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A NOTE ON BARIC ALGEBRAS

RAUL ANDRADE AND ALICIA LABRA

In this paper we present a characterization of baric algebras. In particular we
study those in which the identity xa = vi(x)xI holds. Moreover, for every field K,
we prove that this identity guarantees that the annihilator of Ker (u>) is an ideal
in A and we give example of a subspace of Ker (w) whose annihilator is not an
ideal.

1. INTRODUCTION

In what follows if is an infinite field and A is a finite dimensional, commutative,
not necessarily associative algebra over K.

If w : A —> K is a non zero algebra homomorphism, then the ordered pair (A,w)

is called a baric algebra and w the weight function of A. A Bernstein algebra is a baric
algebra (A,w) such that (z2) = w{x)2x2 for every x 6 A.

In a Bernstein algebra there exists a decomposition, A — Ke © N where e is an
idempotent element of A, N = Ker (to) and w{e) — 1. If char if ^ 2 the relation
2e(ey) — ey = 0 holds for every y G N. Moreover the map Le : N —» N defined
by Le(y) = ey for every y G N satisfies 2L\ = Le. Hence, N — U © V where
U = Le(N) and V = Ker (£«.). The subspaces U and V satisfy the relations U2 C V,
UV C U, V2 CU, UV2 = {0}. Also the following identities are satisfied: u\ = 0,
Ui(u2U3) + U2(wjiii)+ us(uiU2) = 0 and «i(iii«) = 0 for every u< (E U, i = 1,2,3 and
v £ V. For references see [1, 4, and 8].

2. BARIC ALGEBRAS

It is known, see [8], that a finite dimensional commutative real algebra is a baric
algebra if and only if A has a basis {ei, • • • , en} such that the constants defined by

satisfy the relation
n

^ --1 i,j -
t = l
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We can easily prove that this result holds whatever the field K under consideration

is.

In the case of a field of characteristic not 2, we have the following characterization

of baric algebras:

PROPOSITION 2 . 1 . Let A be a n-dimensional, commutative, not necessarely
associative algebra over K. Then the following conditions are equivalent:

1. A is a baric algebra.

2. There exist an ideal I, of codimension 1 such that A2 £ I.

PROOF: Let (A,w) be a baric algebra. Then w is onto and A = Ka © Ker(u;),
as vector spaces, with iv(a) = 1. Note also, that Ker(iu) — N is an ideal in A of
codimension 1. Moreover, to(a2) = w(a)w(a) and A2 £ N. Conversely, let / be an
ideal in A such that A2 <£. I and {&2>"- i^n} a basis of J, as a vector space. First
we prove the existence of an element b\ £ A — / such that b\ £ I and {6j,--- ,&„}
is a basis of A. If x2 £ A for every x £ A, then 2ab £ I for each a,b £ A, since
(a + b)2 = a2 + 2ab + b2 . But this contradicts the assumption that A2 £ J. Therefore,
there exists an element &i £ A — I such that b\ (£ I. Moreover {&i,- • • ,6n} is a basis
of A, and b\ = Xbi + y with A ^ 0 and y £ I. If we define w : A —• K by to(6i) = A
and w{bi) = 0 for t = 2,• • • ,n then by straigtforward computations we can see that w
is a non zero algebra homomorphism and (A,w) is a baric algebra. U

We note here that the above result had been shown by Worz-Busekros in [8] for a

real algebra.

In the following we prove some properties of baric algebras in which the following

identity holds

(1) x3 =w{x)x2.

It is well known that w is the only non zero algebra homomorphism from A to the
ground field K. Moreover, for a field of characteristic different from 2 these algebras
are Bernstein, see [3].

PROPOSITION 2 . 3 . Suppose (A,w) satifies x3 = w(x)x2 and char if ^ 2.

Tien for every x,y,z £ A we have:

(2) (xy)z + (yz)x + {zx)y = w(x)(yz) + w(y)(zx) + w(z)(xy).

The proof consists of linearising the identity x3 = w(x)x2 and cancelling out the

factor 2.

If the characteristic of K is also different from 3, the relation (2) is equivalent to

the identity x3 — w{x)x2 .
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PROPOSITION 2 . 3 . Suppose (A,w) is a baric algebra over K, char if — 2.
Then the identity x3 = w(x)x2 holds in A it and only if for every x,y £ A:

(3) x2y = w(y)x2.

PROOF: Obviously relation (3) implies the identity xa = w(x)x2. Conversely,
linearising the identity x3 = w{x)x2 we have relation (3). D

DEFINITION: A Jordan algebra is a commutative algebra in which the identity
x2(yx) = (x2y)x holds.

