
2 Two-Body Interaction

Learning Objectives

• Highlight “short-ranged,” “dilute,” and “low energy” as three main features of interac-
tions between ultracold atoms.

• Introduce the important concept of the phase shift.
• Introduce the s-wave scattering length as a universal parameter describing the low-

energy interaction between ultracold atoms.
• Discuss the relation between divergent scattering length, low-energy bound state, and

jump of phase shift.
• Discuss the relation between the scattering length and the scattering amplitude.
• Discuss under what conditions a positive scattering length describes repulsive interac-

tion.
• Discuss the conditions when an algebraically decayed potential can be treated as a finite

range one.

• Introduce two types of zero-range single-channel potentials to capture the universal low-
energy s-wave interaction between ultracold atoms.

• Introduce the concepts of renormalization condition and renormalizable theory.
• Discuss how the spin rotational symmetry imposes constraints on interaction forms for

both alkali-metal and alkaline-earth-metal atoms.
• Introduce Feshbach resonance as an important tool to tune scattering length.

• Compare the two-channel Feshbach resonance with the single-channel shape resonance,
and compare wide and narrow resonances.

• Introduce a zero-range two-channel model.
• Introduce the confinement-induced resonance to tune interaction strength by an external

potential.

• Summarize three key conditions for a Feshbach resonance, and unify the optical Fesh-
bach resonance, the orbital Feshbach resonance, and the confinement induce resonance
all in terms of these three conditions.

• Introduce the Efimov effect as an important three-body effect at the vicinity of the two-
body scattering resonance.

• Highlight the symmetry aspect of the Efimov effect.
• Discuss various connections between few-body and many-body physics.

• Illustrate that few-body calculation can be used to determine properties of many-body
systems by using high-temperature expansion as an example.
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32 Two-Body Interaction

2.1 Scattering Length

Interactions between particles play the most important role in quantum many-body physics.
One of the major common goals of both ultracold atomic physics and condensed mat-
ter physics is to understand interaction effects in quantum many-body systems. Ultracold
atomic physics studies dilute gases of neutral atoms, and condensed matter physics mainly
focuses on electronic gases in solid. Many fundamental differences between the many-
body phenomena in these two systems can be traced back to the different interaction forms
between particles in these two systems. The interaction between electrons are the Coulomb
repulsion, and the interatomic potential contains an attractive Van der Waals potential and a
strong repulsion at very short distance. This interaction between ultracold atoms possesses
the following three key features that are important for our subsequent discussions.

• Short Ranged: The Van der Waals interaction V(r) is short ranged, and to a certain extent,
we can approximate V(r) � 0 when r > r0, where r0 is the range of the potential.

• Dilute: The ultracold atomic gas is very dilute, and the typical distance d between two
atoms is much larger than r0.

• Low Energy: The temperature of ultracold atomic gas is very low; that is to say, the
incoming energy E = �

2k2/(m) of the scattering state is very low compared with the
short-range potential energy, that is, kr0 � 1, or equivalently, �

2k2/(m) � �
2/(mr2

0).

With the first two points, it seems that for most of the time, any two atoms are far
separated at a distance where the interaction potential is zero. Thus, classically atoms do
not experience any forces mutually and the gas looks like a noninteracting one. However, as
we will show in this chapter, in the quantum regime, this system is not only an interacting
one but also sometimes can become a strongly interacting one.

The Phase Shift. Let us consider a two-body Schrödinger equation in the relative
coordinate [

− �
2

2m̄
∇2 + V(r)

]
� = E�, (2.1)

where r stands for the relative coordinate between two atoms, m̄ is the reduced mass of two
particles, and m̄ = m/2 for particles with equal mass m. Here we focus on the situation that
V(r) is spherical symmetric,1 and we can expand the wave function in terms of different
angular momentum partial waves as

�(r) =
+∞∑
l=0

χkl(r)

kr
Pl(cos θ ), (2.2)

and different partial waves are decoupled. It is easy to show that

d2χkl

dr2
− l(l + 1)

r2
χkl + 2m̄

�2
(E − V(r))χkl = 0. (2.3)

1 For atoms like dysprosium and erbium with partially filled f -shells, as we discussed in Section 1.1, the Van
der Waals interaction is anisotropic in the presence of an external magnetic field, and there also presents an
anisotropic dipolar interaction. Here we do not discuss this situation.
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33 Scattering Length

We first consider the s-wave scattering channel with l = 0. Because of the short-ranged
nature of the potential, for r > r0, V(r) = 0, and in this regime a general solution to Eq.
2.3 is given by

χk = A sin(kr + δk), (2.4)

where δk is called the phase shift. The phase shift is the most important quantity for low-
energy scattering in a dilute quantum gas. Because of the dilute nature of the ultracold
atomic gas stated above, atoms have a negligible chance to come close enough to explore
the details of the interaction potential, and therefore we are only concerned about the wave
function in the regime r � r0. It is clear that all the interaction effects are contained in the
phase shift δk.

However, the phase shift is determined by the behavior of the wave function at short
distance. To determine δk, we need the information in the regime with r < r0. We shall
match the boundary condition at r = r0 to give

χ ′(r > r0)

χ (r > r0)

∣∣∣∣
r=r0

= k cos(kr0 + δk)

sin(kr0 + δk)
� k

tan δk
= χ ′(r < r0)

χ (r < r0)

∣∣∣∣
r=r0

. (2.5)

Here, for the second approximate equality, we have used the low-energy property to
approximate kr0 ≈ 0. Now, the question is, to determine the phase shift, do we need to
know the full information of the wave function χ (r < r0) inside r < r0? Let us consider
the situation that when r < r0, the interaction potential changes very rapidly, and in this
regime, the incoming energy E can be ignored compared with the strength of V(r). Thus, it
is reasonable to assume that the energy E dependence of χ (r < r0) is insignificant for the
low-energy states. Therefore, to the leading order, we can take χ ′(r < r0)/χ (r < r0)|r=r0

simply as a constant denoted by −1/as, where as is called the s-wave scattering length.
Thus we have

k

tan δk
= − 1

as
. (2.6)

With Eq. 2.6 the relation between δk and k is shown in Figure 2.1. It shows that for small k,
δk linearly depends on momentum as −kas, and for large k (but still much smaller compared
with 1/r0), δk saturates to ±π/2. We should also note that for deriving Eq. 2.6, we only use
the three conditions discussed at the beginning, and Eq. 2.6 is therefore valid for any value
of as, including as = ±∞. As shown in Figure 2.1, when as becomes larger, the linear
regime of δk becomes smaller. When as = ±∞, δk becomes ∓π/2 for any nonzero k.

We can further treat E as a perturbation for the Schrödinger equation in the regime r < r0

and improve this expansion systematically. By expanding k/ tan δk to the next order in k2,
we obtain

k

tan δk
= − 1

as
+ 1

2
reffk

2 + . . . , (2.7)

where the coefficient defines an effective range reff. In most cases, the contribution from the
reff term is negligible at low energy, and as is the most important parameter for describing
low-energy two-body interactions. However, there are exceptions. For example, when as
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�Figure 2.1 The s-wave phase shift. The phase shift δk/π as a function of kr0 for different as/r0; as/r0 = 50 for the solid
line, as/r0 = 103 for the dashed line, as/r0 = −50 for the dotted line, and as/r0 = −103 for the
dash-dotted line. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

approaches zero, the expansion equation 2.7 is not very appropriate because δk cannot be
always zero for all k. In the limit as → 0, it is better to expand [19]

− tan δk

k
= 1

1
as

− 1
2 reffk2

≈ as + 1

2
reffa

2
s k2 + . . . . (2.8)

In fact, in the limit as → 0, reff diverges such that reffa2
s remains finite, and v = −reffa2

s is
called the scattering volume. That is to say, when as is finite, tan δk linearly depends on k,
and when as vanishes, the linear term vanishes and tan δk depends on ∼ k3.

Considering two different short-range potentials V1(r) and V2(r), say, for two interaction
potentials of two different atoms, the short-range wave functions χ1(r) and χ2(r) are also
very different in the regime r < r0. But as long as they give the same value of χ ′/χ at
r = r0 and therefore the same phase shift, the low-energy physics of the two systems are
identical, despite the very different behaviors of the short-range potentials. If we further
focus on the situation that the effective range effect is negligible, then these two potentials
share the same as, and this as is the only parameter that is needed for describing the low
energy of two different microscopic potentials. This is so-called universality, which states
that different systems with quite different microscopic details can be described universally
by a few parameters.

The s-wave scattering length also possesses a clear geometric meaning. In the zero-
energy limit, the s-wave wave function at r > r0 can be expanded as

χ (r) ∝ sin(kr + δk) ≈ sin δk + cos δk(kr)

∝ 1 + k

tan δk
r = 1 − r

as
. (2.9)

It is clear that χ (r = as) = 0; that is to say, as is the location of the node of the zero-energy
radial wave function.

Let us consider a toy model with a finite range attractive square well potential V(r) =
−V0 (V0 > 0) for 0 < r < r0, and V(r) = 0 for r > r0, and we also consider a hard core
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35 Scattering Length

boundary condition at r = 0. This simple toy model mimics the real interatomic potential.
In this model, the zero-energy wave function for 0 < r < r0 is given by

χ (r) = sin

(√
2V0m̄

�2
r

)
. (2.10)

It satisfies the hard core boundary condition at r = 0, and its slope at r = r0 determines
the wave function at the outside, whose node determines as. With this picture, it is easy to
show how as changes as the depth V0 of the attractive well increases. When the attractive
well is shallow and

√
2V0m̄/�2r0 < π/2, the situation is shown in the left of Figure 2.2(a),

where the node of the wave function appears at a negative value, giving rise to a negative as.
As V0 increases, when

√
2V0m̄/�2r0 approaches π/2, the slope for the zero-energy wave

function approaches zero. As a result, as first approaches −∞, and then jumps from −∞ to
+∞, as shown in the middle of Figure 2.2(a). At this jump, the phase shift also jumps from
π/2 to −π/2. Then, when V0 further increases, the slope becomes negative and the node
comes to a positive value, as shown in the right of Figure 2.2(a). As V0 further increases,
as decreases from +∞ to finite positive value. This simple example shows that as can take
any value from −∞ to +∞, as we shown in Figure 2.2(b).

�Figure 2.2 Geometric meaning of the scattering length. (a) The geometric meaning of the s-wave scattering length illustrated by
a square well model. (b) The s-wave scattering length as a function of the depth of the attractive well. The
low-energy bound state energy is also plotted. Different behaviors of the scattering amplitudes are marked in
different regimes. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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36 Two-Body Interaction

In this simple toy model, it can also be shown that

− 1

as
= χ ′(r < r0)

χ (r < r0)

∣∣∣∣
r=r0

=
√

2V0m̄
�2

tan
(√

2V0m̄
�2 r0

) . (2.11)

It is clear that as will repeatedly change from ∞ to +∞ as V0 increases. That is to say,
there will be a series of different values of V0 that give the same value of as. With our
discussion of universality above, this means that the low-energy physics is the same for
these different values of V0.

Finally, it is worth mentioning that the discussion of the phase shift can be generalized
to other higher partial waves. One can show that for the lth partial wave, the corresponding
phase shift δk ∝ k2l+1. Therefore, for low-energy collision, the phase shifts for the higher
partial waves are suppressed compared with the s-wave case. That means that at the lowest
energy, the interaction effect is dominated by the s-wave channel, as long as the s-wave
channel is not forbidden.

