Bull. Austral. Math. Soc.
Vol. 48 (1993) [371-377]

A NOTE ON BARIC ALGEBRAS

Raúl Andrade and Alicia Labra

In this paper we present a characterization of baric algebras. In particular we study those in which the identity $x^{3}=w(x) x^{2}$ holds. Moreover, for every field K, we prove that this identity guarantees that the annihilator of $\operatorname{Ker}(w)$ is an ideal in A and we give example of a subspace of Ker (w) whose annihilator is not an ideal.

1. Introduction

In what follows K is an infinite field and A is a finite dimensional, commutative, not necessarily associative algebra over K.

If $\boldsymbol{w}: A \rightarrow K$ is a non zero algebra homomorphism, then the ordered pair (A, w) is called a baric algebra and w the weight function of A. A Bernstein algebra is a baric algebra (A, w) such that $\left(x^{2}\right)^{2}=w(x)^{2} x^{2}$ for every $x \in A$.

In a Bernstein algebra there exists a decomposition, $A=K e \oplus N$ where e is an idempotent element of $A, N=\operatorname{Ker}(w)$ and $w(e)=1$. If char $K \neq 2$ the relation $2 e(e y)-e y=0$ holds for every $y \in N$. Moreover the map $L_{e}: N \rightarrow N$ defined by $L_{e}(y)=e y$ for every $y \in N$ satisfies $2 L_{e}^{2}=L_{e}$. Hence, $N=U \oplus V$ where $U=L_{e}(N)$ and $V=\operatorname{Ker}\left(L_{e}\right)$. The subspaces U and V satisfy the relations $U^{2} \subseteq V$, $U V \subseteq U, V^{2} \subseteq U, U V^{2}=\{0\}$. Also the following identities are satisfied: $u_{1}^{3}=0$, $u_{1}\left(u_{2} u_{3}\right)+u_{2}\left(u_{3} u_{1}\right)+u_{3}\left(u_{1} u_{2}\right)=0$ and $u_{1}\left(u_{1} v\right)=0$ for every $u_{i} \in U, i=1,2,3$ and $v \in V$. For references see [1, 4, and 8].

2. Baric algebras

It is known, see [8], that a finite dimensional commutative real algebra is a baric algebra if and only if A has a basis $\left\{e_{1}, \cdots, e_{n}\right\}$ such that the constants defined by

$$
e_{i} e_{j}=\sum_{k=1}^{n} \gamma_{i j k} e_{k} \quad i, j=1, \cdots, n
$$

satisfy the relation

$$
\sum_{k=1}^{n} \gamma_{i j k}=1 \quad i, j=1, \cdots, n
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

We can easily prove that this result holds whatever the field K under consideration is.

In the case of a field of characteristic not 2, we have the following characterization of baric algebras:

Proposition 2.1. Let A be a n-dimensional, commutative, not necessarely associative algebra over K. Then the following conditions are equivalent:

1. A is a baric algebra.
2. There exist an ideal I, of codimension 1 such that $A^{2} \nsubseteq I$.

Proof: Let (A, w) be a baric algebra. Then w is onto and $A=K a \oplus \operatorname{Ker}(w)$, as vector spaces, with $w(a)=1$. Note also, that $\operatorname{Ker}(w)=N$ is an ideal in A of codimension 1. Moreover, $w\left(a^{2}\right)=w(a) w(a)$ and $A^{2} \nsubseteq N$. Conversely, let I be an ideal in A such that $A^{2} \nsubseteq I$ and $\left\{b_{2}, \cdots, b_{n}\right\}$ a basis of I, as a vector space. First we prove the existence of an element $b_{1} \in A-I$ such that $b_{1}^{2} \notin I$ and $\left\{b_{1}, \cdots, b_{n}\right\}$ is a basis of A. If $x^{2} \in A$ for every $x \in A$, then $2 a b \in I$ for each $a, b \in A$, since $(a+b)^{2}=a^{2}+2 a b+b^{2}$. But this contradicts the assumption that $A^{2} \nsubseteq I$. Therefore, there exists an element $b_{1} \in A-I$ such that $b_{1}^{2} \notin I$. Moreover $\left\{b_{1}, \cdots, b_{n}\right\}$ is a basis of A, and $b_{1}^{2}=\lambda b_{1}+y$ with $\lambda \neq 0$ and $y \in I$. If we define $w: A \rightarrow K$ by $w\left(b_{1}\right)=\lambda$ and $\boldsymbol{w}\left(b_{i}\right)=0$ for $i=2, \cdots, n$ then by straigtforward computations we can see that w is a non zero algebra homomorphism and (A, w) is a baric algebra.

