NIL SUBRINGS OF GOLDIE RINGS ARE NILPOTENT

CHARLES LANSKI

Herstein and Small have shown (1) that nil rings which satisfy certain chain conditions are nilpotent. In particular, this is true for nil (left) Goldie rings. The result obtained here is a generalization of their result to the case of any nil subring of a Goldie ring.

Definition. L is a left annihilator in the ring R if there exists a subset $S \subset R$ with $L = \{x \in R | xS = 0\}$. In this case we write L = l(S). A right annihilator K = r(S) is defined similarly.

Definition. A ring R satisfies the ascending chain condition on left annihilators if any ascending chain of left annihilators terminates at some point. We recall the well-known fact that this condition is inherited by subrings.

Definition. R is a Goldie ring if R has no infinite direct sum of left ideals and has the ascending chain condition on left annihilators.

LEMMA 1 (1, Lemma 2). Let N be a non-zero nil ring satisfying the ascending chain condition on left annihilators. Then $r(N) \neq (0)$.

LEMMA 2. Let R satisfy the ascending chain condition on left annihilators, and suppose that r(S) is a two-sided ideal of R. Then R/r(S) has the ascending chain condition on left annihilators.

Proof. It is trivial that the inverse image of a right annihilator in R/r(S) is a right annihilator in R. Now proceed as in (1, Lemma 3).

LEMMA 3. Let R be a Goldie ring and S a nil subring of R. Then there exists a positive integer k with $r(R)S^k = (0)$.

Proof. We need modify only slightly the proof of (1, Theorem 3). Let A = r(R). A is a two-sided ideal of R and any additive subgroup of A is a left ideal of R. Let T be the torsion part of A and consider, for a prime p, the p-primary component T_p . Let $V_1 = \{x \in T_p | px = 0\}$. Then V_1 is a vector space over P, the field of P elements. Since R is a Goldie ring, V_1 is finite-dimensional over P. Let $V_i = \{x \in T_p | p^i x = 0\}$. Then it can easily be shown that V_i/V_{i-1} is a finite-dimensional vector space over P. As each V_i is a right ideal of R, V_i/V_{i-1} is a right R module, hence a right S module. S induces a finite nil ring of linear transformations on V_i/V_{i-1} . It follows that

Received January 23, 1968.

 $V_i S^{m_i} = (0)$, where $m_i = n_1 + n_2 + \ldots + n_i$. By the ascending chain condition on left annihilators in R, there exists an integer k such that if $xS^m = (0)$, then $xS^k = (0)$. Thus, we have $V_i S^k = (0)$ for each i. Since every element of T_p is in some V_i , we have $T_p S^k = (0)$. Clearly, $TS^k = (0)$.

Let $\overline{R} = R/T$ and $\overline{A} = A/T$. \overline{A} is torsion free. Let $\overline{V} = \overline{A} \otimes_{\mathbb{Z}} Q$, where Z is the ring of integers and Q is the field of rational numbers. As R is a Goldie ring, \overline{V} is a finite-dimensional vector space over Q. Now $\overline{S} = (S + T)/T$ induces linear transformations on \overline{V} via $(\overline{a} \otimes q)t_{\overline{s}} = \overline{a}\overline{s} \otimes q$. The homomorphism $\overline{s} \to t_{\overline{s}}$ has kernel exactly $r(\overline{A}) \cap \overline{S}$. Thus, $\overline{S}/r(\overline{A}) \cap \overline{S}$ is a nil ring of $n \times n$ matrices over Q, where $n = \dim_{Q}\overline{V}$. It follows that $\overline{S}/r(\overline{A}) \cap \overline{S}$ is nilpotent. Hence $\overline{S}^{m} \subset r(\overline{A}) \cap \overline{S} \subset r(\overline{A})$ for some m, thus $\overline{A}(\overline{S})^{m} = (\overline{0})$ and $AS^{m} \subset T$. Since $TS^{k} = (0)$, we obtain $AS^{m}S^{k} = (0)$ which yields $AS^{m+k} = (0)$. By the choice of k, we obtain $AS^{k} = (0)$.

Consider the ring S generated by elements $x_1, x_2, \ldots, x_n, \ldots$ with the relations $x_i x_j = 0$ for $i \ge j$. It is easy to show that S is a nil ring with the ascending chain condition on left annihilators, and that S is not nilpotent.