The Shallow Bound State. Above we have considered low-energy scattering states with
E > 0, and now we turn to consider a bound state with negative energy E < 0. The
difference between a scattering state and a bound state lies on the asymptotic behavior at
large r. For scattering states, their wave functions keep oscillating with a fixed momentum
at large r. The energy spectrum of scattering states is a continuum, and the short-range
boundary condition determines the phase shift. But for bound states, their wave functions
decay exponentially at large r, and the energy spectrum of bound states is discrete, which
is determined by the short-range boundary condition. Explicitly, in the regime r > r0, the
radial wave function is given by

χ = Ae−r
√

2m̄|E|/�2
. (2.12)

Similarly to the discussion of the low-energy scattering state, here we are concerned with
the absolute value of the binding energy being much weaker than the strength of the poten-
tial, such that the wave function at the short distance r < r0 is also insensitive to the bound
state energy. Therefore, we can match the same boundary condition at r = r0 for this bound
state wave function and reach

χ ′

χ

∣∣∣∣
r=r0

= −
√

2m̄|E|
�2

= − 1

as
. (2.13)

Obviously, if as < 0, there is no solution for Eq. 2.13, which means that there is no shallow
bound state for negative as. But for as > 0, we have a bound state solution with

Eb = − �
2

2m̄a2
s

, (2.14)

which is shown in Figure 2.2(b).
Nevertheless, we should be very careful about the statement of no bound state with

negative as. In fact, as shown in Figure 2.2, the first bound state appears at
√

2V0m̄/�2r0 =
π/2, and it will not disappear when V0 further increases. However, there are regimes with
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37 Scattering Length

larger V0 where as is negative. That is to say, for these negative as, there actually exist
bound states. To reconcile this fact with Eq. 2.13 above, we should note that Eq. 2.13 only
applies to the low-energy bound state because of the assumption that boundary conditions
are insensitive to energy. The absence of a solution for Eq. 2.13 only rules out the existence
of the low-energy bound state but does not exclude the existence of deep bound states. In
fact, it is easy to see that the bound state that emerged at

√
2V0m̄/�2r0 = π/2 becomes a

sufficient deep bound state when as becomes negative again. Moreover, even for positive as,
Eq. 2.14 works only when as/r0 � 1. The binding energy will deviate from this universal
expression, and the short-range details will matter when the bound state is sufficiently deep.

Features of a Scattering Resonance. From above discussions, we can also find that
the following three properties occur simultaneously, which we call an s-wave scattering
resonance:

1. The s-wave scattering length jumps from −∞ to +∞.
2. The phase shift jumps by π .
3. A bound state appears at the threshold.

This connection between the jump of the phase shift and the existence of a zero-energy
bound state is also related to Levinson’s theorem in quantum mechanics.

Now we have introduced the scattering length as as a central concept for the s-wave
scattering. Below we will address two important questions regarding how to interpret the
physical meaning of as.

In What Sense Does a Larger |as| Mean a Stronger Interaction? We have considered
the two-body problem from the perspective of the eigenstate of the Schrödinger equation.
Here we introduce another viewpoint. Considering an incoming wave eikz along the ẑ direc-
tion that is scattered to an outgoing wave along the radial direction, the total wave function
at large distance can be written as

� = eikz + f (θ )
eikr

r
, (2.15)

where f (θ ) is called the scattering amplitude. To determine f (θ ), we need to first rewrite
Eq. 2.15 as

� = 1

2ikr

[+∞∑
l=0

(2l + 1)Pl(cos θ )(eikr−lπ/2 − e−i(kr−π l/2))

]
+ f (θ )

eikr

r
. (2.16)

Because these two viewpoints should give the same results, by comparing this equation
with Eq. 2.2 and Eq. 2.4, and focusing on the l = 0 channel, we can obtain the s-wave
scattering amplitude as

fs(θ ) = e2iδ − 1

2ik
= − 1

ik − k/ tan δ
= − 1

1/as + ik
, (2.17)

which is independent of θ . For identical bosons, the scattering cross section σ is given by
8π |fs|2. If |kas| � 1, we have f (θ ) ∼ −as, and the scattering cross section is σ = 8πa2

s .
Thus, the larger |as| is, the larger is the scattering cross section. In this sense, one can say
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38 Two-Body Interaction

that the absolute value of as represents the strength of the interaction. But this argument
cannot be generalized to very large or even infinite as, because if |kas| � 1, f (θ ) should
be approximated as −1/(ik), and then the scattering cross section becomes 8π/k2. It is
interesting to note that in this regime, the scattering cross section strongly depends on
momentum of particles under collision and does not depend on any other parameters. This
is the so-called unitary regime. As already indicated in this formula of the scattering cross
section, the interaction energy of a many-body system at the unitary regime only depends
on density and temperature. These behaviors will be discussed in Chapters 5 and 6 in detail.

In What Sense Does as > 0 Mean Repulsive Interaction? When we talk about a pure
short-range repulsive interaction, usually what we naturally have in mind is a hard core
potential with size R0. That is to say, V(r) = +∞ for r � R0 and V(r) = 0 for r > R0,
which forces the wave function to vanish at r = R0. This leads to δk = −kR0. The
interatomic interaction we considered here has an attractive well, and the microscopic
potential form is very different from the hard core potential. However, the low-energy
expansion of the phase shift given by Eq. 2.6 can agree with δk = −kR0, at least for a large
range of small k, if as is positive and as = R0. Therefore, as far as the low-energy phase
shift of the scattering states is concerned, a positive as is equivalent to a hard core repul-
sive interaction. In other words, as we discussed at the beginning of this section, atoms in
a dilute gas can only experience the phase shift δk, so they cannot distinguish the actual
interatomic potential from a hard core potential for sufficiently low-energy atoms.

However, we shall emphasize that this equivalence is only valid for low-energy scat-
tering states and small as such that kas � 1. There are several reasons. First, at large
momentum, when kas is large, the phase shift given by Eq. 2.6 always saturates to −π/2,
but the phase shift of a hard core potential keeps increasing linearly. Second, in order
for the hard core model to be valid in a gas system, the hard core radius R0 should be
taken to be much smaller than the interparticle spacing, typically 1/k. That also requires
as ∼ R0 � 1/k. Third, as discussed above, for positive as, there is a low-energy bound
state, and such a bound state is also absent in the hard core potential. Nevertheless, only
when kas � 1, the absolute value of the binding energy �

2/(2m̄a2
s ) is much larger than

typical kinetic energy �
2k2/(2m̄), and this bound state is well beyond the low-energy

regime. In summary, a positive as can be regarded as representing a repulsive interaction
only when

1. kas � 1 and only the low-energy scattering states are considered.
2. the bound state is sufficiently deep that can be safely ignored for low-energy scattering.

How Short Range Is Short Ranged? So far, we have considered a finite range potential
where the interaction is taken strictly as zero above a range r0. But the actual Van der Waals
potential is algebraically decaying one at large distance. Now we shall come back to briefly
revisit how good this approximation is to replace an algebraically decaying potential as a
strictly finite-range one.

Let us again first recall how we solve the finite-range potential. In the r > r0 regime,
the potential term vanishes and the Hamiltonian only contains the kinetic energy term. For
a three-dimensional kinetic operator, there are two independent solutions for the s-wave
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39 Zero-Range Models

Box 2.1 Meaning of Positive Scattering Lengths in This Book

Since the main part of this book discusses interaction effects in ultracold atomic gases, here we shall make an
important statement onmodeling the interaction potential in different parts of this book. In Parts II and IV of
this book, we always consider the situation that the scattering length is small compared with the interatomic
distance. Hence, when we talk about positive as, by default, we consider that these two conditions are satis-
fied, and the interaction is taken as repulsive. In Part III of this book, we will consider the situation thatas can
go across infinity. In this case, these two conditions are not satisfied, and in particular, the role of the shallow
bound state is very crucial. In this part, a positive as does not mean the interaction is repulsive.

channel, which can be taken as sin(kr)/(kr) and cos(kr)/(kr). The general wave func-
tion at large distance is a superposition of these two solutions, and the mixing angle of
the superposition gives the phase shift, which should be determined by the short-range
physics.

This strategy can be generalized straightforwardly to an algebraically decaying poten-
tial. The only difference is that one needs to find out the corresponding solutions for a
1/rα potential. It turns out that, for the s-wave case, one can also write down two indepen-
dent solutions whose asymptotic behavior also approaches sin(kr)/(kr) and cos(kr)/(kr),
respectively. Hence, the general wave function is a superposition of these two solutions,
and the mixing angle of the superposition determines the phase shift in this case. In this
case, the phase shift is also determined by the short-range physics. The similar treatment
can be generalized to higher partial wave cases. In this way, one can show that for the lth
partial wave, tan δk ∝ k2l+1 if 2l + 1 ≤ α − 2 and tan δk ∝ kα−2 if 2l + 1 ≥ α − 2
[34]. Therefore, as far as the low-energy physics is concerned, if an algebraically decaying
potential is considered to be equivalent to a finite-range one, at least the leading-order con-
tribution to the low-energy phase shift has to be the same for these two potentials, which
means α− 2 has to be larger than 2l + 1. Thus, for the s-wave channel, α should be greater
than 3. For the realistic Van der Waals potential, α = 6, and this means that for l = 0, 1
channels, it can be treated by the strictly finite-range approximation, and for l ≥ 2, the
algebraically decaying tail needs to be considered more seriously.

2.2 Zero-RangeModels

We have discussed the low-energy physics for a two-body problem using a finite-range
potential and shown that for most circumstances, the s-wave scattering length as is the only
parameter that is required for describing the low-energy interaction in a dilute quantum
gas. Here we would like to develop an effective model to describe the interaction effects
in many-body systems, and we would like to require the following two features in our
effective model:
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40 Two-Body Interaction

• Inspired by the two-body discussion, we would like to use the s-wave scattering length
as as the only parameter in our effective model and disregard the microscopic details of
the interatomic potential.

• For the convenience of later studies of many-body theories, it will be useful that this
effective model is a zero-range one, that is to say, two atoms interact only when they are
exactly in the same spatial location. In Section 2.1, we always keep the interaction range
r0 finite, and in this section, we should be taking r0 to zero.

Here, by effective, we mean that the low-energy scattering properties, including phase shift
for the low-energy scattering state and the shallow bound state energy, can be well repro-
duced by this effective model. Below we present two different effective models, and both
can achieve this goal.

Pseudopotential. The simplest form of a zero-range model is a delta-function potential
V(r) ∝ δ(r). Obviously, for r �= 0, V(r) = 0 and χ (r) = sin(kr + δk) always satisfy
the Schrödinger equation. The question is whether the Schrödinger equation can still be
satisfied as r → 0. However, as shown above, for zero energy, χ (r) behaves as 1 − r/as

and therefore �(r) behaves as 1/r − 1/as, which diverges as 1/r at the short distance.
Therefore, a simple delta-function potential gives a divergent energy. We note that this
1/r divergence is not physical, because in the finite-range model discussed above, the free
wave function terminates at r0 and the even short-range wave function is determined by the
microscopic potential. In other words, this 1/r divergence is an artifact arising from taking
r0 to zero. So a properly defined interaction potential should be able to eliminate this 1/r
divergency at r → 0 before taking the δ-function interaction.

Let us denote such a potential as V(r) = δ(r)Ô(r), and V(r) should satisfy the
Schrödinger equation as [

− �
2

2m̄
∇2 + V(r)

]
� = E�, (2.18)

where �(r) = sin(kr + δk)/(kr). To focus on the r → 0 limit, let us again consider the
expansion of the wave function �(r) around r = 0 as

�(r) = 1

r
− 1

as
+ o(kr). (2.19)

It is straightforward to show that

[∂r · r]�(r) = − 1

as
+ o(kr), (2.20)

which eliminates the short-range 1/r divergence. Hence, when Ô(r) takes the form [77]

Ô(r) = 2π�
2as

m̄
∂r · r, (2.21)

we have

V(r)�(r) = −2π�
2

m̄
δ(r). (2.22)
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And because in three dimensions,

− �
2

2m̄
∇2�(r) = 2π�

2

m̄
δ(r), (2.23)

the Schrödinger equation is satisfied. This interaction potential is known as Fermi’s
pseudo-potential [77]. Furthermore, one can show that the energy of the low-energy bound
state can also be reproduced.

