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We numerically investigate both single and multiple droplet dissolution with droplets
consisting of less dense liquid dissolving in a denser host liquid. In this situation,
buoyancy can lead to convection and thus plays an important role in the dissolution
process. The significance of buoyancy is quantified by the Rayleigh number Ra, which
is the buoyancy force over the viscous damping force. In this study, Ra spans almost
four decades from 0.1 to 400. We focus on how the mass flux, characterized by the
Sherwood number Sh, and the flow morphologies depend on Ra. For single droplet
dissolution, we first show the transition of the Sh(Ra) scaling from a constant value
to Sh ∼ Ra1/4, which confirms the experimental results by Dietrich et al. (J. Fluid
Mech., vol. 794, 2016, pp. 45–67). The two distinct regimes, namely the diffusively
and the convectively dominated regimes, exhibit different flow morphologies: when
Ra > 10, a buoyant plume is clearly visible, which contrasts sharply with the pure
diffusion case at low Ra. For multiple droplet dissolution, the well-known shielding
effect comes into play at low Ra, so that the dissolution rate is slower as compared
to the single droplet case. However, at high Ra, convection becomes more and more
dominant so that a collective plume enhances the mass flux, and remarkably the
multiple droplets dissolve faster than a single droplet. This has also been found in
the experiments by Laghezza et al. (Soft Matt., vol. 12 (26), 2016, pp. 5787–5796).
We explain this enhancement by the formation of a single, larger plume rather than
several individual plumes. Moreover, there is an optimal Ra at which the enhancement
is maximized, because the single plume is narrower at larger Ra, which thus hinders
the enhancement. Our findings demonstrate a new mechanism in collective droplet
dissolution, which is the merging of the plumes, which leads to non-trivial phenomena,
contrasting the shielding effect.
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1. Introduction
Droplet dissolution dynamics is essential to many natural and industrial processes,

such as coating, self-cleaning, surface spraying, etc. (Cazabat & Guena 2010; Bhushan
& Jung 2011; Lohse & Zhang 2015). It is also relevant to the extraction process
used in drug delivery (Chou et al. 2015). Droplet dissolution is in many ways similar
to droplet evaporation, which has been studied extensively over the past decades
(Picknett & Bexon 1977; Deegan et al. 1997; Popov 2005; Shahidzadeh-Bonn et al.
2006; Cazabat & Guena 2010; Gelderblom et al. 2011; Erbil 2012; Stauber et al.
2015; Hatte et al. 2019; Pandey et al. 2019), and it is also analogous to bubble
dissolution or growth (Epstein & Plesset 1950; Enríquez et al. 2014). The basis
of all these physical processes is the same, namely the mass gain or loss of the
bubble or droplet being proportional to the concentration gradient at the interface,
with the concentration field outside the drop or bubble being determined by the
advection–diffusion process.

The pioneering work by Epstein & Plesset (1950) formulated the classical
calculation for the diffusive growth or shrinkage of a gas bubble. In the theory,
they consider a single spherical bubble dissolving in the bulk by pure diffusion, and
the concept can be directly applied to the case of droplet dissolution (Duncan &
Needham 2006). Epstein & Plesset solved the diffusion equation for the spherically
symmetric case, obtaining the mass transfer rate ṁ as

ṁ=
dm
dt
=−4πR2D(cs − c∞)

{
1
R
+

1
(πDt)1/2

}
. (1.1)

It depends on the droplet radius R, the mass diffusivity D, the saturation concentration
on the surface of the droplet cs, the bulk concentration c∞ and the time t. However,
in many circumstances, the droplets are sitting on the substrate instead of staying
inside the bulk. To cope with that geometry, Popov (2005) has extended the Epstein–
Plesset (EP) theory to also be able to tackle sessile droplets (with the quasi-static
approximation, i.e. the diffusion equation reducing to a Laplace equation),

dm
dt
=−

π

2
LD(cs − c∞)f (θ), (1.2)

where

f (θ)=
sin θ

1+ cos θ
+ 4

∫
∞

0

1+ cosh 2θε
sinh 2πε

tanh[(π− θ)ε] dε (1.3)

is a correction factor depending on the contact angle θ and L is the footprint diameter
of the droplet.

