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Let 2 be a a-algebra of subsets of some set Q and let n :2—»[0, °°] be a a-additive
measure. If 2(j*) denotes the set of all elements of 2 with finite jU-measure (where sets
equal [i-a.e. are identified in the usual way), then a metric d can be defined in 2(ji) by the
formula

d(E, F) = n{E AF) =\\XE- XF\ dp (£, F e 2); (1)

here £ AF = (E\F) U (F\E) denotes the symmetric difference of E and F. The measure ^
is called separable whenever the metric space (2(^t), d) is separable. It is a classical result
that ju is separable if and only if the Banach space L'(ju) is separable [8, p. 137]. To
exhibit non-separable measures is not a problem; see [8, p. 70], for example. If 2 happens
to be the a-algebra of /z-measurable sets constructed (via outer-measure fi*) by extending
H, defined originally on merely a semi-ring of sets F c l , then it is also classical that the
countability of T guarantees the separability of fi and hence, also of Ll(p), [8, p. 69].

There arises the natural question of what form such classical results on separability of
Ll-spaces should take for vector-valued measures. We aim to formulate such results in
this note.

So, suppose that A' is a locally convex space (briefly, lcs), always assumed to be
Hausdorff and sequentially complete. A a-additive map m:2—*X, where 2 is a
a-algebra of subsets of some set Q, is called a (A*-valued) vector measure. A
2-measurable function / : Q —» C is called m-integrable if it is integrable with respect to the
complex measure (m,x') :£>-» (m(E),x'), for £ e 2 , for every x' e X' (the continuous
dual space of X), and if, for every £ e 2 , there exists an element of X, denoted by
J"Efdm, which satisfies (JEfdm,x') = JEfd(m,x ' ) , for every x' e A". The linear space
of all m-integrable functions is denoted by L{m). Let 2.x denote the family of all
continuous seminorms in X or, at least enough seminorms to determine the topology of
X. Each q e 3.x induces a seminorm q{m) in L(m) via the formula

(feL(m)), (2)

where if^ c A" denotes the polar of the unit ball Uq = g~'([0,1]). The seminorms (2), as
q varies through 3.x, define a lc topology r(m) in L(m). Since r(m) may not be
Hausdorff we form the usual quotient space of L(m) with respect to the closed subspace
Pi <7~'({0}). The resulting Hausdorff space (with topology again denoted by t(m)) is

denoted by L\m); it can be identified with equivalence classes of functions from L(m)
modulo /n-null functions, where a function / e L(m) is m-null whenever $Efdin = 0, for
every £ e 2. All of the above definitions and further properties of Ll(m) can be found in
[6].

Let 2(m) denote the subset of L\m) corresponding to {%E\ E 6 2} c L(m). Of
course, elements of 2(m) can also (and will) be identified with equivalence classes of
elements from 2. The formula (1) suggests how to topologize 2(m). Namely, we restrict
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2 WERNER J. RICKER

the L1(m)-topology r(m) to 2(m). That is, each seminorm q(m), where q e SLX, induces a
semi-metric dq on 2(w) by the formula

dq{xE,XF) = q(m)(xE-XF) (E,Fel). (3)

Again r(/n) will denote the uniform structure and topology in 2(m) so defined by the
semi-metrics (3) as q varies through 2tx-

1. Main results. Throughout this section X is a Hausdorff, sequentially complete
lcs. A vector measure m:2-»A" is called separable whenever the topological space
(2(/n), r(m)) is separable. For X = C (or R) this coincides with the classical definition.

PROPOSITION 1. Let m :H—>X be a vector measure.
(i) If the measure m is separable, then the lcs Ll{m) is separable.

(ii) Let the lcs X be metrizable. Then m is separable if and only if L\m) is separable.

