CYCLIC MAPS FROM SUSPENSIONS TO SUSPENSIONS

C. S. HOO

1. Introduction. In [7] Varadarajan defined the notion of a cyclic map $f: A \to X$. The collection of all homotopy classes of such cyclic maps forms the Gottlieb subset G(A, X) of [A, X]. If $A = S^1$, this reduces to the group $G(X, x_0)$ of Gottlieb [5]. We show that a cyclic map f maps ΩA into the centre of ΩX in the sense of Ganea [4]. If A and X are both suspensions, we then show that if $f: A \to X$ maps ΩA into the centre of ΩX , then f is cyclic. Thus for maps from suspensions to suspensions, Varadarajan's cyclic maps are just those maps considered by Ganea. We also define $G(\Sigma A, \Sigma X)$ in terms of the generalized Whitehead product [1]. This gives the computations for $G(S^{n+k}, S^n)$ in terms of Whitehead products in $\pi_{2n+k}(S^n)$.

We work in the category of spaces with base points and having the homotopy type of countable CW-complexes. All maps and homotopies are with respect to base points. For simplicity, we shall frequently use the same symbol for a map and its homotopy class.

Given spaces X and Y we denote the set of homotopy classes of maps from X to Y by [X, Y]. For any space X, we denote by $e: \Sigma\Omega X \to X$ the map whose adjoint is the identity map of ΩX and by $e': X \to \Omega \Sigma X$ the map which is the adjoint of the identity map of ΩX , where Ω and Σ are the loop and suspension functors respectively.

2. We first state some definitions and results we shall need to prove our results. Let $f: A \to X$ be a map. We say that f is *cyclic* [7] if we can find a map $F: X \times A \to X$ such that $Fj = \nabla(1 \lor f)$ where $j: X \lor A \to X \times A$ is the inclusion of the wedge product into the cartesian product, and $\nabla: X \lor X \to X$ is the folding map. The set of all homotopy classes of such cyclic maps is the subset G(A, X) of [A, X].

If $f: A \to X$ is a map, then for every space Z, we have a homomorphism $(\Omega f)_{\#}: [Z, \Omega A] \to [Z, \Omega X]$. Let XbA be the flat product, that is, the fibre of the inclusion $j: X \lor A \to X \times A$. Then in [4], Ganea proved the following result.

THEOREM 1. The following are equivalent:

- (i) $(\Omega f)_{\#}$ maps $[Z, \Omega A]$ into the centre of the group $[Z, \Omega X]$.
- (ii) $\nabla(1 \lor f) i \simeq *$.

Any such map satisfying either of these conditions is referred to by Ganea as mapping ΩA into the centre of ΩX .

Received July 6, 1971. This research was supported by NRC Grant A3026.

THEOREM 2. Let $f : A \to X$ be a cyclic map. Then f maps ΩA into the centre of ΩX .

Proof. Let $q: X \lor A \to C$ be the cofibre of the inclusion $i: XbA \to X \lor A$. Then we have a map $r: C \to X \times A$ such that $rq = j: X \lor A \to X \times A$. Since f is cyclic, we have a map $F: X \times A \to X$ giving the following diagram with commutative triangles:

Clearly $\nabla(1 \lor f)$ $i \simeq *$. Hence f maps ΩA into the centre of ΩX .

THEOREM 3. Let $f: \Sigma A \to \Sigma X$ map $\Omega \Sigma A$ into the centre of $\Omega \Sigma X$. Then f is cyclic.

