, G\left(S^{k}, S^{k}\right)=P\left(S^{k}, S^{k}\right)$. An obvious corollary of our results above is the following generalization,

Theorem 4. $G(\Sigma X, \Sigma X)=P(\Sigma X, \Sigma X)$.

References

1. M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23.
2. T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
3. On the loop spaces of projective spaces, J. Math. Mech. 16 (1967), 853-855.
4. -Induced fibrations and cofibrations, Trans. Amer. Math. Soc. 127 (1967), 442-459.
5. D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
6. M. Mahowald, Some Whitehead products in S^{n}, Topology 4 (1965), 17-26.
7. K. Varadarajan, Generalized Gottlieb groups, J. Ind. Math. Soc. 33 (1969), 141-164.

University of Alberta,
Edmonton, Alberta

