
NIL SUBRINGS OF GOLDIE RINGS ARE NILPOTENT 
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Herstein and Small have shown (1) that nil rings which satisfy certain chain 
conditions are nilpotent. In particular, this is true for nil (left) Goldie rings. 
The result obtained here is a generalization of their result to the case of any nil 
subring of a Goldie ring. 

Definition. L is a left annihilator in the ring R if there exists a subset S Q R 
with L = {x £ R\ xS = 0}. In this case we write L = l(S). A right annihilator 
K = r(S) is defined similarly. 

Definition. A ring R satisfies the ascending chain condition on left annihilators 
if any ascending chain of left annihilators terminates at some point. We recall 
the well-known fact that this condition is inherited by subrings. 

Definition. R is a Goldie ring if R has no infinite direct sum of left ideals and 
has the ascending chain condition on left annihilators. 

LEMMA 1 (1, Lemma 2). Let N be a non-zero nil ring satisfying the ascending 
chain condition on left annihilators. Then r{N) 5^(0). 

LEMMA 2. Let R satisfy the ascending chain condition on left annihilators, and 
suppose that r(S) is a two-sided ideal of R. Then R/r(S) has the ascending chain 
condition on left annihilators. 

Proof. I t is trivial that the inverse image of a right annihilator in R/r(S) is a 
right annihilator in R. Now proceed as in (1, Lemma 3). 

LEMMA 3. Let Rbe a Goldie ring and S a nil subring of R. Then there exists a 
positive integer k with r(R)Sk = (0). 

Proof. We need modify only slightly the proof of (1, Theorem 3). Let 
A = r(R). A is a two-sided ideal of R and any additive subgroup of A is a left 
ideal of R. Let T be the torsion part of A and consider, for a prime p, the 
^-primary component Tv. Let Vi = {x £ Tp\ px = 0}. Then Vi is a vector 
space over P , the field of P elements. Since R is a Goldie ring, Vi is finite-
dimensional over P. Let Vt = {x f TP\ plx = 0}. Then it can easily be shown 
that Vi/Vf-i is a finite-dimensional vector space over P. As each Vt is a right 
ideal of R, Vi/Vi-i is a right R module, hence a right 5 module. 5 induces a 
finite nil ring of linear transformations on Vt/Vi-i. Therefore, this ring 
of transformations is nilpotent, and hence VtS

ni C Vi-\. It follows that 
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ViSmi = (0), where mi = n\ + n2 + . . . + nt. By the ascending chain condi
tion on left annihilators in R, there exists an integer k such t h a t if xSm = (0), 
then xSk = (0). Thus , we have VtS

k = (0) for each i. Since every element of Tp 

is in some Vu we have 7^,5* = (0). Clearly, TSk = (0). 

Let R = R/T and Â = A/T. À is torsion free. Let V = À ®z Q, where Z is 
the ring of integers and Q is the field of rational numbers . As R is a Goldie ring, 
Vis a finite-dimensional vector space over Q. N o w # = (S + r ) / r induces linear 
transformations on V via (â ® q)tg = as 0 g. T h e homomorphism s —» ti has 
kernel exactly r (Â) C\ S. Thus , S/r(Â) P \ S is a nil ring oî n X n matrices 
over Ç, where n = d im^F . I t follows t ha t S/r(Â) P\ $ is nilpotent. Hence 
£™ C r ( I ) n S C r (Â) for some w, thus A(S)m = (Ô) and ASm C 7\ Since 
r S * = (0), we obtain ASmSk = (0) which yields ASm+1c = (0). By the choice 
of k, we obtain ASk = (0). 

Consider the ring 5 generated by elements x1} x2, . . . , xn, . . . with the 
relations xtXj = 0 for i ^ j . I t is easy to show tha t 5 is a nil ring with the 
ascending chain condition on left annihilators, and t h a t 5 is no t nilpotent. 

LEMMA 4. Let Rbe a Goldie ring. Then R has no subring isomorphic to the ring S 
defined above. 

Proof. Assume tha t R has 5 as a subring. Let sn = 111=1 xt. Then sn ?* 0 and 
l(si) C l(s2) C • • • • As R is a Goldie ring, there is an integer k with l(sk) = /(sm) 
for all m ^ k. Fur thermore , Rsn 9e (0) for any n. For if Rsn = (0), then by 
Lemma 3, snS

p = 0 for some p. Bu t then sn+v = 0, contradict ing s* ^ 0 for all i. 
Now consider Rsk + i ^ + i + . . . . This sum is not direct, as R is a Goldie ring. 
Hence 

n 

where rusk^ji T^ 0 for all i, and 0 ^ j t < j m for i < m. I t follows t h a t 

This implies t ha t r ^ ^ + ^ + i = 0. Bu t then r ; i G / fe+^+i ) = l(sk+jl), which yields 
rnsk+ji — 0, contradict ing our assumption. Hence R has no subring isomorphic 
to S. 

In all t h a t follows, let K be a nil ring with the ascending chain condition on 
left annihilators, and further assume t h a t for any j , l(Kj) = (0). 

LEMMA 5. Let A be a non-zero two-sided ideal of K. Then K/r(A) is a non-zero 
nil ring with the ascending chain condition on left annihilators. 