We note here that the above result had been shown by Wörz-Busekros in [8] for a real algebra.

In the following we prove some properties of baric algebras in which the following identity holds

$$
\begin{equation*}
x^{3}=w(x) x^{2} \tag{1}
\end{equation*}
$$

It is well known that w is the only non zero algebra homomorphism from A to the ground field K. Moreover, for a field of characteristic different from 2 these algebras are Bernstein, see [3].

PROPOSITION 2.3. Suppose (A, w) satifies $x^{3}=w(x) x^{2}$ and char $K \neq 2$. Then for every $x, y, z \in A$ we have:

$$
\begin{equation*}
(x y) z+(y z) x+(z x) y=w(x)(y z)+w(y)(z x)+w(z)(x y) \tag{2}
\end{equation*}
$$

The proof consists of linearising the identity $x^{3}=w(x) x^{2}$ and cancelling out the factor 2.

If the characteristic of K is also different from 3, the relation (2) is equivalent to the identity $x^{3}=w(x) x^{2}$.

Proposition 2.3. Suppose (A, w) is a baric algebra over K, char $K=2$. Then the identity $x^{3}=w(x) x^{2}$ holds in A if and only if for every $x, y \in A$:

$$
\begin{equation*}
x^{2} y=w(y) x^{2} \tag{3}
\end{equation*}
$$

Proof: Obviously relation (3) implies the identity $x^{3}=w(x) x^{2}$. Conversely, linearising the identity $x^{3}=w(x) x^{2}$ we have relation (3).

Definition: A Jordan algebra is a commutative algebra in which the identity $x^{2}(y x)=\left(x^{2} y\right) x$ holds.

Theorem 2.4. Suppose (A, w) satifies $x^{3}=w(x) x^{2}$ and char $K \neq 2$. Then

1. A is a Jordan algebra.
2. $\quad N$ is nilpotent.

Proof: By setting $x=y$ in relation (2) we obtain for every $x, z \in A$

$$
\begin{equation*}
x^{2} z+2(x z) x=2 w(x) x z+w(z) x^{2} \tag{4}
\end{equation*}
$$

Now replacing z by $x z$ in (4) we have

$$
\begin{equation*}
x^{2}(x z)+2(x(x z)) x=2 w(x) x(x z)+w(x) w(z) x^{2} \tag{5}
\end{equation*}
$$

On the other hand, relation (4) implies

$$
\begin{equation*}
x\left(x^{2} z\right)+2 x((x z) x)=2 w(x) x(x z)+w(z) x^{3} \tag{6}
\end{equation*}
$$

Moreover, relations (1), (5), (6) and commutativity imply $x^{2}(x z)=x\left(x^{2} z\right)$ for every $x, z \in A$. Therefore A is a Jordan algebra.

Finally, since A is a Jordan algebra, then N is also Jordan. Moreover $x^{3}=0$ for every $x \in N$. Then N is nil and by a Theorem of Albert [6], N is nilpotent.

Remark 2.5. We observe that none of the conditions 1 or 2 , by itself, in the above Theorem implies $x^{3}=w(x) x^{2}$ for every $x \in A$, as we can see in the following examples.

Example 1. Let K be a field, char $K \neq 2, \mathrm{~V}$ a finite dimensional vector space over $K, T: V \rightarrow V$ a linear operator and $w: V \rightarrow K$ a non zero linear form over V such that $w \circ T=w$. If we define $x y=(1 / 2)(w(x) T(y)+w(y) T(x))$ for every $x, y \in V$ then V is a baric algebra denoted by $A_{T, w}$ see [5]. By straightforward computations we can prove that if $T^{2}=2 T, A_{T, w}$ is an associative algebra and then a Jordan algebra and $x^{3} \neq w(x) x^{2}$.