Renomalizable Contact Potential. A pseudo-potential model can nicely reproduce the
low-energy physics. However, it has a shortcoming that the operator is not Hermitian. Thus,
it is not very convenient to use the pseudo-potential in many circumstances, in particular,
when a second-quantized form of a many-body Hamiltonian is needed. For studying many-
body physics, it is still convenient to use a delta-function contact potential as V(r) = gδ(r).
Though we have already known that it will cause a divergent problem at short distance,
nevertheless, let us proceed further and see how serious the problem is and whether there
are ways to fix the problem.

Here we consider spin-1/2 fermions with this delta-function interaction potential as an
example. With a delta-function interaction potential, the second-quantized Hamiltonian for
spin-1/2 fermions can be written as

Ĥ =
∫

d3r

(∑
σ

�̂†
σ ( r)

(
− �

2

2m
∇2

)
�̂σ (r) + g�̂†

↑( r)�̂†
↓(r)�̂↓(r)�̂↑(r)

)
, (2.24)

where �̂†
σ (r) and �̂σ (r) (σ =↑, ↓) are creation and annihilation operators for fermions at

position r. In the momentum space, this Hamiltonian is given by

Ĥ =
∑
kσ

�
2k2

2m
�

†
kσ�kσ + g

V

∑
k,k1,k2

�̂
†
k
2 +k1,↑

�̂
†
k
2 −k1,↓

�̂ k
2 −k2,↓�̂ k

2 +k2,↑ , (2.25)

where V is the volume of the system. Here the second term represents scattering between
atoms, with the center-of-mass momentum k conserved and the relative momenta changing
from k2 to k1.

We first compute a two-body scattering T-matrix with Hamiltonian equation 2.25. We
consider an on-shell scattering process with both incoming and outgoing states having
the same energy E and the center-of-mass momentum equaling zero. Since the interac-
tion vertex g is now a constant independent of momentum, the leading order diagram is a
direct scattering from the incoming state to the outgoing state, whose contribution is g, as
shown in Figure 2.3(a). The next-order diagram involves intermediate states, and the rela-
tive momentum p of the intermediate state can be taken at any momentum. Its contribution
can be computed by the second-order processes as

1

V

∑
p

g
1

E − �2p2

m + i0+
g, (2.26)

where i0+ is a mathematical technicality necessary for the calculation of the integrals and
is also a consequence of causality. Furthermore, one can systematically consider all the
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42 Two-Body Interaction

�Figure 2.3 T-matrix for two-body scattering. Ladder diagrams for two-body T-matrix (a) of the renormalizable contact potential
model Eq. 2.24 and (b) for the two-channel model Eq. 2.66. The two-channel model will be discussed in Section 2.4.

higher order contributions by including more intermediate states, as illustrated by the so-
called ladder diagram shown in Figure 2.3(a). It turns out that for two-body problems,
unlike the many-body situation to be discussed in later chapters, the summation of the
ladder diagram is an exact solution. The summation of the ladder diagram leads to the
so-called Schwinger–Dyson equation given by

T2(E) = g + 1

V

∑
p

g
1

E − �2p2

m + i0+
g + . . .

= g + g

V

∑
p

1

E − �2 p2

m + i0+
T2(E), (2.27)

and thus

T2(E) = g

1 − g
V

∑
p

1

E− �2p2
m +i0+

. (2.28)

Here it is important to notice that the summation over momentum in Eq. 2.28 behaves
as

∫
d3p(1/p2) at large momentum and diverges at large momentum in three dimensions.

This divergence comes from the upper limit of the energy integration and is called the
ultraviolet divergence. As we discussed in Box 2.2, such an ultraviolet divergence means
the short-range physics is not treated properly. Here, it means nothing but that the short-
range 1/r behavior of the free wave function should not be taken to the r → 0 limit, and
the δ-function contact potential is not appropriate.

This divergence can also be viewed from the Hamiltonian in momentum space
equation 2.25, where the scattering vertex is taken as independent of the momentum trans-
fer, because the Fourier transformation of a δ-function potential is a constant. However,
this is unphysical because in any physical model with finite range r0, this scattering vertex
always decays toward zero when the transferred momentum is much larger than �/r0. By
taking this momentum dependence of the scattering vertex into account, the large momen-
tum divergence in the summation of Eq. 2.28 can be avoided. Nevertheless, the momentum
dependence of the scattering vertex at large momentum comes from the short-range struc-
ture of the microscopic potential, which is the nonuniversal physics that we do not want to
include.

Hence, we encounter a dilemma. On one hand, we understand that the zero-range δ-
function potential, or equivalently saying, a momentum-independent scattering vertex at
large momentum, is unphysical, which causes ultraviolet divergence. On the other hand,
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43 Zero-Range Models

Box 2.2 Two Kinds of Divergences

Quite often, we will encounter the situation that the integration over energy, or equivalently, the integration
over momentum space, diverges. There are two different kinds of divergence. One is called the ultraviolet
divergence, and the other is called the infrared divergence. The ultraviolet divergence is due to the upper limit
of the energy integration taking to infinity, and the infrared divergence is due to the lower limit of the energy
integration taking to zero. However, the physical quantity should always be finite. Thus, both divergences
mean that something unphysical is mistaken. The ultraviolet divergence usually means that the high-energy
physics, or equivalently, the short-range physics, is not treated properly. Here the delta-function potential
is such an example. The infrared divergence usually means the low-energy, or equivalently, the large-scale
structure, is mistaken. We will discuss an example of the infrared divergence in Section 3.4.

the details of the short-range potential, or the momentum dependence of the scattering
vertex at large momentum, is nonuniversal, which we do not want to explicitly include.
To overcome this problem, we will implement the idea of renormalization. We will still
use the delta-function potential, but we will not treat interaction parameter g as a physical
parameter. And we should find a way to properly renormalize the interaction parameter g
and to relate it to the physical parameter as. Hence, let us rewrite

T2(E) = g

1 − g
V

∑
p

1
E−�2p2/(m)+i0+

= 1

1
g + 1

V

∑
p

1
�2 p2/m

− 1
V

∑
p

(
1

E− �2 p2
m +i0+ + 1

�2p2/m

)

= 1
1
g + 1

V

∑
p

1
�2 p2/m

+ ikm
4π�2

, (2.29)

where k = √
mE/�2. This two-body T-matrix should be related to the s-wave scattering

amplitude of Eq. 2.17 determined by the two-body calculation above; therefore, we have

T2(E) = 4π�
2

m

1
1
as

+ ik
= 1

1
g + 1

V

∑
p

1
�2p2/m

+ ikm
4π�2

. (2.30)

Hence, we reach the important renormalization identity that relates g to physical quantity
as, that is,

m

4π�2as
= 1

g
+ 1

V

∑
p

1

�2p2/m
. (2.31)

To conclude, we will use Eq. 2.24 or Eq. 2.25 as our model for a many-body system.
But one will often encounter an ultraviolet divergence problem when using this model.
When the ultraviolet divergence is encountered, we should use Eq. 2.31 to replace g by
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the physical parameter as, and at the same time this replacement eliminates the divergency.
This is an important result that will be repeatedly used in later chapters.

However, there is one important question. Here we obtain the renormalization condition
by matching the two-body scattering amplitude. How can we be sure that this renormaliza-
tion condition can work for a system with more than two particles? In general, the answer
is that it may or may not work. If this works, the theory is called renormalizable. If this
does not work, it means some extra high-energy scales emerge in few- or many-body sys-
tems, and these energy scales matter. In fact, as we will see in Chapter 5 and Chapter 6,
theory for spin-1/2 fermion is renormalizable. But for spinless bosons, the renormalization
condition actually does not work. This can be seen from Section 2.6, where we will discuss
the three-body problem for bosons. We will see that an extra high-energy cutoff scale is
required for the energy spectrum being bounded from below.

2.3 Spin-Dependent Interaction

In the discussion above, we do not explicitly include the role of the spin degree of freedom
of the atoms under collision. From Section 1.1 we already know that atoms can have quite
rich spin structures, and we have also discussed in Section 1.3 that in an optical trap, all spin
components can be trapped. In fact, spins of atoms can play very important roles in two-
body collisions, and their roles are different between the zero magnetic field limit and the
finite magnetic field regime. In the zero magnetic field limit, the spin rotational symmetry is
preserved, and the spin rotational symmetry imposes constraints on the form of two-body
interactions, which will be discussed in this section. In the finite magnetic field regime,
the spin rotational symmetry is broken by the Zeeman energy, but the Zeeman energy of
spins can be used as a tool to tune the two-body interactions, which will be discussed in
Section 2.4.

Alkali-Metal Atoms. Let us first consider the collision between two alkali-metal atoms
with spin-f 2. Here the spin refers to the total hyperfine spin. For simplicity, we take bosons
with f = 1 as an example, which includes examples like the ground state of 87Rb and 23Na
atoms. Due to the spin rotational symmetry, the total spin F of two atoms under collision
should be conserved, and for the f = 1 case, the total spin of two atoms can therefore be
either 0, 1, or 2. Thus, the interaction potential can be written in a diagonal form in the
total spin bases as

V̂(r) = 2π�
2

m̄
(a0P0 + a2P2)δ(r)∂r · r, (2.32)

where a0 and a2 denote the scattering length in the F = 0 and F = 2 channels, respectively.
Here the F = 1 channel does not enter the s-wave scattering because the spin wave function
is antisymmetric for total spin F = 1, and therefore the spatial wave function also has to
be antisymmetric in order for the total wave function to be symmetric. Thus, the s-wave
scattering is forbidden in this channel.

2 Here we use little f to denote the spin of a single atom and capital F to denote the total spin of two atoms.
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45 Spin-Dependent Interaction

The projection operator PF is to project the spin wave function of two atoms into
subspace with total spin being F. To write PF more explicitly, say, in terms of physi-
cal observables, we can make use of the following two identities. First, by definition, the
identity operator can be written as ∑

F

PF = 1. (2.33)

Second, we consider f1 · f2, and because f1 · f2 = (F2 − f2
1 − f2

2)/2, f1 · f2 only depends on
F as

f1 · f2 =
∑

F

(
F(F + 1)

2
− f (f + 1)

)
PF. (2.34)

By further projecting both sides of Eq. 2.33 and Eq. 2.34 into the Hilbert space of
symmetric total spin wave function, the term P1 can be dropped out. Therefore we have

P0 + P2 = 1 (2.35)

− 2P0 + P2 = f1 · f2. (2.36)

By solving these two equations, one can then express P0 and P2 in terms of identity
operator and f1 · f2, and one obtains [70, 130]

V̂(r) = 2π�
2

m̄

(
a(n) + a(s)f1 · f2

)
δ(r)∂r · r, (2.37)

where

a(n) = a0 + 2a2

3
(2.38)

a(s) = a2 − a0

3
. (2.39)

Here a(n) and a(s) represent the density–density interaction and the spin-dependent inter-
action, respectively, and the latter is proportional to the difference in the scattering lengths
between the F = 0 and F = 2 channels. When a0 = a2, the interactions are identical
for different spin channels, and therefore a(s) vanishes. In this case, the interaction only
depends on the total density, which is invariant under an arbitrary SU(3) rotation of all
three spin components. Therefore, the Hamiltonian is SU(3) invariant instead of SU(2)
invariant.

