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Abstract

Let p be an odd prime and let G be a finite p-group such that xZ(G) ⊆ xG , for all x ∈G \ Z(G), where
xG denotes the conjugacy class of x in G. Then G has a noninner automorphism of order p leaving the
Frattini subgroup Φ(G) elementwise fixed.
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1. Introduction

Let p be a prime number and let G be a nonabelian finite p-group. By a celebrated
result of Gaschütz G admits noninner automorphisms of p-power order [4]. But
the existence of a noninner automorphism of order p for G is a long-standing
conjecture for which there is as yet no counterexample [8, Problem 4.13]. The
validity of the conjecture, when G is a regular p-group, follows from a cohomological
result of Schmid [9]. Abdollahi [2] has established it when G/Z(G) is powerful.
Deaconescu and Silberberg [3] proved that a finite p-group G satisfying the condition
CG(Z(Φ(G))) , Φ(G) has a noninner automorphism of order p leaving the Frattini
subgroup Φ(G) elementwise fixed. Liebeck [6] has shown the same result when G is an
odd order p-group of class 2. In [1], Abdollahi has shown that every 2-group of class
2 has a noninner automorphism of order two fixing Φ(G) or Ω1(Z(G)) elementwise.

Let G be a finite p-group and N be a nontrivial proper normal subgroup. Then
(G, N) is called a Camina pair if xN ⊆ xG for all x ∈G \ N, where xG denotes the
conjugacy class of x in G. The main result of this paper is the following theorem.

T 1.1. Let p be an odd prime and G be a finite p-group such that (G, Z(G)) is
a Camina pair. Then G has a noninner automorphism of order p leaving the Frattini
subgroup Φ(G) elementwise fixed.
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Before embarking on the proof, it may be worthy of remark that Yadav has verified
the divisibility conjecture for automorphisms of p-groups, when (G, Z(G)) is a Camina
pair [10]. This conjecture states that for every nonabelian finite p-group G, it follows
that |G| divides |Aut(G)|.

2. Proof

Let G be a finite p-group. By d(G), M(G) and Ω1(G) we denote the minimum
number of generators of G, the set of all maximal subgroups of G and the subgroup
of G generated by all elements of order p, respectively. For x ∈G, {[x,G]} denotes
the set {[x, g] | g ∈G}. Any other unexplained notation is standard and follows that of
Gorenstein [5].

The following lemmas are well-known results and can be verified easily.

L 2.1. Let n ∈ N, x ∈ Z2(G) and y ∈G. Then:

(i) (xy)n = xnyn[y, x]n(n−1)/2;
(ii) [xn, y] = [x, y]n = [x, yn].

L 2.2. Let G be a finite p-group, M be a maximal subgroup of G and g ∈G \ N.
Let u ∈ Z(M) such that (gu)p = gp. Then the map α given by g 7→ gu and m 7→ m,
for all m ∈ M, can be extended to an automorphism of G and order p that fixes M
elementwise.

P  T 1.1. Let (G, Z(G)) be a Camina pair and assume that G is a
counterexample to the theorem.

First note that Z(G) < Z(M) and CG(M) = Z(M), for all M ∈M(G) [3, Remark 2].
Then we show that Z2(G) is abelian. It follows from [7, Theorem 2.2] that

Z2(G)/Z(G) is elementary abelian. Therefore xp ∈ Z(G) whenever x ∈ Z2(G). Since
Φ(G) = GpG′, Lemma 2.1 implies that Z2(G) ≤CG(Φ(G)). On the other hand, by
the main result of [3], CG(Z(Φ(G))) = Φ(G). Therefore CG(Φ(G)) = Z(Φ(G)) and
consequently Z2(G) is abelian.

Next, we claim that |Z(G)| = p and Z(M) ≤ Z2(G), for all M ∈M(G). Let M ∈
M(G), g ∈G \ M and x ∈ Z(M) \ Z(G). Since gp ∈ M,

{[x,G]} = {[x, 〈g〉M]} = {[x, gi] | 1 ≤ i ≤ p}.

Thus {[x,G]} has at most p elements. By assumption Z(G) ⊆ {[x,G]}. Therefore
Z(G) = {[x,G]} and the claim follows.

After this, we prove that Ω1(Z2(G)) \ Z(G) , ∅. It follows from [10, Theorem 3.1]
that d(Z2(G)/Z(G)) = d(G). Since Z2(G) is abelian,

d(Ω1(Z2(G))) = d(Z2(G)) ≥ d(Z2(G)/Z(G)) ≥ 2.

Now the assertion follows because |Z(G)| = p.
Finally, take u ∈Ω1(Z2(G)) \ Z(G) and let M = CG(u). Then M ∈M(G) and if

g ∈G \ M, it follows from Lemma 2.1 that (gu)p = gp. By Lemma 2.2, the map α
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given by g 7→ gu and m 7→ m, for all m ∈ M, can be extended to an automorphism of
order p. By assumption for some x ∈G, α = θx, the inner automorphism induced by x.
Since α is the identity on M, we must have x ∈CG(M) and therefore x ∈ Z(M) ≤ Z2(G).
This means that u = g−1gα = [g, x] ∈ Z(G) and contradicts our choice of u. The proof
is complete.
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