Example 2. Let $A=\left\langle c_{0}, c_{1}, c_{2}\right\rangle_{K}$ be a K-algebra, char $K \neq 2$ with multiplication given by $c_{0}^{2}=c_{0}, c_{0} c_{1}=c_{1} c_{0}=c_{1}, c_{0} c_{2}=c_{2} c_{0}=c_{1}, c_{1}^{2}=c_{2}, c_{1} c_{2}=c_{2} c_{1}=c_{2}^{2}=0$ and let I be the ideal in A generated by c_{1} and c_{2}. Then $A^{2} \nsubseteq I$. Hence, by Proposition 2.1, A is a baric algebra with weight function $w: A \rightarrow K$ defined by $w\left(c_{0}\right)=1, w\left(c_{1}\right)=w\left(c_{2}\right)=0$ and $I=\operatorname{Ker}(w)$. Moreover $I^{2}=\left\langle c_{2}\right\rangle, I^{3}=\langle 0\rangle$. Therefore $\operatorname{Ker}(w)$ is nilpotent but $\left(c_{0}+c_{1}\right)^{3} \neq w\left(c_{0}+c_{1}\right)\left(c_{0}+c_{1}\right)^{2}$.

Remark 2.6. Walcher [7] and Ouattara [5] have shown that a baric algebra (A, w) over K, char $K \neq 2$, is a Bernstein and a Jordan algebra if and only if the identity $x^{3}=w(x) x^{2}$ holds in A. In the case of a field K, char $K=2$, this statement is not true, for instance if we take the algebra $A=K e \oplus N$ where $N=\langle y\rangle$ and with multiplication table $e^{2}=e, e y=y, y^{2}=0$, then A is a Bernstein and a Jordan algebra and $(e+y)^{3} \neq w(e+y)(e+y)^{2}$.

Theorem 2.7. Suppose (A, w) satifies $x^{3}=w(x) x^{2}$ and char $K=2$. Then

1. A is a Bernstein algebra.
2. A is a Jordan algebra.
3. $e N=\{0\}$.

Proof: By Proposition 2.3 relation (1) is equivalent to relation (3) and this identity implies that A is a Bernstein algebra.

Replacing y by $x y$ in relation (3) and using relation (1) we have $x^{2}(y x)=\left(x^{2} y\right) x$. Therefore A is a Jordan algebra.

Finally, relation (3) implies $e y=0$ for every $y \in N$. Then $e N=\{0\}$.
Theorem 2.8. Let (A, w) be a baric algebra over K, char $K=2$. Then the following conditions are equivalent:

1. The identity $x^{3}=w(x) x^{2}$ holds in A.
2. A is a Bernstein algebra such that $e N=\{0\}$.

Proof: Since the identity $x^{3}=w(x) x^{2}$ holds in A, then Theorem 2.7 implies that A is a Bernstein algebra such that $e N=\{0\}$. Conversely if A is a Bernstein algebra over K and char $K=2$, then linearising the identity $\left(x^{2}\right)^{2}=w(x)^{2} x^{2}$, we have $w(x)^{2} y^{2}+w(y)^{2} x^{2}=0$. Thus, for every $y \in A$

$$
\begin{equation*}
y^{2}=w(y)^{2} e \tag{7}
\end{equation*}
$$

Let $x=\alpha e+y$ be an element in A. Then by using $e N=\{0\}$ together with relation (7) we have $x^{3}=(\alpha e+y)^{3}=\alpha^{2} e(\alpha e+y)=\alpha^{3} e=\alpha\left(\alpha^{2} e\right)=w(x) x^{2}$.

3. Annihilators

Let A be a commutative not necessarily associative algebra and $S \subseteq A$. The annihilator of S in A is the subspace $\operatorname{Ann}(S)=\{x \in A \mid x S=\{0\}\}$.

For associative algebras, this subspace is an ideal, but it is not true in the non associative case. For instance, if A has the following multiplication table: $e^{2}=e$, $e u=(1 / 2) u, e v=u^{2}=v^{2}=0, u v=u$. Then the annihilator of the subspace S generated by u and v is not an ideal, because $(-2 e+v) S=0$ but $(e(-2 e+v)) u \neq 0$.