Here we should also emphasize that one needs to carefully distinguish the high-spin
representation of SU(2) symmetry and the basic representation of SU(N) symmetry. For
the SU(2) symmetry, there are only three generators, no matter how large S is, and the
interaction is invariant under the rotation generated by these three generators. In the spin-S
representation, these three generators are represented by (2S+1)× (2S+1) Pauli matrices.
But for SU(N) symmetry, there are in total N2−1 generators, and the interaction is invariant
under the rotation generated by all these N2 − 1 generators.

In reality, for atoms like 87Rb and 23Na, the differences between a0 and a2 are actually
quite small, and consequently, a(s) is only a few percent of a(n). Nevertheless, a(s) plays an
important role for spin-1 alkali-metal atoms. Dynamically, this spin-dependent interaction
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�Figure 2.4 Interaction-induced spin exchanging dynamics. (a) The spin exchanging dynamics for spin-1 87Rb atom. The solid,
dotted, and dashed lines are populations onmf = 0, 1, and−1, respectively. Reprinted from Ref. [30]. (b) The
nuclear spin exchanging between |g〉 and |e〉 states for 173Yb atom. This line is a time-dependent nuclear spin
polarization for atoms in |g〉 state, that is, the population difference between |g〉| ↑〉 and |g〉| ↓〉. Reprinted from
Ref. [27]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

can lead to a spin exchanging process. Because there are terms f +
1 f −

2 + f −
1 f +

2 in f1 · f2,
two incoming atoms with fz = 0 can be scattered into one in fz = 1 and the other in the
fz = −1 state. This process has been observed experimentally, and one of the examples is
shown in Figure 2.4(a). Moreover, a(s) determines the spin structure of the Bose–Einstein
condensate of spin-1 atoms, as we will see in Section 4.3.

Alkaline-Earth-Metal Atoms. As we have discussed in Section 1.1, for the ground state,
the spin of alkaline-earth-metal atoms is purely nuclear spin I. Because the electron spin is
zero, there is no coupling between the nuclear spin and the electronic degree of freedom.
The nuclear spin is nonzero only for the fermionic alkaline-earth-metal atom because all
the bosonic isotopes of alkaline-earth-metal atoms have zero nuclear spin. On the other
hand, for fermionic isotopes, the nuclear spin usually can be quite large, and because of the
decoupling between the nuclear spin and the electronic degree of freedom, the interaction
between two ground-state alkaline-earth-metal atoms is nearly independent of nuclear spin
I [193]. Therefore, all the scattering lengths between any two components are all identical,
and the interaction only depends on the total density. Such an interaction term possesses
SU(2I + 1) symmetry.

Another interesting aspect of alkaline-earth-metal atoms is the interaction between the
ground state 1S0 (usually denoted by |g〉) and the clock state 3P0 (usually denoted by |e〉).
As discussed in Section 1.1, the clock state has long enough lifetime whose single-particle
decay can be safely ignored in practice. In literature, these two states are also referred to
as a doublet of the “orbital” degree of freedom.3 Here we consider the interaction between
two fermionic alkaline-earth-metal atoms, one in |g〉 state and the other in |e〉 state, and

3 Note that here “orbital” labels an internal degree of freedom for atoms, that is, one of the valance electrons is
excited to the excited p-orbit.
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they can be in two (among 2I + 1) different nuclear spin states, denoted by | ↑〉 and | ↓〉,
respectively. Because the total wave function has to be antisymmetric, and because we
consider the s-wave interaction that requires spatial wave function to be symmetric, the
internal wave function has to be antisymmetric, which limits the internal Hilbert space to
either the orbital triplet and the nuclear spin singlet or the orbital singlet and the nuclear
spin triplet, which are

|+〉 = 1

2
(|g〉|e〉 + |e〉|g〉) ⊗ (| ↑〉| ↓〉 − | ↓〉| ↑〉), (2.40)

|−, 0〉 = 1

2
(|g〉|e〉 − |e〉|g〉) ⊗ (| ↑〉| ↓〉 + | ↓〉| ↑〉), (2.41)

|−, 1〉 = 1√
2
(|g〉|e〉 − |e〉|g〉) ⊗ | ↑〉| ↑〉, (2.42)

|−, −1〉 = 1√
2
(|g〉|e〉 − |e〉|g〉) ⊗ | ↓〉| ↓〉, (2.43)

where ± refers to orbital triplet and singlet, respectively, and 0, ±1 in Eq. 2.41–2.43 refers
to the z-component of the total nuclear spin. Here we have ignored two orbital triplet states
where both atoms are in ground states or both atoms are in the clock state, because here
we are interested in the interorbital interaction.

Above we have discussed that the interactions between atoms in the 1S0 state have
SU(2I +1) symmetry. For atoms in the clock state 3P0, because the total electronic angular
momentum is also zero, the nuclear spin is still decoupled from the electronic degree of
freedom, and therefore the interorbital interactions between the 1S0 state and 3P0 state also
possess the SU(2I + 1) symmetry. Here, if we only consider two out of 2I + 1 nuclear spin
components, the interactions possess an SU(2) nuclear spin rotational symmetry. On the
other hand, because the “orbital” degree of freedom is just a label of two different states,
which is similar to the pseudo-spin-1/2 discussed in Box 2.3, there is no rotational symme-
try requirement in the orbital space. This symmetry requirement leads to the following: (1)
the interaction is diagonal in the bases of Eq. 2.40–2.43 listed above and (2) the |+〉 chan-
nel has one scattering length, and all three |−〉 channels share another different scattering
length.

Denoting P+ as projection operator to |+〉 state, and P− as projection operator to the
Hilbert space spanned by three |−〉 (mn = 0, ±1) states, we have

P+ = |+〉〈+| (2.44)

P− = |−, 0〉〈−, 0| + |−, −1〉〈−, −1|, +|−, +1〉〈−, +1|. (2.45)

The interaction can be written as

V̂(r) = 2π�
2

m̄

(∑
±

a±P±

)
δ( r)∂r · r, (2.46)

where a± are two different scattering lengths. For this interaction form, when one atom
in |g〉| ↑〉 state collides with another atom in |e〉| ↓〉 state, there is a channel in which the
outcoming atoms are one in |g〉| ↓〉 state and the other in |e〉| ↑〉 state. In other words,
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Box 2.3 Spin and Spin Rotational Symmetry

In ultracold atom literatures, “spin” can have different meanings. In some cases, spin means the total hyper-
fine spin of an atom, as discussed in this section and in spinor condensate discussed in Section 4.3. In such
cases, interaction between different spin components should obey the spin rotational symmetry at zero field.
In this case, the accuracy of the spin rotational symmetry is guaranteed by the fact that the collision energy
between two atoms is much weaker compared with the hyperfine coupling of a single atom.

In some other cases, spin actually means the pseudo-spin, which are essentially two or more eigenstates
of the total spin Hamiltonian, including both hyperfine coupling and the Zeeman field, as discussed in
Section 1.2. In such cases, it is not necessary for interactions between different pseudo-spin components to
obey the spin rotational symmetry. In this context, we can have pseudo-spin-1/2 Bose gas, which is not
possible with real spins. For pseduo-spin-1/2 bosons, the two intracomponent interaction parameters and
the intercomponent interaction parameter can in principle take arbitrary values. Therefore, there is no spin
SU(2) symmetry. The spin-orbit coupled Bose condensate discussed in Section 4.5 is such an example.

For pseudo-spin-1/2 Fermi gas, at the lowest order, there are intercomponent s-wave interactions and two
intracomponent p-wave interactions, because the intracomponent s-wave interactions vanish due to the
Fermi statistics. In general, the two intracomponent p-wave interactions are different, especially when one
of them possesses a p-wave Feshbach resonance. However, away from the high-partial wave Feshbach res-
onances, the high-partial wave interaction can be safely ignored at ultra low temperature compared with
the s-wave interaction, as discussed in Section 2.1, and we only need to retain the intercomponent interac-
tion. Under this situation, the interaction again possesses an emergent SU(2) symmetry. In this case, the
accuracy of this emergent SU(2) symmetry is guaranteed by the fact that the high-partial wave interaction
energy is much weaker compared with the intercomponent s-wave interaction. The spin-1/2 Fermi gas dis-
cussed in Part III of this book, as well as the Fermi–Hubbard model discussed in Section 8.2, belongs to this
case. In particular, wewill emphasize the role of theSU(2) spin rotational symmetry in the discussion of the
Fermi–Hubbard model.

the nuclear spin between two different orbital states can be exchanged during the collision.
This spin exchanging interaction strength is proportional to the difference between a+ and
a−. This spin exchanging processes have also been observed in experiments [152, 27], as
shown in Figure 2.4(b).

Such a spin-exchanging process can find broad applications in quantum simulation of
many-body physics, for instance, in simulating the famous Kondo physics with ultracold
atoms. The Kondo physics in condensed matter system arises from a localized magnetic
impurity embedded in metal, and this magnetic impurity can exchange spin with itinerant
electrons. Here, because the scalar polarizabilities are different between atoms in the |g〉
state and atoms in the |e〉 state, with the optical lattice scheme discussion in Section 1.3,
one can create a situation that atoms in |e〉 state are localized by a deep potential, and atoms
in |g〉 state experience a shallow potential and remain itinerant [62, 190, 149]. Thus, the
atoms in |e〉 state act as localized impurities embedded in a Fermi sea of the itinerant atoms
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in |g〉 state, and the spin exchanging interaction between them can realize the Kondo effect
[62, 190].

2.4 Feshbach Resonance

The discussion in Section 2.1 has established that the scattering length is an important
quantity for describing the interatomic interaction. Can we tune the scattering length exper-
imentally? In Section 2.1, using the square well potential as an example, we have also
shown that the scattering length can be changed by changing the depth of a square well
potential. However, in practice, it is hard to vary the strength of the Van der Waals potential
over a large energy range. Nevertheless, the discussion in Section 2.1 gives an important
hint, that is, if one can tune the energy of a bound state to be close to the scattering thresh-
old, it can strongly affect the scattering length. This is essentially the key idea behind
all tunable scattering resonances. Here we should first discuss a magnetic field–tunable
Feshbach resonance.

The discussion of magnetic Feshbach resonance involves the internal spin structure of
atoms in a magnetic field. We should recall that in Section 2.3, we have discussed the role
of internal spin structure for two-body collision. The difference between the discussion
here and that in Section 2.3 is that here we consider the regime where the effect of an
external Zeeman field is strong enough. In Section 2.3 we focus on the zero-field regime
where the spin rotational symmetry plays an important role, and we have discussed how
the spin rotational symmetry imposes constraints on the form of interaction. But here the
presence of a finite Zeeman field breaks the spin rotational symmetry, and therefore such a
constraint no longer exists.

Now let us be more specific. We consider interaction between two alkali-metal atoms
whose internal spin structure in a Zeeman field has been discussed in Sec 1.2. Let us label
each internal spin eigenstate of a single atom in a Zeeman field by |q〉, which has a well-
defined quantum number Fz. For instance, for 6Li, the internal spin eigenstates are shown
in Figure 2.5(b). Though there is no SU(2) spin rotational symmetry because of the Zeeman
field, there is still a spin rotational symmetry along the field direction, and thus Fz is still a
good quantum number. When two atoms are far from each other, they are in the eigenstate
of |q1〉 ⊗ |q2〉. Now we can introduce the concepts of two scattering channels. One is the
called the open channel and the other is called the closed channel. These channels are
defined as eigenstates when two atoms are far separated. Here are a few remarks about
these two channels:

• Quantum Number: Due to the rotational symmetry along ẑ, the total F1
z + F2

z + Lz is
conserved. Here Fi=1,2

z is the z-component of the hyperfine spin of these two atoms,
respectively, and Lz is the ẑ-component of their relative angular momentum. Here, for
simplicity, we only consider the s-wave states in both the open and the closed channels,
and Lz = 0. With this simplification, the total F1

z + F2
z of the open channel should equal

to that of the closed channel. For instance, for 6Li, if the open channel is taken as |a〉⊗|b〉
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�Figure 2.5 Interaction channels between two alkali-metal atoms. (a) The electronic spin singlet and triplet interaction potential
of Li2 at short interatomic separation. The inset shows a zoom-in plot of the interaction potential of two 6Li atoms at
large interatomic separation. The five pairs of states all have totalFz = 0. The horizontal line shows a bound state in
the closed channel. (b) The internal eigenstate labeled from a to f of 6Li. The number on each curve is the value ofFz

for each state. Reprinted from Ref. [34]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

with total Fz = 0, there are in total five combinations that have total Fz = 0, and the
other four are |a〉 ⊗ |d〉, |b〉 ⊗ |e〉, |c〉 ⊗ |f 〉, and |d〉 ⊗ |e〉.

