EXISTENCE OF PERFECT PICARD SETS
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Dedicated to the memory of Professor Tapast Nakavama

1. Let E be a totally disconnected compact set in the z-plane and let 2 be
its complement with respect to the extended z-plane. Then 2 is a domain and
we can consider a single-valued meromorphic function f(z) in 2 which has a
transcendental singularity at each point ¢ € E. Suppose that E is a null-set of
the class W in the sense of Kametani [4] ( =the class Ny in the sense of
Ahlfors and Beurling [1]). Then the cluster set of f(z) at each transcendental
singularity is the whole w-plane and hence f(z) has an essential singularity at
each point of E. We shall say that a value w is exceptional for f(z) at an
essential singularity ¢ € E if there exists a neighborhood of ¢ where the function
f(z) does not take this value w. If each f(z) has at most # exceptional values
at each singularity ¢ € E, we shall call £ an #n-Picard set using the terminology
of Lehto [5] and call a 2-Picard set a Picard set simply. For any E, by Besse’s
theorem, there exists a single-valued regular function g(z) in 2 possessing E
as the set of singularities. Therefore, considering the function expg(z) in 2,
we see that there exists no 1-Picard set. Thus we need consider #z-Picard sets
only for n=2.

For any countable E, every f(z) has at most two exceptional values at each
singularity ¢ € E, because any neighborhood of ¢ contains isolated points of E,
and hence E is a Picard set. But for a non-countable E, there needs some
condition in order to be an #-Picard set for some », even if E is of logarithmic
capacity zero (see Matsumoto [6]). Carleson [3] and the author [7], [8] have
given sufficient conditions for sets E to be n-Picard sets for n not smaller than
3 and examples of perfect E by means of Cantor sets. There has remained a
very interesting problem unsolved. Is there a perfect Picard set?

The purpose of this paper is to give Cantor sets which are Picard sets.
The Schottky theorem will also play important roles as in papers [3], [7], [8].
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2. We shall consider the Riemann sphere X with radius 1/2 touching the
w-plane at the origin. For any two points w and w' in the w-plane we denote
by [w, w'] the chordal distance between them, that is,

o — w'| .
VOt AT o) if wx o and w'=x o
[w, w']l=
1 P
Vit =

Further we denote by C(w; &) (§>0) the spherical open disc with center w
and with chordal radius J.

First we shall prove the following lemma which is a revised form of
Carleson’s [31.

Lemma 1. Let w=f(2) be a single-valued meromorphic function on an
annulus 1= |z|=e* (u>0). If f(2) takes there no value in a spherical disc
C(wo; 08), then there exists a positive constant As depending only on & such that
the diameter of the image of |z| = " by f(z) with respect to the chordal distance
is dominated by Ase ™ for sufficiently large p.

In particular, if 0 is sufficiently close to 1, that is, the complementary
spherical disc C(—1/Wy; d) of Clws; 8), d=vV1—0% has a radius sufficiently
small, we have

As; < Bd,
where B is a positive constant.
Proof. We may assume without any loss of generality that the center wp
of C(wy; 8) is the point at infinity, for otherwise we can transform w, to the
point at infinity by the linear transformation (14 wWw)/(w —w,), under which

the chordal distance remains invariant. Let |w|> M be the domain in the w-

plane corresponding to C(w,; 6). Then
[f(2)IEM on 1=|zl<e"

By Cauchy’s integral theorem, we have
1¢ 7 (&) ' f(&)
' — SN e LA
f(Z) 2ﬂi{3|g|=ey.(c—‘2}zdc S[;]:l(c_Z)de}

w/2

for every z on |zl =¢€""” and hence, if x=2,
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. M| 2ne” 2 . 26 -
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Therefore we have
2¢’ - /2 4re’ -2
’ _ac oy w2 _ . ®
§|z|=eu/zlf(z)”dzl§ (e—l)zMe 2ret? = (e—l)’M e M

The left side is the length of the image curve f(|z| =¢"*), and hence the dia-

“/2 by f(2) with respect to the metric {dw]|, conse-

meter of the image of |z|=¢
quently with respect to the chordal distance, is dominated by (27e?/(e—1)%) Me ™.
We can take (2né’/(e —-1))M as As, for M depends only on 4.