Proof, (i) Let B c 2(m) be a countable r(m)-dense set in 2(m). Then the collection
*

£f(B) of all simple functions of the form E <XJXF(J) for k a positive integer, a-, a "rational

complex number" and F(j)eB, l < / < & , is also countable. By the r(/n)-density of the
n

2-simple functions in L (m), [6, Ch.2], it suffices to show that if / = E PJXEU) is a

2-simple function and positive numbers er are given together with seminorms qre3.x,
l<r^k, then there exists an element h e &"{B) satisfying

qr{m){f-h)<er ( l s r s k ) . (4)

Let e = min{er;l<r<A:} and K = max{qr(m)(xn); l s r < * } . Choose "rational
complex numbers" a ; - , l s /<n, satisfying |a)r- /3,| < e/(2nK) for l < / < n . By r(m)-
density of B in 2(m) there exist sets F(y) e B such that, for every ; e {1,2,. . . , n} we
have

dq£E(j), F(j)) = qr{m){xE(i) ~ XFU)) < ej/(2np), (5)

for every l < r < & , where j8 = max{|j8y|; 1 < / < « } . Let h be the element E (XJXFU) °f
5^(5). Since /=1

n n

\f ~ ^\ — 2J \aj~ Pj\ XF(J) + 2-1 10/1 • IZF(/) ~ #£(/)l
/=1 y = l

it follows that

\ f - h \ * e{2nK)-11 ^(>) + p t |^0)-^( / ) | . (6)

Since ^ ( w ) ( ^ 0 ) ) < ^ ( m ) ( ^ n ) , for every l < / < n and l < r < / : , and q(m)(g) =
i(m)(\8\)> f o r everY QZ&x and geL\m)—see (2)—it follows from (5), (6) and the
definitions of K and e that (4) is satisfied.

(ii) If X is metrizable, then 3.x can be chosen to be a countable set. It is then clear
from the definition of x{m) that L\m) is also a metrizable lcs. Since (2(m), r(m)) is a
subset of Ll{m) with the relative topology it follows that (2(m), r(m)) is separable
whenever Lx{m) is separable [8, p. 20]. •
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THE L'-SPACE OF A VECTOR MEASURE 3

It would seem useful to have available a criterion for determining separability. Given
a measure m :2—»X we recall that 2 is called m-essentially countably generated [6, p. 32]
if there exists a countably generated a-algebra 2 0 c 2 such that 2(m) = 20(m).

PROPOSITION 2. Let m:'Z—>X be a vector measure. If 2 is m-essentially countably
generated, then m is a separable measure. In particular, Ll(m) is separable.

The proof of this result relies on the following two facts: the first is straightforward
and the second follows from the first and [3, III Lemma 8.4].

LEMMA 1. (i) Let A be a family of subsets of a set Q. Then the a-algebras of subsets
of Q generated by A U {Q} and by A coincide.

(ii) Let 2 be a countably generated a-algebra of subsets of a set Q. Then there exists a
countable algebra of sets I o c l such that the a-algebra generated by 20 is precisely 2.

Proof of Proposition 2. Let 2,, be a countable algebra of subsets of Q which
m-essentially generates 2. Let m0 denote the restriction of m to 20. Then m0 is a-additive
on 20 and has an extension to a a-additive measure on 2, namely m. It follows from the
equivalence of (i) and (xi) in the Theorem of Extension in [5] (the topology r*(ra) stated
there in (xi) coincides with our r(m); see p. 178 of [5]) that 20 is r(m)-dense in 2 — 2(m).
Accordingly, m is separable. D

COROLLARY 1. Let m:^Z—*X be a vector measure. If 2 is m-essentially countably
generated, then the closed subspace of X generated by the range of m is separable for the
relative topology induced by X.

Proof. The integration map <& given by <&:/'-» Ja/d/n, for f eLl(m), is continuous
from (Ll(m), r(m)) into X. Let Y denote the closed subspace of X generated by the
range, m(2) = {m(E); E €2} , of m. By approximating elements of Ll(m) by 2-simple
functions it is clear that <J>(L'(m))cy and hence, the closure $ (L ' (m) )cy . But, the
formula m(E) = *(^ E ) , for E e 2, shows that actually 4>(L'(m)) = Y.