• Closed versus Open: When two atoms are far separated, the energy difference between
the open and the closed channel is set by the Zeeman energy, which is normally much
higher than the kinetic energy. Therefore, when two atoms collide from the low-energy
scattering state of the open channel, they cannot be scattered into scattering states of the
closed channel. That is why these channels are called “closed channels.” As shown in
the inset of Figure 2.5(a), all the other four combinations can be taken as closed channels
when |a〉 ⊗ |b〉 is chosen as the open channel.

• Energy Tunability: Usually when the open channel is chosen as the low-lying hyperfine
spin state, as the magnetic field increases, the energy of the open channel decreases with
respect to the closed channel. Thus, it is conceivable that, as magnetic field increases,
the scattering threshold can approach a bound state in the closed channel from above.

• Coupling between Channels: When two atoms are close to each other, the inter-atomic
potential between two atoms mostly depends on the electronic degree of freedom of
two atoms. Here, since each alkali-metal atom has one electron, the interatomic poten-
tial depends on whether their total electronic spin is singlet or triplet,4 an example of
which is shown in Figure 2.5(a). For instance, considering the open channel |a〉 ⊗ |b〉,
their electron spins are polarized by the magnetic field, and their total electronic spin is
more close to a triplet. However, the hyperfine coupling mixes in electron spin singlet

4 In practice, the Van der Waals part is the same for electron spin singlets and triplets, but the short-range
repulsive part depends on electron spin.
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component. Hence, the short-range potential couples different channels, though the
coupling is usually weak.

Coupled-Channel Model. With these features of the two channels discussed above, we
can consider a simplified coupled-channel model to demonstrate how the scattering length
can be changed by the magnetic field [34]. The model is schematically illustrated in
Figure 2.6(a). The major considerations are as follows:

• At the distance r > r0, two channels are decoupled, and they are respectively denoted
by the open channel |o〉 and the closed channel |c〉. Because the energy of the closed

�Figure 2.6 Feshbach resonance. (a) A schematic of the simplified two-channel model. (b) The magnetic field dependence of the
scattering length and the bound state energy, whereB0 isBres in the text. (c) The first experimental observation of a
Feshbach resonance in 23Na. (a) and (b) are reprinted from Ref. [34], and (c) is reprinted from Ref. [79]. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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channel is much higher than the typical kinetic energy of incoming scattering states of
the open channel, the wave function of low-lying scattering states only exists in the open
channel |o〉, and the low-energy s-wave wave function is given by � = χ/r and

χ = sin(kr + δk)|o〉. (2.47)

• At the distance r < r0, the wave function is diagonalized in the |+〉 and |−〉 bases,
written as

χ = χ+|+〉 + χ−|−〉. (2.48)

Here |±〉 are superposition of |o〉 and |c〉 as

|+〉 = cos θ |o〉 + sin θ |c〉 (2.49)

|−〉 = − sin θ |o〉 + cos θ |c〉. (2.50)

Without loss of generality, we consider θ as spatially independent and quite small.

The wave function in the r < r0 regime can now be written as

χ = (χ+ sin θ + χ− cos θ )|c〉 + (χ+ cos θ − χ− sin θ )|o〉. (2.51)

To match the boundary conditions in r = r0, we obtain

χ+ sin θ + χ− cos θ

∣∣∣∣
r=r0

= 0 (2.52)

χ ′+ cos θ − χ ′− sin θ

χ+ cos θ − χ− sin θ

∣∣∣∣
r=r0

= k

tan δk
≡ − 1

as
. (2.53)

Eq. 2.52 comes from that the closed channel wave function vanishes at r = r0, and Eq.
2.53 determines the phase shift in the open channel scattering wave function. As discussed
in Section 2.1, here we have assumed that both χ± is independent of energy and r0 is a
small value. These two equations give

− 1

as
= χ ′+

χ+

∣∣∣∣
r=r0

cos2 θ + χ ′−
χ−

∣∣∣∣
r=r0

sin2 θ . (2.54)

Since θ is usually quite small, the second term on the r.h.s. of Eq. 2.54 is usually insignif-
icant. In that case, the scattering length is provided by the |+〉 channel only, and we
denote

χ ′+
χ+

∣∣∣∣
r=r0

= − 1

abg
, (2.55)

where abg is called the background scattering length. Now we have

− 1

as
= − 1

abg
cos2 θ + χ ′−

χ−

∣∣∣∣
r=r0

sin2 θ . (2.56)

Again because θ is small, we can approximate cos2 θ ≈ 1 and sin2 θ ≈ θ2, and the second
term can give rise to a significant contribution only when χ ′−/χ−|r=r0 is very large. As we
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will see, this means nothing but a bound state appearing nearby the threshold in the |−〉
channel.

For instance, let us consider the |−〉 channel as a square well with V(r) = −V0 (V0 > 0)
for r < r0, as shown in Figure 2.6(a). In this case, when the energy of the scattering state
can be ignored compared with V0, we have χ− = sin(q1r) and q1 = √

mV0/�2, therefore,

χ ′−
χ−

∣∣∣∣
r=r0

= q1 cos(q1r0)

sin(q1r0)
. (2.57)

If there is a bound state with energy Ec, then the bound state wave function is χ−(r) =
sin(q2r) and q2 = √

m(V0 + Ec)/�2, and to zeroth order of θ , |−〉 channel connects to |c〉
channel at r = r0 and sin(q2r0) = 0. When Ec is small, we can expand q1 around q2 and
obtain

χ ′−
χ−

∣∣∣∣
r=r0

≈ q1

(q1 − q2)r0
≈ 2q2

1

(q2
1 − q2

2)r0
= − 2�

2q2
1

mr0Ec
. (2.58)

In fact, although we derive Eq. 2.58 using a square well potential, it holds for a general
potential that χ ′−/χ−|r=r0 is inversely proportional to Ec. Denoting γ = 2�

2q2
1θ

2/(mr0),
Eq. 2.56 can be rewritten as

1

as
= 1

abg
+ γ

Ec
. (2.59)

Here it is important to note that γ depends on θ , which is the coupling between two
channels. Eq. 2.59 gives

as = abg

(
1 − γ abg

Ec + γ abg

)
. (2.60)

In the presence of a magnetic field, the threshold energies of the open and the closed
channel change as −μoB and −μcB, respectively. In most cases, μ = μo − μc > 0. Ec is
replaced by Ec −μcB+μoB = Ec +μB. Defining 
 = γ abgμ

−1 and Bres = −μ−1Ec −
,
Eq. 2.60 can be rewritten as

as = abg

(
1 − 


B − Bres

)
. (2.61)

This result shows that, usually for μ > 0, as diverges to +∞ when B → Bres from below
and diverges to −∞ when B → Bres from above, as shown in Figure 2.6(b). Bres denotes
the magnetic field for a scattering resonance, which is close to the position with Ec = 0 but
is shifted away by 
. 
 defines the width of a resonance. From Eq. 2.61, one can see that
as = ∞ when B = Bres and as = 0 when B = Bres +
, and the latter is known as the zero
crossing. Thus, 
 measures the distance between the magnetic field for resonant scattering
and the magnetic field for the zero crossing. Figure 2.6(c) shows the first experimental
observation of a Feshbach resonance in 23Na [79]. Later Feshbach resonances are found in
almost all alkali-metal and magnetic atoms, which have become the most important tools
for controlling interaction in ultracold atomic physics.
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Wide versus Narrow Resonance. One can further show that at finite energy,

as(E) = abg

(
1 − μ


μ(B − Bres) − E

)
. (2.62)

Expanding −1/as(E) = −1/as + reffk2/2, with E = �
2k2/m, one obtains the effective

range as

reff = − 2�
2


μmabg(B − Bres − 
)2
≈ − 2�

2

μ
mabg
, (2.63)

where the second approximate equality is valid nearby the resonance. This equation
shows that the effective range depends on 
; that is, it depends on γ or θ . This is a
major difference between the single-scattering channel model discussed in Section 2.1
and the two-channel model discussed here. In the single-channel model, as discussed in
Section 2.1, one can also fine-tune the potential such that there is a bound state at the
threshold, and such a resonance is also called a shape resonance. Usually for an s-wave
shape resonance, reff is usually negligible. But for the two-channel model, depending on
how strong the mixing between the open and the closed channel is, the effective range can
be tuned over a wide range from very small to quite large, and the sign of reff depends on
the sign of abg. That is to say, only when 
 in the Feshbach resonance is large enough
that reff is sufficiently small, a Feshbach resonance in the two-channel model is equivalent
to a shape resonance in a single-channel model. To characterize the role of the effective
range in a many-body system of degenerate Fermi gas, a dimensionless quantity kFreff is
introduced as

kFreff = 4EF

μ
(kFabg)
. (2.64)

If kFreff � 1, we call it a wide resonance, and if kFreff � 1, we call it a narrow resonance.
For a narrow resonance, effectively, the scattering length varies a lot over the energy range
of EF; thus the many-body system cannot be described by a single energy-independent
parameter of the scattering length as. In Chapters 5 and 6, when we discuss the many-
body physics of ultracold Fermi gases across a Feshbach resonance, we focus on the wide
resonances.

Zero-Range Two-Channel Model. In Section 2.2, we have introduced a zero-range model
to describe a single-channel scattering problem. We emphasize that a renormalization con-
dition has to be introduced in order to remove the artificial short-range divergency when
taking the range of potential to zero. Above we have introduced a coupled two-channel
scattering problem, and we have also noted that the two-channel model is not always equiv-
alent to the single-channel model when the energy dependence of the scattering length
has to be taken into account for narrow resonances. Hence, it is desirable to introduce a
zero-range version of the two-channel model, which can describe both the wide and the
narrow Feshbach resonances. As we will see, here we also need to be careful about the
renormalization of the model parameters.