If d<1/2, then M<2d. Hence
B=4ré/(e-1)°

is one of the wanted. Our lemma is established.

Now let w = f(2) be a single-valued regular function in an annulus 1<|z|<e*
(#>0) omitting two values 0 and 1. We use Bohr-Landau’s theorem [2]; if
g(2) is regular in |z| <1 and g(z) =0, 1 there, then

max | g(2) | < exp (Qo,gj,!&it%l) for any 7, 0= 7<1,

1z)=r 1—7

where K is a positive constant (a precise form of Schottky’s theorem). From

this we can prove the following corollary of Lemma 1.

CoroLLARY. There exists a positive constant A not depending on v and j(z)
such that the diameter of the image of |z|=e"? by f(z) with respect to the

chordal distance is dominated by Ae " for sufficiently large p.

Proof. From Bohr-Landau’s theorem, we can see easily that if w = g(2) is

a regular function in 1<|z|<e° (¢>0) such that

g(2)%0,1 and min|g(z)|<a for a positive q,

jz| =€0/2
then there is a positive constant 4 depending only on @ and ¢ such that

max/zig(z) |<b.

z| =€

For a fixed >0, we shall show, supposing x> s, that there exists a positive
o2

number § not depending on u and f(z) such that the image curves of |z| =¢
and |z| =¢""""” by f(2) lie outside at least one of three discs C(0; 8), C(1; §)
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and C(o ; §). In fact, let z; and 2z be points on |z| =¢”? and |z| =¢e""" re-
spectively. Then f(z1) and f(z;) lie outside at least one of three discs C(0; &),
C(1; 4" and C( ; ¢'), where §' is a positive number such that these three
discs are mutually disjoint and hence can be taken independently of x and f(z).
Suppose that f(z1) and f(z) lie outside C( ; ¢'). Then by the fact mentioned
above, we can find a positive 6» such that the image curves of |z|=e"* and
|z| =e*""% by f(2) lie outside C( ; d»). Next suppose that f(z;) and f(z) lie
outside C(1; ¢'). Then we see using the linear transformation which transforms
points w=0, w=1 and w= o to points w=1, w= = and w =0 respectively
that there is a positive ¢, such that the images of |z| =¢"* and |z| =¢*™"* by

f(2) lie outside C(1; 81). Similarly we can find a positive d, and set
0= min {50, 51, 5m>>0.

Obviously this ¢ satisfies our conditions. Now by the maximum principle we
see that the image of e”?<|z|<e*™"* by sf(2) lies outside at least one of
C(0; 8), C(1; 9) and C(co; §). Hence by Lemma 1 we can conclude that the
diameter of the image of |z| =¢** by f(z) with respect to the chordal distance

is dominated by Ase”"“" ™" so that A = Ase®? satisfies our condition.

3. Let E be a Cantor set on the closed interval I,: [ —1/2, 1/2] on the
real axis of the z-plane with successive ratios &, 0<§,=2¢,<2/3. Defining
the Cantor set E, we repeat successively to exclude an open segment from the
middle of another segment and there remain 2" segments of equal length
I1%-1¢r after we repeat » times, beginning with the interval I, We denote
these segments by Inx (n=1,2,...; k=1,2,...,2") and denote by Su,r
(n=12,...; k=1,2,...,2" the following annuli on the complementary
domain 2 of E:

Sne={2; (IIi=1 € (1= Lpr) <lz—2zn| <(TIRZ1 L) (1= £,)/2},

where z,,; is the middle point of Inr. The harmonic modulus g, of Su is
greater than log(2/3¢,). We map S, conformally onto the annulus 1 <|9| <e*"

and consider the inverse image I's: of the circle | 9| ="

on S, . .Supposing
that Sa,r encloses Sp+1,26-1 and Su+1,2%, We denote by 4, the triply connected
domain bounded by three curves I, r, I'n+1,2k-1 and I'niy,26. We now prove

the following
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LemMa 2. Let the successive ratios &, satisfy the condition

limé,=0

n->x

and let w = f(z) be a single-valued regular function in 2 which omits two values
0 and 1 and has E as the set of essential singularities. Then for any sufficiently
small 6 <0, there exists an infinite number of Adur such that the images of the
three boundary components I'nk, Ini1,2k—1 GBA I'nr1,21 are contained completely
in the three discs C(0; 6), C(1; 8) and C( ; §) one by one, where we assume
that these three discs are mutually disjoint, and f(z) takes each wvalue outside

the union of these three discs once and only once in A, k.