Proof. We have $\nabla(1 \vee f)$ $i \simeq *$. By Lemma 5.1 of [2], it follows that [e, fe] = 0, where $e : \Sigma\Omega \Sigma X \to \Sigma X$, $fe : \Sigma\Omega \Sigma A \to \Sigma X$. Now in [3], Ganea showed that there is a map $\gamma : \Omega\Sigma X \land \Omega\Sigma X \to \Omega\Sigma X$ such that the composite $\gamma q : \Omega\Sigma X \times \Omega\Sigma X \to \Omega\Sigma X \land \Omega\Sigma X \to \Omega\Sigma X$ is the commutator of the two projections $\Omega\Sigma X \times \Omega\Sigma X \to \Omega\Sigma X$ in the group $[\Omega\Sigma X \times \Omega\Sigma X, \Omega\Sigma X]$. Then by Lemma 2.1 of [2], it follows that [e, fe] = 0 if and only if $\gamma \{\Omega e \land \Omega(fe)\} \simeq *$. If we use the same notation $e' : \Omega X \to \Omega\Sigma \Omega X$, $e' : \Omega A \to \Omega\Sigma \Omega A$ for the obvious embeddings, then we have $(\Omega e)e' \simeq \mathbf{1}_X$. Hence we have

$$\gamma(1_{\Omega\Sigma X}\wedge\Omega f)\simeq *.$$

Hence by the same Lemma 2.1 of [2], we have $[1_{\Sigma X}, f] = 0$. Now let $i_1: \Sigma X \to \Sigma X \vee \Sigma A$, $i_2: \Sigma A \to \Sigma X \vee \Sigma A$ be the usual inclusions. Then $\nabla(1_{\Sigma X} \vee f)[i_1, i_2] = [1_{\Sigma X}, f] = 0$. Since the cofibre of $[i_1, i_2]: \Sigma(X \wedge A) \to \Sigma X \vee \Sigma A$ is $(\Sigma X \vee \Sigma A) \cup C\Sigma(X \wedge A) \simeq \Sigma X \times \Sigma A$, it follows that we can find a map $F: \Sigma X \times \Sigma A \to \Sigma X$ such that $Fj = \nabla(1 \vee f)$ where $j: \Sigma X \vee \Sigma A \to \Sigma X \times \Sigma A$ is the inclusion. Hence f is cyclic.

Remark 1. In the course of the proof, we have shown that if $f: \Sigma A \to \Sigma X$ maps $\Omega \Sigma A$ into the centre of $\Omega \Sigma X$, then $[1_{\Sigma X}, f] = 0$. Conversely, it is obvious that if $[1_{\Sigma X}, f] = 0$, then f is cyclic. Thus we have the following corollary.

COROLLARY 3. Let $f: \Sigma A \to \Sigma X$. Then the following are equivalent.

(i) f is cyclic.

(ii) f maps $\Omega \Sigma A$ into the centre of $\Omega \Sigma X$.

(iii) $[1_{\Sigma X}, f] = 0.$

Remark 2. We can apply this result to spheres. Then we see that the computations of Varadarajan [7, Theorem 4.1] on $G(S^k, S^k)$ are just the well known results on the Whitehead product $[\iota, \iota]$. Further, the corollary could be applied to compute $G(S^{n+k}, S^n)$, for various k. The result depends on the computation of the Whitehead product on spheres. These have been extensively computed by Mahowald [6] and others.

We conclude by stating another result. We recall the following definition from [7], $P(\Sigma A, X) = \{\alpha \in [\Sigma A, X] \mid [\alpha, \beta] = 0 \text{ for all } \beta \in [\Sigma^k A, X] \text{ and all } k \ge 1\}$. Varadarajan proves that for all $k \ge 1$, $G(S^k, S^k) = P(S^k, S^k)$. An obvious corollary of our results above is the following generalization,

THEOREM 4. $G(\Sigma X, \Sigma X) = P(\Sigma X, \Sigma X).$

References

- 1. M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23.
- 2. T. Ganea, A generalization of the homology and homotopy suspension, Comment. Math. Helv. 39 (1965), 295-322.
- 3. On the loop spaces of projective spaces, J. Math. Mech. 16 (1967), 853-855.
- 4. Induced fibrations and cofibrations, Trans. Amer. Math. Soc. 127 (1967), 442-459.
- 5. D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- 6. M. Mahowald, Some Whitehead products in Sⁿ, Topology 4 (1965), 17-26.
- 7. K. Varadarajan, Generalized Gottlieb groups, J. Ind. Math. Soc. 33 (1969), 141-164.

University of Alberta, Edmonton, Alberta