Here, similarly to in Section 2.2, we consider two-component fermions as an example.
To capture the two-channel nature of the problem, we explicitly introduce a bosonic b̂
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field to describe the two-body bound state in the closed channel, which is also called the
molecular state. Now the Hamiltonian is written as

Ĥ =
∑
kσ

�
2k2

2m
�̂kσ �̂kσ +

∑
k

(
�

2k2

4m
+ ν

)
b̂†

kb̂k

+ g

V

∑
k,k1,k2

�̂
†
k
2 +k1,↑

�̂
†
k
2 −k1,↓

�̂ k
2 −k2,↓�̂ k

2 +k2,↑

+ α√
V

∑
k,k1

�̂
†
k
2 +k1,↑

�̂
†
k
2 −k1,↓

b̂k + b̂†
k�̂ k

2 −k1,↓�̂ k
2 +k1,↑ , (2.65)

where �̂†
σ and �̂σ are the creation and annihilation operators for scattering states in the

open channels. The last term denotes the conversion between the open channel scattering
states and the closed channel molecular state, with the strength given by α. Here ν is the
detuning of the molecular state in the closed channel, and g is the bare interaction between
open channel atoms themselves. This model is a zero-range model because both g and α

are chosen as momentum independent. Here, for the reason discussed above, we do not
include the scattering states in the closed channel. To find the renormalization relations
for ν, α, and g, similarly to our calculation done in Section 2.2, we can sum over the
ladder diagrams for the two-channel model to obtain the two-body scattering T-matrix.
The ladder diagram for the two-channel model is shown in Figure 2.3(b), compared with
the ladder diagrams in the single-channel model. Here we obtain the T2 as

T2(E) = g + |α|2
E−ν

1 −
(

g + |α|2
E−ν

)
1
V

∑
k

1
E−�2k2/(m)

. (2.66)

By comparing T2(E = 0) = 4π�
2as/m with as given by Eq. 2.61, we can obtain the

renormalization conditions that

1

g
= m

4π�2abg
− 	, (2.67)

1

α
=

(
1 − 4π�

2abg

m
	

)√
m

4π�2abgμ

, (2.68)

ν = μ(B − Bres) + 	

1 − 4π�2abg
m 	

4π�
2abgμ


m
, (2.69)

where 	 denotes

	 = 1

V

∑
k

1

�2k2/m
. (2.70)

General Schemes of the Feshbach Resonance. From the discussion above, we can
summarize the following three key ingredients in order to support a Feshbach resonance:

• For r > r0, atoms stay in the single-particle eigenstates, and the different quantum
numbers of the single-particle eigenstates define “channels.”
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• The energy spacing between different channels can be tuned by an external parameter.

• The short-range potential at r < r0 does not respect the good quantum number of the
single-particle Hamiltonian and thus mixes different channels.

For the magnetic Feshbach resonance of alkali-metal atoms discussed above, these three
conditions are satisfied as follows:

• The channel is defined in terms of the spin quantum number of a single atom in the
presence of a magnetic field, that is, the eigenstate of both the hyperfine interaction and
the Zeeman field.

• The energy splitting between two channels can therefore be tuned by the Zeeman energy.

• The short-range potential largely depends on the total electron spin of two atoms being
singlet or triplet, which does not conserve the spin quantum number of the single atom.

In the same spirit, we can also have several different types of Feshbach resonance. One
is the optical Feshbach resonance. Here we briefly introduce how the optical Feshbach
resonance satisfies the three ingredients:

• For r > r0, the atoms are labeled by the electronic quantum number of a single atom.
Taking an alkali-metal atom as an example, for the open channel, two atoms are both
in the 2S1/2 ground state, and for the closed channel, one atom is still in the 2S1/2 state
and the other atom is in the excited 2P1/2 state. Here we should note that, although
there presents a laser field, the laser frequency is far detuned from the single-particle
transition, and to very good approximation, the single-particle electronic states are not
affected by the laser when two atoms are far separated.

• In the presence of light, and by rotating wave approximation as discussed in Section 1.3,
the effective energy difference between two channels is the excitation energy subtracted
by the single photon energy. Thus, the energy spacing between two channels can be
tuned by the laser frequency. When the laser frequency is detuned to be resonant with
a bound state energy in the closed channel, the bound state is effectively tuned to the
threshold of the open channel, at which a scattering resonance occurs.

• Since the laser is tuned to be resonant with a bound state in the closed channel, the two
channels are coupled by the laser at the short distance when the molecular wave function
is concentrated.

The optical Feshbach resonances have great advantages that they can provide very fast
temporal control and small spatial resolution control of interactions, because the laser can
be turned on and off much more rapidly than the magnetic field, and the laser intensity
can be varied on the spatial scale of less than 1 μm. However, the disadvantage is that the
excited state (such as 2P1/2 of alkali-metal atoms) usually has finite lifetime due to the
spontaneous emission. The loss, as well as the heating due to the loss, can be quite signif-
icant, preventing the system from reaching equilibrium in the regime nearby a resonance.
In fact, a better stratagem is to combine the optical control with the magnetic Feshbach
resonance, such that one can take the advantages of temporal and spatial control and can
also avoid the heating problem.
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Another example is the orbital Feshbach resonance in alkaline-earth-metal atom, which
has been first theoretically predicted [189] and then experimentally observed in 173Yb
[133, 75] and in 171Yb [18]. As we have seen, the electron spin plays an important role
in the magnetic Feshbach resonance of alkali-metal atoms, because the short-range poten-
tials are labeled by the total electronic spin singlet and triplet. Because the electron spin
of the ground state (1S0) alkaline-earth-metal atom is zero, the short-range potentials do
not have the choice of the total electron spin being singlet or triplet, and therefore, the
mechanism for the magnetic Feshbach resonance in alkali-metal atoms does not hold for
alkaline-earth-metal atoms. Nevertheless, let us recall that in Section 1.1, we have dis-
cussed that alkaline-earth-metal atoms have a long-lived clock state 3P0, and in Section 2.3,
we have discussed the collision between two different nuclear spin states (| ↑〉 and | ↓〉)
of a fermionic alkaline-earth-metal atom, with one in the ground state (1S0 denoted by |g〉)
and the other in the clock state (3P0 denoted by |e〉). In Section 2.3, we focus on the zero
magnetic field limit, and here we consider the presence of finite magnetic field. One crucial
fact is that the nuclear spin Landé g-factor for |e〉 state is slightly larger than that of the |g〉
state [20]. This is because, as we have discussed in Section 1.1, 3P0 state possesses certain
coupling to 3P1 state through the hyperfine coupling, which can be further coupled to 1P1

state. The small but finite coupling to the electronic spin gives rise to a slightly larger g-
factor of 3P0 compared with 1S0 state. With this in mind, let us briefly introduce how these
three conditions can be satisfied in alkaline-earth-metal atoms [191]:

• For r > r0, atoms stay in the single-particle spin eigenstates in the presence of a mag-
netic field. Here, for the open channel, one atom stays in |g ↓〉 and the other atom stays
in |e ↑〉, and the wave function under antisymmetrization reads

|o〉 = 1√
2
(|g ↓〉|e ↑〉 − |e ↑〉|g ↓〉) . (2.71)

For the closed channel, one atom stays in |g ↑〉 and the other atom stays in |e ↓〉, and
the wave function under antisymmetrization reads

|c〉 = 1√
2
(|g ↑〉|e ↓〉 − |e ↓〉|g ↑〉) . (2.72)

• As mentioned above, because the |g〉 state and |e〉 state have slightly different g-factors,
the energy difference between the open and the closed channels can in principle be tuned
by the magnetic field. However, also because this g-factor difference is quite small, the
range of tunability is also rather small. Typically, changing the magnetic field by 1 gauss,
the Zeeman energy between two channels changes about 2π� × 100 Hz. Note that for
alkali-metal atoms, for the same amount of magnetic field, the change of Zeeman energy
between channels is about five orders of magnitude larger. With such limited Zeeman
energy tunability, it is hard to access a bound state with an accessible magnetic field
range in the laboratory. But fortunately, nature is very kind. For both 173Yb and 171Yb
atoms, there exists quite a shallow bound state in the interaction potential, which can be
accessed even with this narrow tunable energy window.

• As we discussed in Section 2.3, for the four states mentioned above, the short-range
potential is diagonal in the bases labeled by |+〉 and |−, 0〉, as shown in Eq. 2.40 and
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Eq. 2.41. Because |+〉 and |−, 0〉 can be written as (|o〉 ± |c〉)/√2, respectively, this
short-range potential mixes the open and the closed channels.

With these three conditions satisfied, a magnetic field–tunable Feshbach resonance can
also be reached in the alkaline-earth-metal atoms. However, the role of electronic spin in
the alkali-metal case is now replaced by the so-called orbital degree of freedom that labels
1S0 and 3P0. To highlight this difference, the new Feshbach resonance is named as the
orbital Feshbach resonance. There is a major physical difference between the magnetic
Feshbach resonance and the orbital Feshbach resonance. In the former, as we repeatedly
emphasized, the energy difference between two channels is much larger than the kinetic
energy such that the closed channel cannot be populated by scattering states. But for the
latter, this energy difference is reduced by five orders of magnitude, and therefore it is
no longer much larger than the kinetic energy. Hence, the so-called closed channel can
be populated by low-energy scattering states in a many-body system, and it is no longer
closed [189]. This difference can manifest significantly in a strongly interacting Fermi gas
nearby these resonances [189, 191].

2.5 Confinement-Induced Resonance

When a strong one- or two-dimensional confinement potential is applied, such a geo-
metric confinement can reduce a three-dimensional system to a quasi-two- or quasi-one-
dimensional one. In this section, we will discuss how to deduce the effective interaction
strength for scattering in lower dimensions, starting from the original three-dimensional
scattering problem with confinement potentials. We will show that the effective interaction
strength in lower dimensions can diverge even when the original s-wave scattering length
in three dimensions is finite. This is known as the confinement-induced resonance [131].

Here, as an example, we consider the quasi-one-dimensional situation; that is, a strong
harmonic trap in the transverse xy plane is applied to a three-dimensional system, and
the system remains uniform along the ẑ direction. Note that the center of mass and rela-
tive motions are still separable with the presence of a harmonic trap, and the Schrödinger
equation for the relative motion between two atoms is written as[

p̂2
z

2m̄
+ p̂2

x + p̂2
y

2m̄
+ m̄ω2⊥(x2 + y2)

2
+ V(r)

]
�(r) = E�(r) (2.73)

where V(r) is the interatomic potential. Similarly to discussion in Section 2.1, when r > r0,
we can ignore the interaction potential, and the wave function is determined by the free
Hamiltonian. Note that the transverse mode has energy (nx + ny + 1)�ω⊥ (nx, ny � 0).
Here we focus on the energy range �ω⊥ < E < 2�ω⊥. In this energy range, if the atoms
are in the lowest transverse mode, they can be in scattering state along the longitudinal
direction. And if atoms are in the transverse excited states, they can only be in the bound
state along the longitudinal direction. Hence, the general form of the wave function can be
written as
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� = (eikzz + feveneikz|z|)ϕ0(x)ϕ0(y) +
∑

nx+ny �=0

αnx,nyϕnx (x)ϕny(y)e−κnxny |z|, (2.74)

where E = �ω⊥ + �
2k2

z /(2m̄) = �ω⊥(nx + ny + 1) − �
2κ2

nxny
/(2m̄). Here feven is the even

parity scattering amplitude, and odd parity scattering amplitude vanishes because of the
requirement of wave function continuity at z = 0. Here ϕn is the eigen-mode of a one-
dimensional harmonic oscillator. Because the second term in the wave function Eq. 2.74
vanishes at large z, the asymptotic form of this scattering wave function is given by the first
term as

�(z, ρ) → (eikzz + feveneikz|z|)ϕ0(x)ϕ0(y). (2.75)

For r < r0, the single-particle energy can be ignored, and the wave function is deter-
mined by the short-range interaction potential. Similarly, for the s-wave channel, we can
match the boundary condition by requiring (r�)′/(r�)

∣∣
r=r0

= −1/as, and for a higher
partial wave channel, we assume the interaction effects are negligible. Nevertheless, the
difficulty here is that the short-range boundary condition is spherical symmetrical but the
wave function Eq. 2.74 is cylindrical symmetrical. After some quite involved calculation
using the frame transformation [187], one finally reaches [131]

feven(kz → 0) = − 1

1 − ikza⊥
2

(
a⊥
as

+ C
) , (2.76)

where a⊥ = √
�/m̄ω and C ≈ −1.46.