Proof. Use Lemmas 1 and 2. 

LEMMA 6. There exist ideals Ai, A2j . . . , An, . . . in K with the properties: 
(1) A±A2.. .Ak 9* (0) for all k, 
(2) AXA2 . . . AkAn = (0) ifn^k. 
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Proof. We construct the At by induction. Let Ai = r(K). Assume that 
we have Ai, A2j . . . , Ak, where At = r(A±A2. . . A^\K) if i > 1, and 
AiA2. . . Ak ?£ (0). By Lemma 5, K/r(AiA2. . . Ak) = K is a non-zero, nil 
ring and satisfies the ascending chain condition on left annihilators. Hence, by 
Lemma 1 there exists an ideal f ^ (0) in K with KT = (Ô). Let T be the 
inverse image of Tin K. Then A±A2. . . AkT ^ (0), b u t 4 1 4 2 . . . AkKT = (0). 
Hence, ^4i^42.. .Akr{A1A2.. .AkK)^(0). Letr(AiA2... ^*i£) =^4*+i. Now as 
i4! = r(X), ^ 1 ^ 2 . . . i M i = (0). For 1 < n ^ *, AtA2. . . i4*04i i4 2 . . . iK- i if . 
But then AXA2. . . AkAnCAxA2. . . i4n_i2L4n = (0) by definition of An. 

LEMMA 7. There exist elements X such that 
(i) n;_i x,. = Sk ?± o, 
(2) SfcXrc = 0/(?r n ^ k. 

Proof. Let {̂ 4Z} be the ideals of Lemma 6. For any A3- we have 

l(Aj) C KAJAJ+J C *GM H-1^+2) C . • . . 

As K has the ascending chain condition on left annihilators, there must exist an 
integer^? with l(AjAj+i. . . Ap) maximal in the above ascending chain. Suppose 
that we have elements Xi G A t for i ^ k such that 

xxx2. . . xk = sk g l(Ak+1Ak+2. . . Ak+n) 

for any n. If for each y Ç Ak+1 we have sky G l(Ak+2Ak+z . . . Ak+n(y)), then 
sky G l(Ak+2Ak+z . . . Ap) for some p independent of y. Hence, 

SkAjc+i C l(Ak+2Ak+z. . . Ap), 

and therefore sk G /(.4*+1^4*+2 . . . Ap), contradicting sk g ZC^+i^+s . . . Ak+n) 
for any n. Thus, there exists xk+i G Ak+1 with 

skxk+i = sk+i $ l(Ak+2Ak+3. . . Ak+n) 

for any ̂ . As sk+i (£ l(Ak+2) for all k, we have ^ 9e 0. This proves the first part 
of the lemma. The second part follows immediately from our construction and 
the second part of Lemma 6. 

Let us return to the situation where N is a nil subring of a Goldie ring R. If it 
happens that l(Nj) = (0) for all j , then using Lemmas 7 and 4 we would 
arrive at a contradiction. Hence, l(Nj) 9^ (0) for some j . Now as R is a Goldie 
ring, the ascending sequence l(N) C l(N2) C l(Nz) C • . • must terminate at 
some point, say at k0. Consider N = N/l(Nk°). If N is not nilpotent, N is a 
non-zero nil ring with ascending chain condition on left annihilators, by 
Lemma 2. Further, N has the property that l(Nj) = (0) for all j . For suppose 
that Z(#') 5* (0). Let 5 be the inverse image of l(Nj) in N. Then SiV'C Z(iV*°), 
which implies that SNjNk°= SNj+k° = (0). However, l(N*°) = Z(W+*o). Thus 
SNk°= (0) and/S = / (# ' ) = (0). 
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Therefore we can apply Lemma 7 to N to obtain elements xt Ç N with 
X\X2. . . xk 9e 0 but X\X2. . . xkxn = 0 for » S k. Let x* be an inverse image 
of xt. Then we have X\X2. . . xk 9^ 0, and for n ^ k, XiX2. . . #**« G l(Nk°). We 
have proved the following lemma. 

LEMMA 8. Le£ N be a nil ring with the ascending chain condition on left annihila-
tors which is not nilpotent. Let k0 be the integer at which /(TV) C /(TV2) C /(TV3) C • • • 
terminates. Then there exist elements x±j x2l . . . j Xfr) . . . in TV such that 

(1) Xix2 . . . xk ^ Qfor all k, 
(2) X\X2 . . . xkxnxn+i . . . xn+ic0 = 0 y n ^ #. 

THEOREM 1. Le/ R be a Goldie ring and TV a proper nil subring. Then TV is 
nilpotent. 

Proof. Assume that TV is not nilpotent. Let Xi, x2, . . . , xn, . . . be the elements 
of Lemma 8. The proof now follows that of Lemma 4. If sk = X\X2 . . . xk we 
again have Rsk ^ (0) and an integer k with l(sk) = l(sm) for k ^ m. As before 
we obtain 

A^ rjisk+a = 0. 

Now multiply this sum by X£+:/1+iXWl+2 •. . xk+j1+kQ+i on the right and proceed 
as in the lemma. The contradiction which arises forces us to conclude that TV is 
nilpotent. 
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