LEMMA 4. Let R be a Goldie ring. Then R has no subring isomorphic to the ring S defined above.

Proof. Assume that *R* has *S* as a subring. Let $s_n = \prod_{i=1}^n x_i$. Then $s_n \neq 0$ and $l(s_1) \subset l(s_2) \subset \ldots$. As *R* is a Goldie ring, there is an integer *k* with $l(s_k) = l(s_m)$ for all $m \geq k$. Furthermore, $Rs_n \neq (0)$ for any *n*. For if $Rs_n = (0)$, then by Lemma 3, $s_n S^p = 0$ for some *p*. But then $s_{n+p} = 0$, contradicting $s_i \neq 0$ for all *i*. Now consider $Rs_k + Rs_{k+1} + \ldots$. This sum is not direct, as *R* is a Goldie ring. Hence

$$\sum_{i=1}^n r_{j_i} s_{k+j_i} = 0$$

where $r_{j_i}s_{k+j_i} \neq 0$ for all *i*, and $0 \leq j_i < j_m$ for i < m. It follows that

$$\sum_{i=1}^{n} r_{j_i} S_{k+j_i} x_{k+j_{1}+1} = 0.$$

This implies that $r_{j_1}s_{k+j_1+1} = 0$. But then $r_{j_1} \in l(s_{k+j_1+1}) = l(s_{k+j_1})$, which yields $r_{j_1}s_{k+j_1} = 0$, contradicting our assumption. Hence *R* has no subring isomorphic to *S*.

In all that follows, let K be a nil ring with the ascending chain condition on left annihilators, and further assume that for any j, $l(K^{j}) = (0)$.

LEMMA 5. Let A be a non-zero two-sided ideal of K. Then K/r(A) is a non-zero nil ring with the ascending chain condition on left annihilators.

Proof. Use Lemmas 1 and 2.

LEMMA 6. There exist ideals $A_1, A_2, \ldots, A_n, \ldots$ in K with the properties: (1) $A_1A_2 \ldots A_k \neq (0)$ for all k, (2) $A_1A_2 \ldots A_kA_n = (0)$ if $n \leq k$.

CHARLES LANSKI

Proof. We construct the A_i by induction. Let $A_1 = r(K)$. Assume that we have A_1, A_2, \ldots, A_k , where $A_i = r(A_1A_2 \ldots A_{i-1}K)$ if i > 1, and $A_1A_2 \ldots A_k \neq (0)$. By Lemma 5, $K/r(A_1A_2 \ldots A_k) = \overline{K}$ is a non-zero, nil ring and satisfies the ascending chain condition on left annihilators. Hence, by Lemma 1 there exists an ideal $\overline{T} \neq (\overline{0})$ in \overline{K} with $\overline{KT} = (\overline{0})$. Let T be the inverse image of \overline{T} in K. Then $A_1A_2 \ldots A_kT \neq (0)$, but $A_1A_2 \ldots A_kKT = (0)$. Hence, $A_1A_2 \ldots A_kr(A_1A_2 \ldots A_kK) \neq (0)$. Let $r(A_1A_2 \ldots A_kK) = A_{k+1}$. Now as $A_1 = r(K), A_1A_2 \ldots A_kA_1 = (0)$. For $1 < n \leq k, A_1A_2 \ldots A_k \subset A_1A_2 \ldots A_{n-1}K$. But then $A_1A_2 \ldots A_kA_n \subset A_1A_2 \ldots A_{n-1}KA_n = (0)$ by definition of A_n .

LEMMA 7. There exist elements $x_1, x_2, \ldots, x_n, \ldots$ in K such that (1) $\prod_{j=1}^{k} x_j = s_k \neq 0$, (2) $s_k x_n = 0$ for $n \leq k$.