Next we consider a real one-dimensional case. We shall also model the one-dimensional
scattering process in terms of a zero-range potential. Unlike the three-dimensional case,
the one-dimensional wave function does not display any singularity when z → 0, and
therefore, a δ-function potential is regular in one dimension. Hence, we write down the
Hamiltonian with δ-function interaction as[

− �
2

2m̄

∂2

∂z2
+ g1dδ(z)

]
�(z) = E�(z). (2.77)

When z �= 0, the wave function of the kinetic energy eigenstate is generally written as

� = eikzz + feveneikz|z|, (2.78)

where E = �
2k2

z /(2m̄). For a δ-function potential, we can use the continuity condition that
� ′(0+) − � ′(0−) = 2m̄g1d�(0)/�2 to determine feven, which gives rise to

ikzfeven = m̄g1d

�2
(1 + feven); (2.79)

that is

feven = − 1

1 − i �2

m̄g1d
kz

. (2.80)

Introducing “one-dimensional scattering length” a1d as

g1d = − �
2

m̄a1d
, (2.81)
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we can write

feven = − 1

1 + ika1d
. (2.82)

To determine the effective one-dimensional interaction scattering length a1d, one
requires that the scattering amplitude feven obtained from the one-dimensional model Eq.
2.82 reproduce feven of Eq. 2.76 obtained from the full three-dimensional calculation with
confinement potential. As we emphasized at the beginning of this chapter, since the ultra-
cold atomic systems are dilute and the typical interatomic separation is much larger than
the range of potential, and the collision energy is also very small compared with the interac-
tion potential, the interaction mostly manifests in the asymptotic wave function. Therefore,
if these two situations give the same asymptotic wave functions, we consider this g1d as
a faithful representation of the interaction in the reduced dimension. Hence, by matching
Eq. 2.82 with Eq. 2.76, we obtain

a1d

a⊥
= −1

2

(
a⊥
as

+ C
)

. (2.83)

This shows that when a⊥/as = −C, a1d = 0 and g1d diverges, which is known as the
confinement-induced resonance [131].

Although the discussion of the confinement-induced resonance appears quite different
from the discussion of Feshbach resonance in Section 2.4, it can be essentially understood
in the same way as a Feshbach resonance [17]. In Section 2.4, we established three points as
the key ingredients for a Feshbach resonance, and here we can show that the confinement-
induced resonance can also be understood in terms of these three points.

• When two atoms are separated, atoms stay in the single-particle eigenstates. Here we
use different eigenstates in the transverse direction to label “channels.” For the open
channel, both atoms are in the transverse ground state. For the closed channel, atoms are
in the transverse excited states

• The energy difference between the open and the closed channels is given by the
transverse confinement energy and can be tuned by the external confinement potential.

• The single-particle eigenstate has cylindrical symmetry, but the short-range potential has
spherical symmetry. The incompatibility of two symmetries naturally leads to coupling
between channels.

With this understanding, resonance occurs when a bound state in the closed channel
matches the scattering threshold of an open channel. Here, the energy offset between the
closed channel and the open channel is typically �ω = 2�

2/(ma2⊥), and the bound state
energy in three dimensions is estimated by −�

2/(ma2
s ). Thus, the resonance condition can

be roughly estimated as

�ω − �
2

ma2
s

= 0, (2.84)

which leads to
a⊥
as

= √
2. (2.85)
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This is not that different from the exact results in Eq. 2.83 where
√

2 is replaced by 1.46 . . . .
A similar argument can be applied to confinement into quasi two dimensions, or mixed
dimensions. Here mixed dimensions means that one atom is confined to the d1 dimension
and the other atom is confined to the d2 dimension, where both d1 and d2 can take a value
between 0 and 3.5

2.6 Efimov Effect

In the above sections, we discussed different methods, as well as a general framework,
to tune the two-body interaction potential to a scattering resonance. A quantum many-
body system with such a resonant interaction potential has many intriguing properties, as
we will discuss in Chapter 5 and Chapter 6. Here, before studying many-body physics,
we first study a manifestation of resonant interaction in a three-body system. This prob-
lem can be generally solved by a so-called hyper-spherical coordinate approach [21, 22],
but the calculation is quite involved. Here, to illustrate the essential physics, we take a
simpler case of one light atom interacting with two heavy atoms, and we can utilize the
Born–Oppenheimer approximation to simplify the calculation [141].

Born–Oppenheimer Approximation. First of all, we fix the positions of two heavy atoms
with mass M at R/2 and −R/2, respectively, and study the motion of the light atom with
mass m in the presence of these two heavy atoms. The Hamiltonian for the light atom
therefore reads

Ĥ = −�
2∇2

2m
+ 2π�

2as

m
δ(R+)

∂

∂|R+| |R+| + 2π�
2as

m
δ(R−)

∂

∂|R−| |R−|, (2.86)

where R± = r ± R/2, and we take m � M such that the reduced mass is simplified
as m. In the regime r �= ±R/2, let us consider the following three requirements: (i) the
wave function should be an eigenstate of the kinetic operator; (ii) we consider that the light
atom forms a bound state around both the two heavy atoms; and (iii) the wave function is
symmetric or antisymmetric with respect to exchanging R+ and R−. Thus, we can write
down the wave function as

�±(r) ∝ exp{−κ|R+|}
|R+| ± exp{−κ|R−|}

|R−| , (2.87)

where κ is real and positive. The energy of this wave function is −�
2κ2/(2m).

Expanding the wave function around either |R+| or |R−| yields

�± ∝ 1

|R±| − κ ± e−κR

R
+ . . . , (2.88)

5 The exceptions are that they cannot both be 0 where no scattering state can be defined, and they cannot both be
3 when no confinement is applied at all.
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62 Two-Body Interaction

where R = |R|, and the pseudo-potential requires the short-range behavior of the wave
function to be

�± ∝ 1

|R±| − 1

as
. (2.89)

Thus, it leads to

κ ∓ e−κR

R
= 1

as
. (2.90)

Clearly, the term with a plus sign in the l.h.s. of Eq. 2.90 has no solution for negative and
infinite as. So we consider the equation with a minus sign, resulting from the symmetric
wave function in Eq. 2.87. The solution in general has the form

κ = 1

R
f

(
R

as

)
, (2.91)

where f (y) is the solution to the equation x − e−x = y. One can see that at unitarity with
as = ∞ and y = 0, f (0) is a constant. Therefore, κ ∼ 1/R, and the energy is proportional
to −�

2/(mR2).

Continuous and Discrete Scaling Symmetry. With the help of the Born–Oppenheimer
approximation, we have found that, at two-body resonance, the light atom induces an effec-
tive potential ∼ −�

2/(mR2) between two heavy atoms. Then, the Schrödinger equation for
two heavy atoms is given by (

−�
2∇2

R

M
− �

2c2
0

mR2

)
� = E�, (2.92)

where c2
0 is a constant. The most important feature of this equation is that the interaction

energy scales the same way as the kinetic energy under a scaling transformation R → λR.
Therefore, it looks as though, by applying this scale transformation, if E is an eigenenergy,
E/λ2 is also an eigenenergy. This works for any λ, which is known as the continuous
scaling symmetry. However, if this is true, that also implies that the energy spectrum of
this Hamiltonian is not bound from below. Hence, we need to apply an extra short-range
cutoff to bound the spectrum from below. This short-range boundary condition can be a
nonuniversal one depending on short-range details. And the fact that an extra nonuniversal
high-energy cutoff is required also means that a theory with zero-range interaction potential
is not renormalizable in this case.

Here we explicitly show how the extra short-range boundary condition affects the scaling
symmetry. Since here we are interested in a three-body bound state, and since above we
have considered that the light atom already forms a bound state with both heavy atoms,
we now need only consider the bound state solution between these two heavy atoms. In
the spherical coordinate of R, we write �(R) = χ (R)/R, as we now only consider the s-
wave solution when two heavy atoms are bosons or distinguish particles. The Schrödinger
equation for χ (R) is written as[

−�
2

M

d2

dR2
− �

2c2
0

mR2

]
χ = Eχ . (2.93)
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63 Efimov Effect

Now we consider a zero-energy solution, or alternatively speaking, we consider the wave
function at a distance when E � 1/R2. Because of the scaling symmetry, we can assume
χ = Rs, and by setting E = 0, Eq. 2.93 gives

s(s − 1) + c2
0M

m
= 0. (2.94)

This leads to s = 1/2 ± is0, where s0 =
√

c2
0M
m − 1

4 , and we consider M � m such that s0

is always real. Thus, the two independent solutions can be written as

χ± = √
RR±is0 = √

Re±is0 ln R. (2.95)

Each of χ± is still invariant under a continuous scaling transformation, but because of
the short-range boundary condition, the general wave function should be a superposition
of both χ+ and χ− to satisfy the boundary condition. Note that the two solutions can
also be written as

√
R cos(s0 ln R) and

√
R sin(s0 ln R), and so a general solution can be

constructed as

χ (R) = √
R cos(s0 ln R + θ ), (2.96)

where θ should be determined by the short-range boundary condition. Clearly the wave
function Eq. 2.96 is no longer invariant under a continuous scaling transformation, but if
the scaling factor λ = eπn/s0 , where n is an integer, the wave function is still invariant.
This is known as the discrete scaling symmetry, because the scaling factor can only take
values in a set of discrete numbers. Under the discrete scaling transformation, the energy
becomes E → Ee−2π/s0 . That is to say, if E0 denotes the lowest-energy bound state, and
En denotes the nth bound state counting from below, then there is an infinite number of
bound states, and their binding energies satisfy

En = En−1e−2π/s0 . (2.97)

Note that the solutions are actually the binding energies of the three-atom bound state,
which means that the three-body bound state energies obey a geometric sequence. This
result was first obtained by Efimov from solving the problem of three identical bosons
nearby a two-body resonance and thus is named the Efimov effect. The Efimov effect in
a three-body system was first experimentally found in cold 133Cs gas of identical bosons
[94], and later was also found between two bosons and a third distinguishable atom, or three
distinguishable atoms [21, 22]. The discrete scaling symmetry has also been confirmed
experimentally [176, 143].

Here we highlight that, from the symmetry perspective, the defining property of the Efi-
mov effect is the discrete scaling symmetry with a universal scaling factor, which resulted
from a Hamiltonian with continuous scaling symmetry plus a nonuniversal short-range
boundary condition. We emphasize that this defining property has at least two nontrivial
points:

• In many cases, a short-range boundary condition completely breaks the continuous scal-
ing symmetry, but in this case, it still leaves a discrete scaling symmetry. Mathematically,
it happens when Eq. 2.94 for s has a pair of conjugate solutions.
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64 Two-Body Interaction

• Although the short-range boundary condition is nonuniversal, the scaling factor is actu-
ally universal. In this case, one can see that although θ is a nonuniversal value depending
on the details of the short-range boundary condition, and the exact value of the low-
est binding energy E0 is also nonuniversal, the scaling factor eπ/s0 is a constant only
depending on the mass ratio and does not depend on the short-range details.

This definition of the Efimov effect from the symmetry perspective allows one to gener-
alize this effect beyond few-body physics and to find more intriguing manifestations of
this effect in many-body systems. One such example is the quantum many-body expan-
sion dynamics of a scaling-invariant quantum gas in a specially designed expanding
harmonic trap, which follows the same symmetry definition and is named the Efimovian
expansion [48].

Finally, let us briefly discuss how these three-body bound states behave when the inter-
action is tuned away from the resonance. It turns out that when as is negative, the effective
attraction is weaker than ∼ −1/R2 at large distance, which first affects these shallow bound
states whose wave functions are more extended and have more weight on the long-range
part. The energies of these bound states will increase as the interaction is tuned away
from the resonance to the negative side, and they will in turn merge into the three-body
continuum, as shown in Figure 2.7. When one of the three-body bound states meets the
three-body threshold, it yields a three-body scattering resonance. When as is positive, the
effective attraction is deeper than ∼ −1/R2. However, on this side, there also exists a two-
body bound state, and as we have discussed in Section 2.1, the dimer energy is −�

2/(ma2
s ).

