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A NOTE ON BARIC ALGEBRAS
RAUL ANDRADE AND ALICIA LABRA

In this paper we present a characterization of baric algebras. In particular we
study those in which the identity 2® = w(z)z’ holds. Moreover, for every field K,
we prove that this identity guarantees that the annihilator of Ker(w) is an ideal

in A and we give example of a subspace of Ker (w) whose annihilator is not an
ideal.

1. INTRODUCTION

In what follows K is an infinite field and A is a finite dimensional, commutative,
not necessarily associative algebra over K.

If w: A — K is a non zero algebra homomorphism, then the ordered pair (4,w)
is called a baric algebra and w the weight function of A. A Bernstein algebra is a baric
algebra (A, w) such that (22)2 = w(z)?2? for every z € A.

In a Bernstein algebra there exists a decomposition, 4 = Ke @ N where e is an
idempotent element of A, N = Ker(w) and w(e) = 1. If char K # 2 the relation
2e(ey) — ey = 0 holds for every y € N. Moreover the map L. : N — N defined
by L.(y) = ey for every y € N satisfies 2L2 = L,. Hence, N = U @ V where
U =L.(N) and V = Ker(L.). The subspaces U and V satisfy the relations U2 C V,
UV CU, V2EC U, UV? = {0}. Also the following identities are satisfied: u} =0,
uy(uz2us) + uz2(usu1) + us(uiuz) = 0 and u;(uyv) = 0 for every u; € U, 1 =1,2,3 and
v € V. For references see 1, 4, and 8].

2. BARIC ALGEBRAS

It is known, see [8], that a finite dimensional commutative real algebra is a baric
algebra if and only if A has a basis {e1, -+ ,en} such that the constants defined by

n
eiej = Z'Yijkek Li=1,--,n
k=1
satisfy the relation

n
dovie=1  dj=1,---,n.
k=1
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We can easily prove that this result holds whatever the field K under consideration
is.

In the case of a field of characteristic not 2, we have the following characterization
of baric algebras:

PROPOSITION 2.1. Let A be a n-dimensional, commutative, not necessarely
associative algebra over K. Then the following conditions are equivalent:

1. A is a baric algebra.
2. There exist an ideal I, of codimension 1 such that A> ¢ I.

PROOF: Let (A4,w) be a baric algebra. Then w is onto and 4 = Ka @ Ker (w),
as vector spaces, with w(e) = 1. Note also, that Ker(w) = N is an ideal in A of
codimension 1. Moreover, w(a?) = w(a)w(a) and A2 € N. Conversely, let I be an
ideal in A such that A? € I and {b2,--- ,bn} a basis of I, as a vector space. First
we prove the existence of an element b, € A — I such that b2 ¢ I and {b;,--- ,b,}
is a basis of A. If 22 € A for every z € A, then 2ab € I for each a,b € A, since
(a + 5)® = a® 4 2ab + b%. But this contradicts the assumption that A? ¢ I. Therefore,
there exists an element b; € A — I such that b2 ¢ I. Moreover {b1,--- ,b,} is a basis
of A, and b2 = Ab; +y with A # 0 and y € I. If we define w: A —» K by w(b) = A
and w(b;) = 0 for i = 2,--- ,n then by straigtforward computations we can see that w
is a non zero algebra homomorphism and (4,w) is a baric algebra. 0

We note here that the above result had been shown by Worz-Busekros in [8] for a
real algebra.

In the following we prove some properties of baric algebras in which the following
identity holds

(1) z* = w(z)z?.

It is well known that w is the only non zero algebra homomorphism from A to the
ground field K. Moreover, for a field of characteristic different from 2 these algebras
are Bernstein, see [3].

PROPOSITION 2.3. Suppose (A,w) satifies 23 = w(z)z? and charK # 2.
Then for every z,y,z € A we have:

(2 (zy)z + (y2)z + (22)y = w(=z)(y2) + w(y)(z2) + w(z)(zy)-

The proof consists of linearising the identity z* = w(z)z? and cancelling out the
factor 2.

If the characteristic of K is also different from 3, the relation (2) is equivalent to
the identity z* = w(z)z?.
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PROPOSITION 2.3. Suppose (A,w) is a baric algebra over K, char K = 2.
Then the identity z3 = w(z)z? holds in A if and only if for every z,y € A:

(3) 2?y = w(y)z’.

PROOF: Obviously relation (3) implies the identity z3 = w(z)z?. Conversely,
linearising the identity z* = w(z)z? we have relation (3).

DEFINITION: A Jordan algebra is a commutative algebra in which the identity
z?(yz) = (z*y)z holds.