Proof. Contrary suppose that there exists only a finite number of 4,
such that their three boundary components are mapped into the three discs
C(0; 8), C(1; 8) and C( ; §) one by one, and denote by 7, the maximum of

7 taken over all such 4,,r. Since

un>log (2/832,) and limé&,=0,

NnN->00
we can take »;=n,, for a fixed ¢>0, so large that for each =,
un> 2+, Ae™"*< K =min{1/24, §/3} and Be *?<1/12,

where A and B are the constants in Lemma 1 and its corollary. The diameter
of the image of 7, with respect to the chordal distance is dominated by
Ae " consequently by K, if #=n, and hence there exists a spherical disc
Cn,r with chordal radius K which contains completely the image f(I's,:). For
n=mn, take 4, with boundary curves I's,k, I'n+1,2k-1 and I'n+y1,2.. Then, since
K < ¢8/3, at least one of C(0; /3), C(1; 8/3) and C(« ; §/3), say C(o ; §/3),
is disjoint from the union of Cu r, Cut1,2k-1 and Cp+y,2 and hence each one of
Chn.k, Cu+1,26-1 and Chrs1,2r cannot be disjoint from the union of the other two,
for, if so for some one, there is z, € 4, such that f(z,) lies outside the union
of Cu,k, Cn+1,2k-1 and Cysy,2% and can be joined to the point at infinity with a
curve A lying outside this union, and we are led to a contradiction that the
element of the inverse function f~' corresponding to z, can be continued ana-
lytically along A up to a point arbitrarily near the point at infinity so that f(z)
takes the value o« in 4, . Therefore we can conclude that

(1°) for every dur, n=n,;, there is a spherical disc with chordal radius
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3 K containing completely the image f(4,,¢).

Next we shall consider I'n,r for #=n;+1. Then 4, and some 4,-1, have
I'n,r as the common boundary and du-1,6 U n U dn,2 D Su,x. From (1°), the
image of dy-1,k0 U InrU 44k, consequently the image of S, &, are contained in a
spherical disc with chordal radius 6 K<1/2, so that, applying Lemma 1 in S,
for d=6K, we see that the diameter of f (I 1) <6 KBe **<K/2. Hence for
n=mn;+1, each boundary component of 4, has the image with diameter less
than K/2. From the same reason as above we now conclude that

(2°) for m=m,+ 1, the image of any 4. is contained in a spherical disc
with chordal radius 3 K/2.

By induction we also see for every p=1 that

(p°) for n=n,+p—1, the image of any 4 is contained in a spherical
disc with chordal radius 3 K/2?7%.

Let 2n,r be the part of 2 bounded by the simple closed curve I'n,r and let
20 be a point of I’y r. Then for any z€8u,r, there is a 4dn:+p,, whose closure
contains z and we can find a chain {dn+i ji)} (6=0,1,..., p; 70) =k, j(p) =q)
joining 4n,r and 4du+p,4. Supposing that n=#,;, we have by (p»°) obtained

above

iam. of f(dp+i,ji)) w.r.t. the chordal distance

b
LS (20),/(2)] = Z}d
b
>

< 3K/2'<12K<1/2.

By means of a linear transformation we can consider from the above that f(z)
is bounded in Q.. On the other hand, E is a linear set of linear measure zero,
so that E is a null-set of the class W (Kametani [4], Ahlfors and Beurling [1]).
Hence each point of the part of E contained in the interior of I's,» must be a
removable singularity of the bounded function f(z); this contradicts our as-
sumption that each point of E is an essential singularity of f(z).