Hence, the atom-dimer threshold energy is −�
2/(ma2

s ). It turns out that the increasing of
the three-body binding energy is slower than the increasing of the two-body binding energy

�Figure 2.7 Three-body Efimov effect. The energy of three-body bound state of spinless bosons as a function of two-body
scattering length as (a in the figure). The three-atom threshold is alwaysE = 0. The atom-dimer threshold
behaves as−�

2/(ma2
s ) in the positive as side. Three typical spectrum lines for the three-body bound state energy

are shown. At resonance when 1/as = 0, the binding energies form a geometric sequence. Two arrows label
examples of three-atom scattering resonance and atom-dimer scattering resonance, respectively. Reprinted from Ref.
[55]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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as 1/as increases; therefore, the three-body bound state will in turn merge into the atom-
dimer continuum when the interaction is tuned away from the resonance to the positive
side, as also shown in Figure 2.7. When one of the three-body bound states meets the
atom-dimer threshold, it yields an atom-dimer scattering resonance. Both the three-atom
resonance and the atom-dimer resonance will manifest in the loss rate of atoms, which can
be experimentally measured as evidence of the Efimov effect [94, 176, 143].

2.7 From Few to Many

In this chapter, we have discussed two- and three-body problems. In the next chapter, we
will start to discuss many-body physics in ultracold atomic gases. Here we would like
to point out that there are many connections between few- and many-body problems in
ultracold atomic physics. First of all, few-body problems help us to build up the right
model for many-body physics, as we have discussed in Section 2.2 and Section 2.4. Second,
few-body problems help us to locate the parameter regimes where the many-body physics
can be interesting. We discussed in Section 2.4 and Section 2.5 how to tune the elastic
scattering to be very strong. In addition, there is another important aspect that we do not
discuss in this book, which is about the inelastic part of the scattering process. The inelastic
part of the scattering process leads to atom loss. A strong inelastic scattering can lead to
strong loss and, therefore, a short lifetime of the many-body system. Hence, in order that
intriguing many-body physics takes place, we not only require the elastic scattering to be
strong enough but also require the inelastic scattering not to be too strong. We need the
solutions of the few-body problem to help us locate such regimes.

Third, few-body problems provide an alternative way to analyze correlations in a quan-
tum many-body system. Generally speaking, there are two different approaches to studying
many-body corrections, which are known as the top-down approach and the bottom-up
approach. Here the top-down means starting from large-scale, long-wave length, or low-
energy structures. Various kinds of mean-field theories that we will discuss in the next
chapter belong to the top-down approach. In contrast, the bottom-up approach means
understanding correlations in a many-body system from its microscopic building blocks,
that is to say, from two-body, three-body, and then gradually adding more particles. The
advances in ultracold atomic experiments allow us to control atom number very precisely,
which makes this approach even experimentally possible. In experiments, one can observe
how the many-body correlation gradually builds up by adding to the atom number one by
one [197]. Theoretically, one systematic method to carry out this bottom-up approach is in
fact the high-temperature expansion. This expansion uses the fugacity as a small parame-
ter, and therefore it also works in the resonance when the interaction is very strong. Below
we will briefly discuss this approach.

We consider the partition function Z at high temperature. At high temperature, μ is
very negative and the fugacity z = eμ/(kBT) is very small. Hence we can use z as a small
parameter to expand Z as
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66 Two-Body Interaction

Z = Tre−(H−μN)/(kBT) = 1 + z
∑
n1

e−En1/(kBT) + z2
∑
n2

e−En2/(kBT) + . . . , (2.98)

where we have taken the N = 1 in the second term of Eq. 2.98 and n1 denotes quantum
numbers of all single-particle eigenstates, and N = 2 for the third term in Eq. 2.98 and n2

denotes the quantum numbers of all two-particle eigenstates. For a uniform system,

∑
n1

e−En1/(kBT) =
∑

k

e−�
2k2/(2mkBT) = V

(
mkBT

2π�2

)3/2

= V

λ3
, (2.99)

where λ = √
2π�2/(mkBT) is the thermal de Broglie wavelength. En2 contains the center-

of-mass motion K2/(4m) and the relative motion with eigenenergies denoted by εrel. Since
the center-of-mass and relative coordinates are separable, we have

∑
n2

e−En2/(kBT) = V

(√
2

λ

)3 ∑
εrel

e−εrel/(kBT). (2.100)

Thus, the solution of the two-body problem allows us to obtain the partition function to
the order of z2. Furthermore, with the solutions of the three-body problem, we can obtain
information on the partition function up to z3, and this expansion can be systematically
carried on. Here, for simplicity, we only consider the z2 order.

Up to the z2 order, we can therefore rewrite the partition function as

Z = Z0 + Vz2

(√
2

λ

)3

b2, (2.101)

where Z0 is the partition function in the absence of interactions, and

b2 =
∑
εrel

(
e−εrel/(kBT) − e−ε0

rel/(kBT)
)

. (2.102)

Here b2 is called the second virial coefficient, and ε0
rel is the eigenstate for relative motion in

the absence of interactions. Below we shall discuss how to compute b2 with the knowledge
of two-body problem discussed in Section 2.1 [86].

For the reason we discussed in Section 2.1, we ignore the interaction effect in all high
partial wave channels and only consider the interaction effect in the s-wave channel. Note
that b2 can be rewritten as

b2 =
∑
nb

e−Enb/(kBT) +
∫ +∞

0
dk(g(k) − g0(k))e−�

2k2/(mkBT), (2.103)

where the first contribution comes from bound states due to interactions and Enb denotes
binding energies, and the second contribution comes from all scattering states in the s-wave
channel; g(k)dk and g0(k)dk denote the number of eigenstates with wave vector between
k and k + dk for interacting systems and noninteracting systems, respectively. As we have
shown in Section 2.1, the wave function for the relative motion between two particles in
the s-wave channel can be written as

� = sin(kr + δk)

r
. (2.104)
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Considering a spherical box with radius size R, the wave function has to satisfy the
boundary condition at r = R, which yields

kR + δk = sπ , (2.105)

where s is an integer. Eq. 2.105 gives(
R + dδk

dk

)

k = π
s. (2.106)

The number of eigenstates increases by 1 when 
s increases by 1, which requires 
k
increasing by


k = π

R + dδk
dk

. (2.107)

Thus, we have

g(k)dk = 1

π

(
R + dδk

dk

)
dk, (2.108)

and for the noninteracting case, g0(k)dk = Rdk/π . Therefore, b2 can be written as

b2 =
∑
nb

e−Enb/(kBT) + 1

π

∫ ∞

0

dδk

dk
e−�

2k2/(mkBT)dk. (2.109)

Using tan δk = −kas, one can obtain∫ ∞

0

dδk

dk
e−�

2k2/(mkBT)dk = −sgn(as)
∫ ∞

0

|as|
(k|as|)2 + 1

e−�
2k2/(mkBT)dk

= −sgn(as)
π

2
Erfc[α]eα

2
, (2.110)

where sgn is the sign function, Erfc is the complementary error function, and α =
λ/(

√
2π |as|). Hence, if one excludes the contribution from the bound state,

b2 = −sgn(as)
1

2
Erfc[α]eα

2
. (2.111)

As shown in Figure 2.8(a), b2 decreases from zero to −1/2 if as increases from zero to
positive infinite and increases from zero to 1/2 if as decreases from zero to negative infi-
nite. This jump of unity at resonance can be exactly compensated by a zero-energy bound
state contribution. Including the contribution from the bound state, b2 becomes a smooth
function when as changes from negative infinite to positive infinite, and b2 monotonically
increases as −λ/as decreases.

With the help of the partition function, one can show that the total energy can be deduced
as [72]

E = 3nkBT

2

(
1 + nλ3

27/2

)
+ Eint = Ekin + Eint (2.112)

and

Eint = 3nkBT

2
(nλ3)

[
− b2√

2
+

√
2

3
T
∂b2

∂T

]
, (2.113)
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�Figure 2.8 High-temperature expansion. (a) The second virial coefficient b2 as a function of−λ/as. For positive as, the positive
b2 branch includes the contribution from the shallow bound state and smoothly connects to the negativeas side, and
the negative b2 branch excludes the contribution from the shallow bound state. (b–c) The interaction energyEint in
units ofE0 = 3nkBT(nλ3)/2 as a function of−λ/as (b) with and (c) without the bound state contribution.

where n is the density of the system. With b2, one can straightforwardly obtain the inter-
action energy with or without the contribution from the bound state, as shown in Figures
2.8(b) and (c), respectively. One can see that, including the bound state contribution, the
interaction energy is always negative, consistent with the fact that the underlying potential
is attractive. For positive scattering length, when the bound state contribution is excluded,
the interaction energy is positive, which is called the upper branch. When the bound
state contribution is included, the interaction energy is negative, which is called the lower
branch. We will come back to revisit this physics in the discussion of polarons in Section
5.2. When the bound state contribution is excluded, one can see that the interaction energy
becomes small when as is small, consistent with our discussion in Section 2.1 that the
amplitude of as characterizes interaction strength when |as| is small. One can also see that
the interaction energy remains finite even when as is infinite at resonance, and the inter-
action energy becomes proportional to the thermal kinetic energy at resonance. That the
interaction energy scales the kinetic energy characterizes strong interaction effects, as we
will discuss again in Chapter 6.

Exercises

2.1 Calculate the scattering length for a three-dimensional square well interaction poten-
tial V(r) = 0 for r > r0, V(r) = −V0 for r0 > r > 0 with V0 > 0, and V(r) = ∞
for r = 0. Discuss how the scattering length changes as a function of V0, and discuss
when the binding energy satisfies the relation E = −�

2/(2m̄a2
s ).

2.2 Calculate the scattering length for a three-dimensional hard core potential V(r) = 0
for r > r0, V(r) = V0 for r0 > r > 0 with V0 > 0, and V(r) = ∞ for r = 0. Discuss
how the scattering length changes as a function of V0 and the difference from the
square well potential above.

2.3 Show that for a finite range interaction V(r) � 0 for r > r0, the phase shift for the lth
partial wave δl ∝ k2l+1.
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2.4 Show that the bound state wave function � = χ/r with χ given by Eq. 2.12 also
satisfies the Schrödinger equation 2.18 with V(r) given by δ(r)Ô(r) and Ô(r) given
by Eq. 2.21.

2.5 Analytically show that

1

V

∑
p

(
1

E − �2p2/m + i0+ + 1

�2p2/m

)
= − ikm

4π�2
, (2.114)

where k = √
mE/�2.

2.6 Derive the general interaction form between two spin-2 atoms.
2.7 Show Eq. 2.62 for a finite energy scattering state using the simplified two-channel

model discussed in this chapter.
2.8 (1) Show that the two-body T-matrix for the two-channel model is given by Eq.

2.66, following the same method of summing up the ladder diagram shown in
Figure 2.3(b). (2) Verify the normalization conditions of Eq. 2.67–2.69 by comparing
the two-body T-matrix (Eq. 2.66) with T2(E = 0) = 4π�

2as/m and as given by Eq.
2.61.

2.9 Use a variational wave function to show that the lowest eigenenergy of the Hamilto-
nian Eq. 2.92 is not bound from below if no short-range cutoff is imposed.

2.10 With the help of Eq. 2.90, discuss the effective three-body interaction potential when
as is away from infinite.

2.11 Compute the chemical potential and the pressure up to z2 order by using the high-
temperature expansion.
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