The proof of Proposition 2 showed that there exists a countable algebra of sets B
which m-essentially generates 2 and such that B is r(m)-dense in 2(m). Then the
collection 5^(B) of "rational" B-simple functions as denned in the proof of Proposition
l(i) is countable and dense in L\m). Clearly the O-image of the set 5^(5) is countable
and contained in Y. So, it suffices to show that elements of ^(/.'(m)) can be
approximated (in X) by elements of <t>(S (̂fi)). That this is the case follows from the
density of Sf(B) in Ll(m) and the continuity of 4>. •

In many situations, the converse of Proposition 2 is also valid. In order to formulate
it we recall some notions from topology. Let A be a topological Hausdorff space and
Y c A. Then [Y] denotes the set of all elements in A which are the limit of some sequence
of points from Y. A set V c A is called sequentially closed if y = [Y]. The sequential
closure Ys, of a set 7 c A, is the smallest sequentially closed subset of A which contains
Y. Alternatively, let Y0=Y. Let Q( be the smallest uncountable ordinal. Suppose that
0 < a / < Q i and that YP has been denned for all ordinals )3 satisfying 0^fi<a. Define

Ya = \ U YA.Then?,= U Ya.

Let si be a family of subsets of a non-empty set Q. Then the a-algebra of subsets
generated by si is denoted by sia. The cardinality of a set B is denoted by #(B).

https://doi.org/10.1017/S0017089500008478 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008478


4 WERNER J. RICKER

LEMMA 2. (i) Let si be an infinite family of subsets of a non-empty set £2. Then the
algebra of sets generated by si has cardinality #(si). Moreover, #(sla) < #(&!)*".

(ii) If Y is a subset of a topological space A, then #{YS) < #( V)*0.
(iii) Let m:H—*X be a vector measure and si c S be an algebra of sets. Then

X(s&a) - {XE\ E e s&o) is contained in the sequential closure of xi^) m tne topological
space 2(m).

Proof, (i) This can be found on pp. 133-134 of [4].
(ii) follows from the transfinite inductive definition of Ys and a modification of the

proof of Theorem 10.23 in [4].
(iii) Recall that sia can be constructed as follows (see [5, p. 180], for example):

beginning with si, let s&t be the system of all sets expressible as the union of increasing
sequences of elements from si; then construct the system siid of intersections of
decreasing sequences in sdh then construct siidi, and so on by transfinite induction all the
way to Q,. At each stage of this procedure the monotone convergence theorem for m,
[6, Ch. II, §4], guarantees that the next family of sets belongs to

We can now formulate a partial converse to Proposition 2 which is applicable to a
large class of vector measures; see Remark 1 below.

PROPOSITION 3. Let m\1.-^X be a vector measure such that its range m(2) is
metrizable for the relative topology from X.

(i) Let si c l be an algebra of sets. Then s$a = sls, meaning that xi^-o) and xi^-)s
coincide as subsets o/2(m). In particular, sts is a o-algebra of sets.

(ii) The measure m is separable if and only ifi is m-essentially countably generated.

Proof, (i) The inclusion sla c. sis follows from Lemma 2(iii). To establish the
reverse inclusion it suffices to show that sia is sequentially closed. So, let E(n),
/i = 1,2,. . . , be elements of sia such that ^ £ ( n ) -* / in L\m). Since 2(m) is r(m)-
complete by [7, Proposition 1], it follows that / = ̂ £ for some E e Z . An examination of
the proof of Proposition 1 in [7] shows that there exists a sequence of continuous
seminorms {<?*}*=i in X such that corresponding semi-metrics {dqk}^=x given by (3)
induce the metrizable topology on m(Z). Arguing as in the proof of [6, II Section 1,
Corollary 2] it follows that there exists a finite positive measure A on 2, with the same null
sets as m, satisfying A(F)-»0 whenever <7Ar(w)(F)-»0 for each A: = 1 ,2 , . . . .
Accordingly, k(E(n) AE)—>0 as n—>°°. Then there is a subsequence {E(nr)}™=l of
{£(rt)}"=1 such that X£(np)~*Z/r> A-a.e. and hence m-a.e. It follows that E e sia.