Now we prove that the identity $x^{3}=w(x) x^{2}$ guarantees that the annihilator of N is an ideal in A, whatever the field K under consideration is.

Theorem 3.1. Suppose (A, w) satisfies $x^{3}=w(x) x^{2}$, char $K \neq 2$ and let $A=K e \oplus U \oplus V$ be its decomposition relative to the idempotent e. Then:

1. The annihilator of N is an ideal in A.
2. If $U=\{0\}$, then $\operatorname{Ann}(N)=A$.
3. If $U \neq\{0\}$, then $\operatorname{Ann}(N) \subseteq N$.

Proof: Since (A, w) satisfies $x^{3}=w(x) x^{2}$ and char $K \neq 2, A$ is a Bernstein and a Jordan algebra. Then $V^{2}=\{0\}$ and $(U v) v=\{0\}$ for every $v \in V$, see [2].

1. If $x=\alpha e+u_{0}+v_{0} \in \operatorname{Ann}(N)$, then for every $u \in U, v \in V, x u=0, x v=0$ and $x u, x v \in \operatorname{Ann}(N)$. It remains only to prove that $e x \in \operatorname{Ann}(N)$. Since $x u=0$, $x v=0$ for every $u \in U, v \in V$, we have the followings relations:

$$
\begin{array}{r}
\frac{\alpha}{2} u+u u_{0}+u v_{0}=0 \\
v u_{0}+v v_{0}=0 . \tag{9}
\end{array}
$$

Relation (8) implies that $u u_{0}=0$ and ($\left.\alpha / 2\right) u+u v_{0}=0$ for every $u \in U$. As $V^{2}=\{0\}$, by relation (9) we have that $v u_{0}=0$ for every $v \in V$. Moreover $e x=\alpha e+(1 / 2) u_{0}$. Then using the previous relations one has $(e x)(u+v)=(\alpha / 2) u$ for every $u \in U$, $v \in V$.

If $\alpha=0$, then $(e x)(u+v)=0$ for every $u \in U, v \in V$ and $e x \in \operatorname{Ann}(N)$.
If $\alpha \neq 0$, then $\left((\alpha / 2) u+u v_{0}\right) v_{0}=0$ for every $u \in U$. Since A is a Jordan and a Bernstein algebra, we have $\left(u v_{0}\right) v_{0}=0$ for every $u \in U$. Therefore $(\alpha / 2) u v_{0}=0$ and $u v_{0}=0$. But $(\alpha / 2) u+u v_{0}=0$, so that $(e x)(u+v)=(\alpha / 2) u=0$ for every $u \in U$, $v \in V$, and $e x \in \operatorname{Ann}(N)$. Thus $\operatorname{Ann}(N)$ is an ideal in A.
2. If $U=\{0\}$, then $A=K e \oplus V$ and $\operatorname{Ann}(N)=\{x \in A \mid x v=0$ for every $v \in V\}=\left\{\alpha e+v_{1} \mid\left(\alpha e+v_{1}\right) v=0\right.$ for every $\left.v \in V\right\}=\left\{\alpha e+v_{1} \mid \alpha \in K, v_{1} \in V\right\}=A$.
3. Let $U \neq\{0\}$ and $x=\beta e+u_{0}+v_{0} \in \operatorname{Ann}(N)$. By a similar argument to that used in 1 we have $(\beta / 2) u=0$ for every $u \in U$. Since $U \neq\{0\}$ there exists $u_{1} \neq 0$, $u_{1} \in U$ such that $(\beta / 2) u_{1}=0$ and then $\beta=0$ and $x=u_{0}+v_{0} \in N$.

Remark 3.2. Since N is nilpotent, the above Theorem implies that in the case $U \neq$ $\{0\}, \operatorname{Ann}(N)$ is nilpotent.

Theorem 3.3. Suppose (A, w) satifies $x^{3}=w(x) x^{2}$ and char $K=2$. Then the annihilator of N is an ideal in A.

Proof: Since $x^{3}=w(x) x^{2}$ holds in A, by Theorem 2.7 we have that A is a Bernstein algebra such that $e N=\{0\}$. Let $A=K e \oplus N$ be its decomposition relative to the idempotent e and $x=\alpha e+y$ an element in $\operatorname{Ann}(N)$. Then $t x=t y$ for every $t \in N$.