Next suppose that f(z) takes a value w, outside the union of C(0; 4),
C(1; 8) and Cl ; §) at two points 2’ and 2" in 4u,, whose boundary com-
ponents I'nmk, I'ne1,26-1 and I'n+y,2% are mapped into the discs C(0; 8), C(1; 4)
and C(c; §) one by one, and join wo to C(0; §) and C(1; &) with curves A’
and A" respectively, which lie outside the union, do not intersect each other

except at wy and do not pass through any projection of branch points of the
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Riemannian image of 4u,r by f(2z). The elements of the inverse function f~*
corresponding to z’ and 2z’ can be continued analytically along these curves to
their end points and further from them along radii of C(0; ¢) and C(1; §) so
that the curves in 4, corresponding to these continuations join each of z’ and
2" to I'pit,2k-1 and [pey, 26, Where we assume that the images 7n+1, 26~ and
Iyi1,2r are contained in C(0; §) and C(1; ) respectively, and bound with parts
of I'p+1,26-1 and I'y+p,2r a domain not containing /s,x.  Since 4, r has no
boundary other than I'n,k, I'n+1,26-1 and I'ns1,2k, this domain must be a sub-
domain of 4, and f(2) must take the value o there; this is a contradiction.

Our proof is now complete.

4. We note that for each n and * (n=1,2,...; k=1,2,...,2") 4du:
is bounded by I'nk, I'n+1,26-1 and I'n+y,2r and lies on the right-side of 4,
1=k <k We now estimate the harmonic modulus of any doubly connected
domain contained in 4u, U ns1,26-1 U dney,22-1 such that one connected com-
ponent of its complement contains the circles I'n,x and Iy+y,2r and the other
contains the circles I'si2,4k-3 and I'p+2,4k-2. Moving this domain in parallel
so that the right end point of In+1,2:-1 comes to the origin, we see that the

harmonic modulus of our domain is dominated by
log W((Hﬁ:l L) (1— 5n+1)/HZ:} lp) = log 2(1— 5n+1)/5n+1)y

where log 7(P/p) (P, p>0) denotes the harmonic modulus of the normal domain
of Teichmiiller, the complement of the union of the two segments, -p=<x=0,

y=0and PS<x<+ o, y=0 in the z-plane (2 =x+14y). It is well-known that
w(P/p) <1<5—f)i +8,

and we obtain thus the following

LemMma 3. The harmonic modulus of any doubly connected domain considered

above is dominated by log (32/&,+1).

5. Now we shall show the existence of perfect Picard sets. We shall prove

the following

THEOREM. Let E be a Cantor set on the closed interval I,; [ —1/2, 1/2] on
the real axis of the z-plane with successive ratios £a, 0<£4<2/3, If the ratios

&n satisfy the condition
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5n+1 = 0(531)7
then E is a Picard sel.

Proof. We take >0 so small that the discs C(0; 258), C(1; 25) and
C( ; 20) are mutually disjoint. Contrary to our assertion, let us suppose that
there exists a single-valued meromorphic function f(z) in the complementary
domain £ of E which has E as the set of essential singularities and has three
exceptional values at an essential singularity ¢ € E, where we may assume that
these values are 0,1 and . Since our argument given in the below is applicable
locally, it will not bring any loss of generality if we shall give a contradiction
under the stronger assumption that f(z) omits the values 0,1 and « in 2.

Let 7, be so large that Ae /< §/2 for any n=n,. By Lemma 2 there is a
A, (7 =n,) whose three boundary components are mapped into C(0; &), C(1; §)
and C(cc; ) one by one, where we may assume that the boundary curve
Ipi1,26-1 of dar is mapped into C( ; §). Now we consider the quadruply
connected domain D = Anpe U ni,2h-1 U dney, 2-1. The images of the boundary
curves Inte, 4p-3 and I'n+s, 4x-2 of D are contained in some spherical discs C and
C' with radius Ae™""***<§/2 respectively, and we see that C and C' are con-
tained in C(% ; 246). In fact, one of them, say C, must contain the point at
infinity, for otherwise, f(z) must take the value oo in D, and hence is contained
in Cloo; §). Suppose that C’ is not contained in C(e ; 24). Then there is a
point 2 E dnt1,2k-1C D whose image fiz) lies in C(o ; 2§) —C( ; §) UC' and
can be joined the origin or the point w =1 with a path not intersecting the
image of the boundary of 4,4+, 2£-1, so that f(z) takes the value 0 or 1 in
dpy1,2k-1. Contradiction. Thus we can find a positive d such that d<2J and
the disc C( ; d) contains C and C'.