THEOREM 2 . 4 . Suppose (A,w) sati£es xs = w[x)x2 and char A" ̂  2. Then

1. A is a. Jordan algebra.
2. N is nilpotent.

PROOF: By setting x — y in relation (2) we obtain for every x,z £ A

(4) x2z + 2(xz)x = 2w(x)xz + w(z)x2.

Now replacing z by xz in (4) we have

(5) x2(xz) + 2(x(xz))x = 2w(x)x(xz) + w{x)w{z)x2.

On the other hand, relation (4) implies

(6) x(x2z) + 2x((xz)x) = 2w{x)x{xz) + w(z)xs.

Moreover, relations (1), (5), (6) and commutativity imply x2(xz) = x(x2z) for

every x,z G A. Therefore A is a Jordan algebra.

Finally, since A is a Jordan algebra, then N is also Jordan. Moreover x3 = 0 for

every x £ N. Then N is nil and by a Theorem of Albert [6], N is nilpotent. D

REMARK 2.5. We observe that none of the conditions 1 or 2, by itself, in the above

Theorem implies x3 =u;(x)x2 for every x £ A, as we can see in the following examples.

EXAMPLE 1. Let K be a field, char K / 2 , V a finite dimensional vector space over
K, T : V —* V a linear operator and w : V —* K a. non zero linear form over V such
that woT = w. If we define xy = (l/2)(u>(x)T(y) + io(y)T(x)) for every x,y £ V then
V is a baric algebra denoted by AT,W see [5]. By straightforward computations we can
prove that if T2 = 2T, AT,W is an associative algebra and then a Jordan algebra and

x3
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EXAMPLE 2. Let A = {CO,CI,C2)K be a if-algebra, charK ^ 2 with multiplication
given by c% = c0, coc! = cjCo = c i , coc2 = c2c0 — cx, c\ = c2, cic2 = c2ci = c\ = 0

and let I be the ideal in A generated by c\ and c2. Then A2 <£ I. Hence, by
Proposition 2.1, A is a baric algebra with weight function w : A —> K defined by
to(c0) = 1, w(c!) = w(c2) - 0 and / = Ker(tu). Moreover I2 - (c2), Is = (0).
Therefore Ker(tu) is nilpotent but (co + ci) ^ w(co + Ci)(co + ci) .

REMARK 2.6. Walcher [7] and Ouattara [5] have shown that a baric algebra (A,w)
over K, char K ^ 2, is a Bernstein and a Jordan algebra if and only if the identity
x3 = w{x)x2 holds in A. In the case of a field K, char if = 2, this statement is
not true, for instance if we take the algebra A = Ke © N where N = (y) and with
multiplication table e2 = e, ey = y, y2 = 0, then A is a Bernstein and a Jordan
algebra and (e + y)3 ^ w(e + y)(e + y)2.

THEOREM 2 . 7 . Suppose (A,w) satifies x3 = w(x)x2 and char if = 2. Then

1. A is a Bernstein algebra.
2. A is a Jordan algebra.

3. eiV

PROOF: By Proposition 2.3 relation (1) is equivalent to relation (3) and this iden-

tity implies that A is a Bernstein algebra.

Replacing y by xy in relation (3) and using relation (1) we have x2(yx) = (x2y)x.

Therefore A is a Jordan algebra.

Finally, relation (3) implies ey = 0 for every y G N. Then eN — {0}. D

THEOREM 2 . 8 . Let (A,w) be a baric algebra over K, char if = 2. Then the

following conditions are equivalent:

1. The identity x3 — w(x)x2 holds in A.

2. A is a Bernstein algebra such that eN = {0}.

PROOF: Since the identity x3 = w(x)x2 holds in A, then Theorem 2.7 implies

that A is a Bernstein algebra such that eN = {0}. Conversely if A is a Bernstein

algebra over K and char A" = 2, then linearising the identity (z2) = w(x) x2, we

have w{x)2y2 + w(y) x2 — 0. Thus, for every y G A

(7) y2 = w(y)2e.

Let x = ae + y be an element in A. Then by using eN = {0} together with

relation (7) we have x3 = (ae +y) — a2e(ae +y) = a3e = a{a2e') = w(x)x2 . D

3. ANNIHILATORS

Let A be a commutative not necessarily associative algebra and S Q A. The

annihilator of 5 in A is the subspace Ann (5) = {x G A \ xS = {0}}.
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For associative algebras, this subspace is an ideal, but it is not true in the non
associative case. For instance, if A has the following multiplication table: e2 — e,

eu = ( l /2 )u , ev = u2 = v2 = 0, uv — u. Then the annihilate* of the subspace S
generated by u and v is not an ideal, because (—2e + v)S = 0 but (e(—2e + v))u ^ 0.

Now we prove that the identity xs = w(x)x2 guarantees that the annihilator of N

is an ideal in A, whatever the field K under consideration is.