(ii) One direction is clear from Proposition 2. Conversely, suppose that m is
separable. Then 2(/n) has a countable dense set. By Lemma 2(i) the algebra of sets that it
generates, say si, is also countable (and still dense). By part (i), sia = s2s. Since 2(w) is
metrizable the sequential closure of si coincides with its r(m)-closure. Accordingly,
2(m) = sia and so l(m) is m-essentially countably generated. •

REMARK 1. Many lc spaces X, themselves not necessarily metrizable, have the
property that their bounded sets are metrizable; see [7], for example. In such spaces,
every vector measure m:!,—>X necessarily has metrizable range and hence is separable if
and only if 2 is m-essentially countably generated.
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THE L'-SPACE OF A VECTOR MEASURE 5

REMARK 2. An essential ingredient in the proof of Proposition 3(i) was the existence
of a finite, non-negative measure A with the same null sets as m and having the property
that XE(n)—*XE in 2(m) implies A(£(/r) A£)-»0. There are other instances when such a
measure A exists without the range m(Z) being metrizable. For example, let I be a
Banach space and LS{X) be the space of all continuous linear operators of X into itself,
equipped with the strong operator topology. Let P :2 —*LS(X) be a spectral measure,
that is, a cr-additive measure satisfying P(Q) = / (the identity operator on X) and
P(W DF) = P(E)P(F), for every £ , F 6 2. If X is non-separable then, except for trivial
cases, P(2) is not metrizable for the strong operator topology. Suppose that a separating
vector x e X exists for P; that is, P(E)x = 0 implies P(E) = 0. For example, cyclic vectors
are always separating. By a classical result of W. Bade [1, Theorem 3.1] there exists
x' e A" such that the (finite) measure A= (P(.)x,x') is non-negative on 2 and satisfies
P{E)x = 0 whenever A(£) = 0. Since x is separating we have P(E) = 0 if and only if
A(£) = 0. Moreover, if q(P)(E(n))—>0, for all continuous seminorms q in Ls(X), then
also P(E(n))-*0 in Ls(X) from which it is clear that A(E(n))^0. So, Proposition 3(i)
holds for any spectral measure P with a separating vector.

REMARK 3. An essential ingredient in the proof of Proposition 3(ii) was the fact that
the sequential closure s&s was all of 2(/n). Here, the metrizability of 2(m) was used. The
following example shows that this condition cannot be removed in general.

EXAMPLE 1. Let Ar = C|01' denote the vector space of all C-valued functions on
Q = [0,1] equipped with pointwise operations. For each w e Q , define a seminorm
q,o :/>-» \f(co)\, for / e X. The seminorms qm((o e Q) determine a complete lc Hausdorff
topology on X. Bounded subsets of X are not necessarily metrizable.

Let Z denote the a-algebra of all subsets of Q. Then the set function m:2—*X
defined by

XE, Eel, (7)

is a-additive. Moreover, every function i^:Q—»C belongs to Ll(m). Indeed, \Exj)dm =
XEip, E e 2. It is routine to check that the topology x{m) is precisely that of X and hence,
(L\m), x(m)) is isomorphic to X.

Now, the space (2(m), x{m)) can be identified with {0,1}" equipped with its product
topology. Since #(Q) = c the space 2(m) = {0, l } n is separable. Let si be any countable
algebra of sets whose r(m) closure is 2(m). By Lemma 2(ii) we have # ( X ( ^ ) J ) ^ K J 5 " <
#(2(m)) and so the sequential closure $i.s cannot be all of Z(m).