Now for every $a=\beta e+t$ in A, we have $a x=(\beta e+t)(\alpha e+y)=\beta \alpha e+t y=$ $\beta \alpha e+t x=\beta \alpha e$. Then since $e N=\{0\}$ we have $a x N=\{0\}$ for every $a \in A$. Therefore the annihilator of N is an ideal in A.

Remark 3.4. It is not true that for a subspace S of $N, \operatorname{Ann}(S)$ is an ideal in A, as we can see in the following examples.

Example 3. Let A be a commutative real algebra with basis $\left\{x_{1}, \cdots, x_{4}\right\}$ and with multiplication given by $x_{1}^{2}=x_{1}, x_{1} x_{2}=(1 / 2) x_{2}, x_{1} x_{3}=(1 / 2) x_{3}, x_{3} x_{4}=-(1 / 2) x_{2}$ and the other products being zero. If $N=\left\langle x_{2}, x_{3}, x_{4}\right\rangle$, then $A=\mathbb{R} x_{1} \oplus N$ is a baric algebra with weight function $w: A \rightarrow \mathbb{R}$ defined by $w\left(\lambda x_{1}+n\right)=\lambda$ for every $\lambda \in \mathbb{R}$, $n \in N$. Moreover the identity $x^{3}=w(x) x^{2}$ holds in A. If we take $S=\left\langle x_{2}+x_{4}\right\rangle$, then $x_{1}+x_{3} \in \operatorname{Ann}(S)$ but $x_{1}\left(x_{1}+x_{3}\right) \notin \operatorname{Ann}(S)$. Thus $\operatorname{Ann}(S)$ is not an ideal in A.

Example 4. In the case of a field K, char $K=2$, let A be a commutative algebra with basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ and with multiplication given by $x_{1}^{2}=x_{1}, x_{2} x_{3}=x_{2}$ and the other products being zero. If $N=\left\langle x_{2}, x_{3}\right\rangle$, then $A=K x_{1} \oplus N$ is a baric algebra with weight function $w: A \rightarrow K$ defined by $w\left(\lambda x_{1}+n\right)=\lambda$ for every $\lambda \in K, n \in N$, and the identity $x^{3}=w(x) x^{2}$ holds in A. Moreover the annihilator of the subspace S generated by $x_{2}+x_{3}$ is not an ideal in A, because $\left(x_{1}+\left(x_{2}+x_{3}\right)\right) S=\{0\}$ but $\left(x_{2}\left(x_{1}+\left(x_{2}+x_{3}\right)\right)\right)\left(x_{2}+x_{3}\right) \neq 0$.

References

[1] M.T. Alcalde, C. Burgueño, A. Labra and A. Micali, 'Sur les algèbres de Bernstein', Proc. London Math. Soc. (3) 58 (1989), 51-68.
[2] M.T. Alcalde, R. Baeza and C.Burgueño, 'Autour des algèbres de Bernstein', Arch. Math. 53 (1989), 134-140.
[3] I.M.H. Etherington, 'Commutative train algebras of ranks 2 and 3', J. London Math. Soc. 15 (1940), 136-149.
[4] P. Holgate, 'Genetic algebras satisfying Bernstein's stationarity principle', J. London Math. Soc. (2) 9 (1975), 613-623.
[5] M. Ouattara, Algèbres de Jordan et algèbres génétiques, Thèse de Doctorat (Université de Montpellier II, France, 1988).
[6] R.D. Shafer, Introduction to nonassociative algebras (Academic Press, New York, 1966).
[7] S. Walcher, 'Bernstein algebras which are Jordan algebras', Arch. Math. 50 (1988), 218-222.
[8] A. Wörz-Busekros, Algebras in genetics, Lecture Notes in Biomathematics 36 (SpringerVerlag, Berlin, Heidelberg, New York, 1980).

Departarnento de Matemáticas
Facultad de Ciencias
Universidad de Chile
Casilla 653
Santiago, Chile

[^0]: Received 23rd November, 1992.
 Research supported by FONDECYT No 0227/89-90 Chile and Departamento Técnico de Investigación de la Universidad de Chile, Proyecto E-2585/9044. The authors thank R. Costa and P. Holgate for their comments about this work.