THEOREM 2.4. Suppose (A,w) satifies z3 = w(z)z? and char K # 2. Then

1. A is a Jordan algebra.
2. N is nilpotent.

PROOF: By setting z = y in relation (2) we obtain for every z,z € 4
(4) z?z + 2(zz)z = 2w(z)zz + w(z)z2.

Now replacing z by xz in (4) we have
(5) z?(z2) + 2(z(z2))z = 2w(z)z(zz2) + w(z)w(z)z?.

On the other hand, relation (4) implies
(6) z(2%2) + 2z((z2)z) = 2w(z)z(z2) + w(z)z®.

Moreover, relations (1), (5), (6) and commutativity imply z?(zz) = z(z%z) for
every z,z € A. Therefore A is a Jordan algebra.

Finally, since A is a Jordan algebra, then N is also Jordan. Moreover z3 = 0 for
every £ € N. Then N is nil and by a Theorem of Albert [6], N is nilpotent. 0

REMARK 2.5. We observe that none of the conditions 1 or 2, by itself, in the above
Theorem implies z® = w(z)z? for every z € A, as we can see in the following examples.

EXAMPLE 1. Let K be a field, char K # 2, V a finite dimensional vector space over
K, T:V — V alinear operator and w : V — K a non zero linear form over V such
that woT = w. If we define zy = (1/2}{w(z)T(y) + w(y)T(z)) for every z,y € V then
V is a baric algebra denoted by Ar,, see [5]. By straightforward computations we can
prove that if T? = 2T, Ar,, is an associative algebra and then a Jordan algebra and
z3 # w(z)z?.
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ExAMPLE 2. Let A = (cg,c1,¢2)kx be a K-algebra, char K # 2 with multiplication
given by c% = ¢g, €0C1 = €31Cp = C1, CgC3 = €2Cp = C1, cf = ¢z, €1€2 = ¢c2¢; = ¢z =0
and let I be the ideal in A generated by ¢; and c;. Then A% ¢ I. Hence, by
Proposition 2.1, A is a baric algebra with weight function w : A — K defined by
w(co) = 1, w(e1) = w(cz) = 0 and I = Ker(w). Moreover I? = (c;), I® = (0).
Therefore Ker(w) is nilpotent but (¢o + cl)3 # w(co + ¢1)(co + cl)2 .

REMARK 2.6. Walcher [7] and Ouattara [5] have shown that a baric algebra (A,w)
over K, char K # 2, is a Bernstein and a Jordan algebra if and only if the identity
z®> = w(z)z? holds in A. In the case of a field K, char K = 2, this statement is
not true, for instance if we take the algebra A = Ke @ N where N = (y) and with
multiplication table e2 = e, ey = y, y> = 0, then A is a Bernstein and a Jordan
algebra and (e +y)® # w(e + y)(e +¥)°.

THEOREM 2.7. Suppose (A,w) satifies z3 = w(z)z? and char K = 2. Then

1. A is a Bernstein algebra.
2. A is a Jordan algebra.
3. eN = {0}.

ProoF: By Proposition 2.3 relation (1) is equivalent to relation (3) and this iden-
tity implies that A is a Bernstein algebra.

Replacing y by zy in relation (3) and using relation (1) we have z2(yz) = (z?y)=.
Therefore A is a Jordan algebra.

Finally, relation (3) implies ey = 0 for every y € N. Then eN = {0}. 1|

THEOREM 2.8. Let (A,w) be a baric algebra over K, char K = 2. Then the
following conditions are equivalent:

1. The identity z® = w(z)z? holds in A.
2. A is a Bernstein algebra such that eN = {0}.

PROOF: Since the identity z® = w(z)z? holds in A, then Theorem 2.7 implies
that A is a Bernstein algebra such that eN = {0}. Conversely if A is a Bernstein
algebra over K and char K = 2, then linearising the identity (z:z)2 = w(z)’z?, we
have ‘w(x)zy2 + w(y)2z2 = 0. Thus, forevery y € A

(7) v =w(y)’e.
Let z = ae + y be an element in A. Then by using eN = {0} together with
relation (7) we have z* = (ae +y)* = a’e(ae + y) = a’e = a(a’e) = w(z)z? . 0

3. ANNIHILATORS

Let A be a commutative not necessarily associative algebra and § C A. The
annihilator of § in A is the subspace Ann(S) = {z € 4|zS = {0}}.
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For associative algebras, this subspace is an ideal, but it is not true in the non
associative case. For instance, if A has the following multiplication table: e? = e,
eu = (1/2)u, ev = u? = v2 = 0, uv = u. Then the annihilator of the subspace §
generated by u and v is not an ideal, because (—2e + v)S = 0 but (e(—2e + v))u #0.