Next we shall prove that f(z) takes each value outside the union of the
three discs C(0; ), C(1: ¢) and C( ; d) once and only once in D. By Lemma
2, f(2) takes each value outside the union of C(0; &), C(1; 8) and C( ; &)
once and only once in 4, , so that the inverse image I of the circle [w,~]1=2¢
on dur is a simple closed curve and separates Inr and In+1,2r from nis, ak-s
and I's+2,4x-2. Now suppose that f(z) takes a value w, outside the union of
C(0; &), C(1; 8) and C( ; d) at two points 2’ and 2" in D, and join w, with
C(0; 6) with a curve 4 which lies outside the union and does not pass through

any projection of branch points of the Riemannian image of D by f(z). The

https://doi.org/10.1017/50027763000012010 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000012010

EXISTENCE OF PERFECT PICARD SETS 221

elements of the inverse function f~' corresponding to 2z’ and 2" can be continued
analytically along 4 to its end point and hence we see that every value on A
is taken by f(2) at least two times in D. Therefore we can assume that w,
lies outside C( ; 25). Then one of 2’ and 2" must lie in the domain D'
bounded by I, I'use,4k-3 and I'+e, 4%-2 and the corresponding element of f' can
be continued analytically to the origin along a curve outside C( ; 24), so that
f(z) takes the value 0 in D'; this contradicts our assumption.

Now we estimate d from below. To this purpose we consider the annulus
R: 2<|w|<y1—d?d corresponding to the annulus 1/v5 >[w, «1>d on the
Riemann sphere Y, which separates C(0; d) and C(1; é) from C( ; d). As
we have seen above, the Riemannian image of D covers R univalently, the ring
domain on D corresponding to R, which has the same harmonic modulus as R,
separates the boundary curves I, r and I'ns+1,2% of D from the boundary curves

In+2 4k-3 and [nis,4k-2 of D. By Lemma 3 we have thus
har. mod. of R=1log(VI—d?/2d) <log(32/&n+1).

Since d<26<n/6, we have the estimate
d= (VI=(a/6)/60)6ns1 = 3 6nsi.

This implies that C' must intersect the disc [w, ©]1=¢,+,/M=m. Consider the
domain 4dy+2, 4x-2 wWhich, with 4,41, 2k-1, has I'n+2,4-2 as the common boundary.
The images of three boundary curves Iniz 4k—-2, [n+s.sk-5 and In+s sk~s Of
du+2,4k-2 are contained in some three spherical discs C' = Chu+2,4%-2, Cn+s -5 and
Chss,sk-4 with radii less than Ae *"** < A'Y&n., respectively, where A’ =y3/2 A.

We may suppose that # is so large that for each p=1,
(12 A’M)zé‘mpuééiup-

Then Chris, k-2 does not contain the point at infinity, since A'V&ni2<m/12, so
that any one of Cpi2, 4k—2, Cu+s,sk—5 and Cyu+s,sk-4 cannot be disjoint from the
union of the other two. By the same reasoning in the proof of Lemma 2 we
see that the image of 4,42 4r-» is contained in a spherical disc with radius less
than 3A'V&,..<m/4. Since this disc intersects the disc [w, coJ=m, it must
lie outside the disc C( < ; m/2). Next we consider the domain 4,+3,s%-5. Each
image of its three boundary curves is contained in a spherical disc with radius

less than
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ANEps < Enia/ 12 M < AN Enia/12 A’ M <m/24,

where we suppose that A'>1/6 M; this does not bring any loss of generality.
The same argument shows that the image of 4,3 sr-5 is contained in a
spherical disc with radius less than /8 and lying outside the disc C( ; m/4).

The same holds for 4n+s3 sx-4. Since, for each p =2,
AN Enip1 = Enip/12 M< AN Eniypl2,

we can conclude by induction that the image of the domain 4,+p+1,4 lying in
the interior of the simple closed curve I'y:s, 4k-2 is contained in a spherical disc
with radius less than /22" and lying outside the disc C( ; m/2?). It follows
that, in the interior of I'n+s, s£-2, f(2) takes values only in a spherical disc with

radius less than
pz m/22* < m /2.
=1

By means of a linear transformation we can consider that f(z) is bounded in
the interior of I'n:s,4r-2; this contradicts our assumption that f(z) has an

essential singularity at every point of £. Our theorem is now established.
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