REMARK 4. Example 1 is of interest for other reasons. We say that an algebra si of
subsets of Q = [0,1] separates points of Q if, whenever u and v are distinct points of Q
there is a set A € M such that AC\{u,v) is a singleton. The following observation is
straightforward to check.

FACT 1. Let X be the Ics of Example 1. Let 2 be any o-algebra of subsets ofQ = [0,1]
and m :2—»X be the vector measure given by (7). Then Ll(m) is precisely the space of all
C-valued, "Lrmeasurable functions on Q, equipped with the relative topology from X.

(i) / / there exists a countable subalgebra of 2 which separates points of Q, then
(2(m), T(WI)) is separable; that is, m is a separable measure.
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(ii) Suppose that 2(m) (which equals 2 as there are no non-trivial m-null sets) is
x(my separable. If 2 contains all finite subsets of Q, then there is a countable algebra
^ c l such that s£ separates points of Q.

Using Fact 1 it is clear, when 2 is the a-algebra of Borel subsets of Q, or the
Lebesgue measurable subsets of Q, or the universally measurable subsets of Q, that the
measure m given by (7) is always separable and hence, so is Ll(m). However, if 2 is the
a-algebra of countable and co-countable subsets of Q, then it can be shown that 2 is not
countably generated, m is not separable and Lx(m) is not separable (use the fact that if
/ e L\m), then/is constant on the complement of some countable set). Another example
of this phenomenon occurs for the measure P of Example 2 below.

A further feature of the class of measures given by (7) is the following observation
(which does not follow from Proposition 3(i)).

FACT 2. Let X be the Ics of Example 1. Let 2 be any a-algebra of subsets ofQ = [0,1]
and m :2—»X be the vector measure given by (7). Then the sequential closure 2^ (taken in
X) is actually a o-algebra.

Proof. By Lemma 2(iii) it follows that 2 £2^. Conversely, suppose that {£(n)}"=1 is
a sequence of sets from 2 which converges to / i n Ll(m); that is, X£(«)~*/in CQ. It is then
clear that f = XE for some set E c Q. But, the pointwise limit of a sequence of
2-measurable functions is 2-measurable and so E e 2. Continuing this argument via the
transfinite inductive definition of % we conclude that 2, c 2. •

As a simple consequence, let 2 be the Lebesgue measurable sets in [0,1]. With X as
in Example 1 and m :2—>X given by (7) we have seen that 2(m) = 2 is separable. Let d
be a countable algebra of sets in 2 whose r(m)-closure is 2. By Fact 2 we note that sis

(taken in X) is a a-algebra. However, Ms =£ 2. This follows from Lemma 2(ii) and the fact
that#(2) = 2c.

REMARK 5. The results of this section suggest the following two natural questions.
(i) Do there exist a Ics A', a measure m:2—»X and an algebra of sets i c l such

that s&s is not sequentially closed in 2(m)?
(ii) Do there exist a Ics X and a measure m :2—»X such that m is not a separable

measure but Ll(m) is separable?
It may be worth noting that Example 1 does not answer Question (ii). For, if X is the

Ics given there and 2 is any a-algebra of subsets of Q = [0,1], then m :2-» X (given by
(7)) is a separable measure if and only if L\m) is separable. Indeed, suppose that L\m)
is separable. Considering only IR-valued functions, let ^ c L ' ( m ) be a countable dense
set and, for fe&, set £ ( / ) = {(o e Q;f(<o) > \}. It turns out that D = {x£ ( / ) ; / e &} is a
(countable) dense set in 2(m). The case for C-valued functions then follows. The
converse claim follows from Proposition l(i). The fact that Q is the interval [0,1] is not
important. Indeed, if Q is any non-empty set and X = Ca (with the pointwise
convergence topology), then a similar argument shows that a vector measure w:2—•A'
(with 2 a a-algebra of subsets of Q) of the form (7) is separable if and only if Lx(m) is
separable.