Now we prove that the identity z3 = w(z)z? guarantees that the annihilator of N

is an ideal in A, whatever the field K under consideration is.

THEOREM 3.1. Suppose (A,w) satisfies z° = w(z)z?, charK # 2 and let
A=KedU®V be its decomposition relative to the idempotent e. Then:

1. The annihilator of N is an ideal in A.
2. IfU = {0}, then Ann(N) = A.
3. IfU # {0}, then Ann(N)C N.

PROOF: Since (A, w) satisfies z° = w(z)z? and char K # 2, A is a Bernstein and
a Jordan algebra. Then V2 = {0} and (Uv)v = {0} for every v € V, see [2].

l. Ifz=cae+us+vo € Ann(N),thenforeveryu e U, v€V, zu=0, zv =0
and zu, zv € Ann(N). It remains only to prove that ez € Ann(N). Since zu =0,
zv =0 for every u € U, v € V, we have the followings relations:

(8) —g-u + uug + uve =0,

(9) vug +vvp = 0.

Relation (8) implies that uuo = 0 and (a/2)u+uvy = 0 forevery u € U. As V2 = {0},
by relation (9) we have that vuo = 0 for every v € V. Moreover ez = ae + (1/2)u,.
Then using the previous relations one has (ez)(u +v) = (a/2)u for every u € U,
veV.

If a =0, then (ez)(u+v) =0 forevery u€ U, v € V and ez € Ann(N).

If a #0, then ((a/2)u + uvg)ve = 0 for every u € U. Since A is a Jordan and a
Bernstein algebra, we have (uvo)vg = 0 for every u € U. Therefore (a/2)uvy = 0 and
uvg = 0. But (a/2)u + uvg = 0, so that (ez)(u +v) = (a/2)u = 0 for every u € U,
v €V, and ez € Ann(N). Thus Ann(N) is an ideal in A.

2. U = {0}, then A = Ke®V and Ann(N) = {z € A | zv = 0 for every
v €V} ={aetv:|(ae+vi)v=0forevery v € V} = {ae+v; |a€ K, v; € V} = 4.

3. Let U # {0} and © = Be + up + vo € Ann(N). By a similar argument to that
used in 1 we have (8/2)u = 0 for every u € U. Since U # {0} there exists u; # 0,
uy € U such that (8/2)u; =0 and then =0 and z=ug+vo €N . g

REMARK 3.2. Since N is nilpotent, the above Theorem implies that in the case U #
{0}, Ann(N) is nilpotent.
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THEOREM 3.3. Suppose (A,w) satifies z° = w(z)z? and char K = 2. Then
the annihilator of N is an ideal in A.

PROOF: Since z*® = w(z)z? holds in A, by Theorem 2.7 we have that A4 is a
Bernstein algebra such that eN = {0}. Let A = Ke@® N be its decomposition relative
to the idempotent e and z = ae + y an element in Ann(N). Then tz = ty for every
teN.

Now for every a = e+t in A, we have az = (fe +t)(ae+y) = Bae + ty =
Bae+tz = Bae. Then since eN = {0} we have azN = {0} for every a € A. Therefore
the annihilator of N is an ideal in 4 . 1]

REMARK 3.4. It is not true that for a subspace S of N, Ann(S) is an ideal in A, as
we can see in the following examples.

EXAMPLE 3. Let A be a commutative real algebra with basis {z1,--- ,z4} and with
multiplication given by z? = z,, z122 = (1/2)z2, z1z3 = (1/2)zs, z3z4 = —(1/2)z,
and the other products being zero. f N = (z,,23,24), then A = Rz; ® N is a baric
algebra with weight function w : A — R defined by w(Az; +n) = X for every A € R,
n € N. Moreover the identity z3 = w(z)z? holds in A. If we take § = (23 + z4), then
z1 + zs € Ann(S) but z,(z; + zs) ¢ Ann(S). Thus Ann(S) is not an ideal in A.

EXAMPLE 4. In the case of a field K, char K = 2, let A be a commutative algebra
with basis {z;,z,z3} and with multiplication given by z? = z;, z;z3 = z, and the
other products being zero. If N = (z2,z3), then A = Kz; @ N is a baric algebra with
weight function w : A — K defined by w(Az; +n) = X for every A € K, n € N,
and the identity z°® = w(z)z? holds in A. Moreover the annihilator of the subspace
S generated by z; + z3 is not an ideal in A, because (z; + (22 + z3))S = {0} but
(z2(z1 + (22 + 23)))(z2 + 23) # 0.
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