THEOREM 3 . 1 . Suppose (A,w) satisfies x3 = w(x)x2, char if ^ 2 and let
A = Ke @ U © V be its decomposition relative to the idempotent e. Then:

1. T i e annihilator of N is an ideal in A.

2. If U = {0}, then Ann(N) = A.

3. If U^{0}, then Ann{N)CN.

PROOF: Since (A,w) satisfies xs = w(x)x2 and char if ^ 2 , A is a Bernstein and
a Jordan algebra. Then V2 - {0} and (Uv)v = {0} for every v £ V, see [2].

1. If x = ae + u0 + v0 6 Ann(JV), then for every u 6 U, v € V, a;tt = 0, xv = 0
and xu, xv € Ann (N). It remains only to prove that ex S Ann(JV). Since xu = 0,
xv = 0 for every u £ U, v £ V, we have the followings relations:

(8) — u + uuo + u«o = 0,

(9) v«o + vvo = 0.

Relation (8) implies that uuo = 0 and (a/2)ti+uvo = 0 for every u £ U. As V2 = {0},
by relation (9) we have that u-uo = 0 for every v £ V. Moreover ex = ae + (l/2)«o-
Then using the previous relations one has {ex){u + v) = (a/2)u for every u £ U,
v£V.

If a — 0, then (ez)(u + v) = 0 for every u £ J7, « £ V and ex £ Ann (iV).
If a ̂  0, then ((a/2)u + uvo)vo = 0 for every u £ U. Since A is a Jordan and a

Bernstein algebra, we have (««o)wo = 0 for every u £ U. Therefore (a/2)uwo = 0 and
uv0 = 0. But (a/2)u + ttv0 = 0, so that (ex)(u + v) = (a/2)u = 0 for every u eU,
v £ V, and ex £ Ann (TV). Thus Ann(N) is an ideal in A.

2. If tf = {0}, then A = Ke © V and Ann (JV) = {z £ A | xv = 0 for every
v £ V} = {ae-f «i | (ae + t>i)v = 0 for every v £ V} = {ae+tij | a £ K, «i £ V} = A.

3. Let {/ ̂  {0} and x = /3e + uo + vo £ Ann (N). By a similar argument to that
used in 1 we have (/?/2)u = 0 for every u £ U. Since U ̂  {0} there exists «i ̂  0,
ui eU such that (/3/2)ui = 0 and then /? = 0 and x = u0 + v0 £ JV . D

REMARK 3.2. Since N is nilpotent, the above Theorem implies that in the case U ̂
{0}, Ann (N) is nilpotent.
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THEOREM 3 . 3 . Suppose (A,w) satifies xs = w(x)x2 and chariif - 2. Then
the annihilator of N is an ideal in A.

PROOF: Since x3 = w(x)x2 holds in A, by Theorem 2.7 we have that A is a
Bernstein algebra such that eN = {0} . Let A = Ke © N be its decomposition relative
to the idempotent e and x — ae + y an element in Ann (N). Then tx — ty for every
tE N.

Now for every a — /3e + t in A, we have ax = (/3e + t)(ae + y) = /3ae + ty =
0ae + tx — flae. Then since eN — {0} we have axN = {0} for every a 6 A. Therefore
the annihilator of N is an ideal in A . Q

REMARK 3.4. It is not true that for a subspace S of N, Ann(S) is an ideal in A, as
we can see in the following examples.

EXAMPLE 3. Let A be a commutative real algebra with basis {xi,-- , x 4 } and with
multiplication given by x\ = X\, X\Xi = ( 1 /2 )Z2J ^1^3 = (l /2)x3, 2:3X4 = —(l/2)z2
and the other products being zero. If N = (x2,xs,x^), then A = Rxi © TV is a baric
algebra with weight function w : A —» R defined by iu(Axi + n) = A for every A g i ,
n E N. Moreover the identity xs = w(x)x2 holds in A. If we take S = (12 +X4), then
i i + i s 6 Ann(S') but Xi(xi +X3) ^ Ann(S). Thus Ann(S) is not an ideal in A.

EXAMPLE 4. In the case of a field K, char if — 2, let A be a commutative algebra
with basis {xi,X2,X3} and with multiplication given by x\ — x\, X2X3 = X2 and the
other products being zero. If N = (x2,xs), then A = Kx\ © TV is a baric algebra with
weight function w : A —> K defined by io(Axi + n ) = A for every A € K, n £ N,
and the identity xs = io(x)x2 holds in A. Moreover the annihilator of the subspace
5 generated by X2 + xs is not an ideal in A, because (xi + (X2 + xs))5 = {0} but
(x2(xx + (x2 + x3)))(x2 + x3) ^ 0.
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