2. Operator-valued measures. Let X be a Ics and T e L(X) be a scalar-type spectral
operator. Such an operator T has a unique (equicontinuous) spectral measure
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PT:9&(C)->LS(X), such that the identity function A (on C) is Pr-integrable and
T = | c A dPT. Here S8(C) is the cr-algebra of Borel subsets of C. The measure PT is called
the resolution of the identity for T. So, Ll(PT) is always r(Pr)-separable. Under certain
completeness assumptions on the lc spaces LS(X) and Ll(PT) it turns out that L}{PT) is
isomorphic to the strong operator closed algebra in LS(X) generated by the range of the
resolution of the identity for T; see [2]. Accordingly, this algebra of operators is
necessarily separable for the strong and hence also the weak operator topology. It may be
worth noting that for X a Banach space it is known that L\PT) coincides with LT{PT) as
a vector space. Accordingly, L°°(PT) is always ^P^-separable. Of course, it is rarely
separable for the Pr-essential sup-norm topology given by

II/IU = inffll/zdL; E e Z, PT(E) = I}, for / e L"(PT).

To treat operator algebras generated by arbitrary complete and a-complete Boolean
algebras of projections (by realizing the Boolean algebra as the range of a spectral
measure) it is necessary to consider a-algebras more general than S8(C). The results of
this section are formulated for arbitrary operator-valued measures, not just spectral
measures.

An operator-valued measure is any set function P:2—»LS(X), with domain a
a-algebra of subsets of some set Q, which is a-additive. The topology of LS(X) is
generated by the seminorms

, TeL(X), (8)

for every x eXand q e 2LX. The continuous dual space of LS{X) consists of all finite linear
combinations of functionals of the form

'), TeL(X), (9)
for arbitrary x eX and x' eX'. For each x eX, let Px:2-*Xdenote the vector measure
Px:E^P(E)x, for£eZ.

The main question is the connection between the separability of the operator-valued
measure P and that of the family of (generally simpler) A'-valued measures Px,x eX,
from which P is synthesized.

PROPOSITION 4. Let X be a Ics and P: Z-» LS(X) be a measure. If P is separable, then
each induced X-valued measure Px .H—*X, x eX, is also separable. If, in addition, X is
metrizable, then each space Ll(Px), x eX, is x{Px)-separable.

Proof. Fix x e X. Since each P-null set is also Px-null, it follows that the natural
mapO:2(P)-»2(Pjc) which sends the P-equivalence class, [E]P, of Eel,, to the
P*-equivalence class [E]Px is well-defined and onto. Since the continuous image of a
separable space is separable it suffices to show that * is continuous.

A typical T(PJC) semi-metric is of the form

dq(E,F) = sup{\(Px,x')\(EAF);x'eU°q}, E,FeX, (10)

where qeSLx and (PJC,JC') is the C-valued measure (Px, x') :£>-» (P(E)x,x'), for
E eZ. A direct calculation shows that, for every x' e lfq, the functional %xX given by (9)
belongs to the polar set U°qx, where qx is the seminorm (8). Since the measures (P, kxx)
and (Px,x') coincide, it follows that the right-hand-side of (10) does not exceed
sup{|(P, |> | (£ AF) ;£eL^} = dqx{E,F); that is, we have the inequalities dq{E,F)<
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dqx(E, F), for E, F e 2, for every q e Qx. Since each qx is continuous it follows that dqx is
one of the semi-metrics generating r(P). This shows that <D is continuous.

The statement concerning the separability of each space L\Px), x e X (in the event
that A" is metrizable), follows from Proposition 1. •

In practice, a converse statement to that of Proposition 4 would be more useful.
Unfortunately, no such statement is valid, even for X a "nice" space (eg. a Hilbert
space).