Proof. Let $\{A_i\}$ be the ideals of Lemma 6. For any A_i we have

 $l(A_j) \subset l(A_jA_{j+1}) \subset l(A_jA_{j+1}A_{j+2}) \subset \dots$

As *K* has the ascending chain condition on left annihilators, there must exist an integer *p* with $l(A_jA_{j+1}...A_p)$ maximal in the above ascending chain. Suppose that we have elements $x_i \in A_i$ for $i \leq k$ such that

$$x_1x_2\ldots x_k = s_k \notin l(A_{k+1}A_{k+2}\ldots A_{k+n})$$

for any *n*. If for each $y \in A_{k+1}$ we have $s_k y \in l(A_{k+2}A_{k+3} \dots A_{k+n(y)})$, then $s_k y \in l(A_{k+2}A_{k+3} \dots A_p)$ for some *p* independent of *y*. Hence,

$$s_k A_{k+1} \subset l(A_{k+2} A_{k+3} \ldots A_p),$$

and therefore $s_k \in l(A_{k+1}A_{k+2}...A_p)$, contradicting $s_k \notin l(A_{k+1}A_{k+2}...A_{k+n})$ for any *n*. Thus, there exists $x_{k+1} \in A_{k+1}$ with

$$s_k x_{k+1} = s_{k+1} \notin l(A_{k+2}A_{k+3} \dots A_{k+n})$$

for any *n*. As $s_{k+1} \notin l(A_{k+2})$ for all *k*, we have $s_k \neq 0$. This proves the first part of the lemma. The second part follows immediately from our construction and the second part of Lemma 6.

Let us return to the situation where N is a nil subring of a Goldie ring R. If it happens that $l(N^j) = (0)$ for all j, then using Lemmas 7 and 4 we would arrive at a contradiction. Hence, $l(N^j) \neq (0)$ for some j. Now as R is a Goldie ring, the ascending sequence $l(N) \subset l(N^2) \subset l(N^3) \subset \ldots$ must terminate at some point, say at k_0 . Consider $\overline{N} = N/l(N^{k_0})$. If N is not nilpotent, \overline{N} is a non-zero nil ring with ascending chain condition on left annihilators, by Lemma 2. Further, \overline{N} has the property that $l(\overline{N}^j) = (\overline{0})$ for all j. For suppose that $l(\overline{N}^j) \neq (\overline{0})$. Let S be the inverse image of $l(\overline{N}^j)$ in N. Then $SN^j \subset l(N^{k_0})$, which implies that $SN^jN^{k_0} = SN^{j+k_0} = (0)$. However, $l(N^{k_0}) = l(N^{j+k_0})$. Thus $SN^{k_0} = (0)$ and $\overline{S} = l(\overline{N}^j) = (\overline{0})$.

906

Therefore we can apply Lemma 7 to \overline{N} to obtain elements $\overline{x}_i \in \overline{N}$ with $\overline{x}_1 \overline{x}_2 \dots \overline{x}_k \neq \overline{0}$ but $\overline{x}_1 \overline{x}_2 \dots \overline{x}_k \overline{x}_n = \overline{0}$ for $n \leq k$. Let x_i be an inverse image of \overline{x}_i . Then we have $x_1 x_2 \dots x_k \neq 0$, and for $n \leq k, x_1 x_2 \dots x_k x_n \in l(N^{k_0})$. We have proved the following lemma.

LEMMA 8. Let N be a nil ring with the ascending chain condition on left annihilators which is not nilpotent. Let k_0 be the integer at which $l(N) \subset l(N^2) \subset l(N^3) \subset \ldots$ terminates. Then there exist elements $x_1, x_2, \ldots, x_k, \ldots$ in N such that

- (1) $x_1x_2\ldots x_k \neq 0$ for all k,
- (2) $x_1x_2...x_kx_nx_{n+1}...x_{n+k_0} = 0$ if $n \leq k$.

THEOREM 1. Let R be a Goldie ring and N a proper nil subring. Then N is nilpotent.

Proof. Assume that N is not nilpotent. Let $x_1, x_2, \ldots, x_n, \ldots$ be the elements of Lemma 8. The proof now follows that of Lemma 4. If $s_k = x_1x_2 \ldots x_k$ we again have $Rs_k \neq (0)$ and an integer k with $l(s_k) = l(s_m)$ for $k \leq m$. As before we obtain

$$\sum_{i=1}^{n} r_{j_i} s_{k+j_i} = 0.$$

Now multiply this sum by $x_{k+j_1+1}x_{k+j_1+2}...x_{k+j_1+k_0+1}$ on the right and proceed as in the lemma. The contradiction which arises forces us to conclude that N is nilpotent.

Reference

1. I. N. Herstein and Lance Small, Nil rings satisfying certain chain conditions, Can. J. Math. 16 (1964), 771-776.

University of Chicago, Chicago, Illinois