EXAMPLE 2. We exhibit an operator-valued measure P:H—* L(X) such that
(i) P is not a separable measure,

(ii) L\P) is not a separable space, but
(Hi) each measure Px,x eX, is separable and each space L\Px) is separable.
Indeed, let X = 12(Q), where Q is a set with c < #(Q), and let 2 be the a-algebra of

all subsets of Q. For each E e 2, let P(E) e L(X) denote the operator in X of pointwise
multiplication by %E; here we interpret elements of X as functions *:Q—»C such that
£ |;t(a>)|2<°°. Then P:S—>L(X), so defined, is an operator-valued (even spectral)

measure.
Fix x e X. Then Px is the X-valued measure PX:E<->XXE, for £ e 2 . The space

Ll{Px) can be identified with all functions T/>:Q-»C for which the product function xpx
belongs to X, with integrals given by \E ip dPx = ipxxE, for E e 2. Since 2.x consists of a
single norm, denoted by ||.||2, the space L'(PJC) is a normed space with norm \\.\\x given
by

VeL'(Pr) . (11)

We have used the formula (2) and identified A" with X. But, a direct calculation shows
that \(Px,x')\ is the measure Ei-^>'Zu,e£iXE(O») \X((O)X'((O)\, for Eel, where the sum
consists of countably many terms (since xx' e /'(£2) implies that there are only countably
many points coeQ for which x(u>)x'((o)¥=0). It follows from this fact and (11) that
IIVlL = Wxtyh, for il>eL\Px). N o w , xeX impl ies t ha t Z(x) = {co e Q;x(co)^0} is a
countable set. Furthermore, the metric dx determining the topology x{Px) is given by

dx{E, F) = \\xE -XFWX = \\(XE ~ XF)X\\2, E,FeZ.

Since any function h: Q-» C such that Z{h) D Z(x) - (f> is Px-nu\\, the set (of equivalence
classes) 2(Px) is countable. Accordingly, Px is a separable measure. By Proposition 1
also L\Px) is separable. This establishes (iii).

As a linear space we can identify L\P) with the space f°(Q). Indeed, every/ e/°°(Q)
has indefinite integral given by £>-» jEfdP, Eel., where jjEfdPeL(X) is the operator
in X of pointwise multiplication by XEI- We consider an equivalent family of seminorms
generating the topology r(P); see [6;, Ch. II Sections 1-2]. Recalling that Qx = {||.||2}
this family of seminorms can be specified as

dP)x • = ||JC/||2, feL\P), (12)
11 \JE ' 2 -1

for every x e X.
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Let Y = f°(Q), equipped with the topology of pointwise convergence on Q. This is a
lcs with topology determined by the seminorms q>*-* \q>(cj)\, (p e Y, for each <oeQ.
Given OJ e Q, the element e(U = #{a), of X satisfies

\\ej\\l = £ \em(s)f(s)\2 = \f((o)\2, f € Ll(P),

and so (12) shows that the identity map from L\P) onto Y is continuous. Now, Y is a
dense subspace of the lcs Z = Cn, equipped with the pointwise convergence topology on
Q or, equivalently, the product topology. Since Z is non-separable (as c < #(£2)) it
follows that Y, hence also Ll(P), cannot be separable. This is (ii). Then (i) follows from
Proposition 1. D

ACKNOWLEDGEMENT. I wish to thank Drs Susumu Okada and David Fremlin for
valuable discussions on this topic.

ADDENDUM. Shortly before the proofs of this paper arrived Dr D. Fremlin (private
communication) showed that the answer to Question (ii) of Remark 5 is negative. Indeed,
the seminorms q{m), given by (2), are Riesz seminorms. Accordingly, if & is dense in
L\m) and A(f) = {(o; \f(co) - 1| < 5} then, for U-valued / , we have

q(m)(xE ~ XA(f))^2q(m)(xE ~ f)

for every £ e 2 , / e f and continuous seminorm q in X. It follows (even for C-valued / )
that {XA(/)', f e &} is dense in 2(m). Accordingly, Proposition 1 can be improved as
follows.

PROPOSITION 1 A. Let X be a Hausdorff, sequentially complete lcs. Then m is separable
if and only if L\m) is separable.
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