In general, for droplet dissolution on a substrate, there are different dissolution
modes, which can lead to different dissolution dynamics, such as constant contact
angle, constant contact area, or stick–jump mode (Picknett & Bexon 1977; Stauber
et al. 2014; Dietrich et al. 2015; Zhang et al. 2015).

However, the real situation encountered in daily life often differs a lot from the
classical set-up of an isolated single-component drop in an infinite or semi-infinite
domain. An example is multi-component dissolution (Chu & Prosperetti 2016; Lohse
2016). For a multi-component drop dissolving in a host liquid, there is formation of
Marangoni flow caused by the variation of surface tension over the droplet surface,
which in addition can influence the behaviour of emulsification (Tan et al. 2019).
Similarly, the Marangoni flow also plays a crucial role in multi-component sessile
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droplet evaporation (Scriven & Sternling 1960; Tan et al. 2016; Diddens et al. 2017;
Kim et al. 2017; Edwards et al. 2018; Li et al. 2018b, 2019).

Other complicating factors that should also be taken into account are of geometrical
nature. Bansal, Chakraborty & Basu (2017a) and Bansal et al. (2017b) studied the
effect of confinement in the evaporation dynamics of sessile droplets, in which they
showed that, regardless of the channel length, there are some universal features of
the droplet’s temporal evolution. Xie & Harting (2018) studied how the liquid layer
surrounding the immersed droplet influences the dissolution time. They showed that
dissolution slows down with the increasing thickness of the surrounding liquid layer.
Li et al. (2018a) studied the dissolution of binary droplets with entrapment of one
liquid by the other, from which they reveal a slowed-down dissolution process, due
to partial blockage of the more volatile liquid by the less volatile one.

Next to diffusive processes, convection can play a key role in droplet dissolution.
When droplets made of a less dense liquid dissolve into a denser surrounding liquid,
for a large enough droplet, buoyancy can become dominant and the dissolution is no
longer purely diffusive. An example is a large enough droplet composed of long-chain
alcohols dissolving in water (Dietrich et al. 2016). As the density of the alcohol–water
mixture is considerably less than that of water, the dissolution process can lead to
solutal convection, which can considerably shorten the lifetime of the droplet. The
dimensionless parameter quantifying the significance of the buoyancy force over the
viscous force is the Rayleigh number Ra. Dietrich et al. (2016) find that, for Ra >
12.1, regardless of the type of alcohol, the Sherwood number Sh, which is the non-
dimensional mass flux, follows the same scaling relationship, Sh∼ Ra1/4.

Another crucial factor that affects the dissolution rate is collective effects (i.e. the
effect of the neighbouring droplets). When there are multiple droplets, one expects
that the presence of the neighbouring droplets leads to shielding effects, as are indeed
seen in Carrier et al. (2016), Laghezza et al. (2016), Bao et al. (2018) and Wray,
Duffy & Wilson (2019). As a result, the lifetime for multiple droplets becomes longer
than that for a single droplet. The shielding effect has also been studied in the case
of collective microbubble dissolution by Michelin, Guérin & Lauga (2018). These
authors have constructed the theoretical framework to account for such purely diffusive
shielding effects; but, for collective effects affected by convection, many questions
remain open. Laghezza et al. (2016) have experimentally studied collective droplet
dissolution in the regime in which convection is relevant. They report that, remarkably,
the neighbouring droplets can enhance the mass flux because of enhanced buoyancy-
driven convective flow in the bulk, but the detailed fluid dynamics of the process
remains to be elucidated. This is not possible in Laghezza et al. (2016) because the
lattice Boltzmann simulations employed in that paper do not include convection and
the underlying mechanism could thus not yet be elucidated.

In this study, we investigate both single and multiple droplet dissolution by
numerical simulations, with convection being considered in all cases. The structure
of the paper is as follows. In § 2 we introduce the numerical method for simulating
droplet dissolution. In § 3 we provide the code verification. We then present the
results and discussions, first for the single droplet case (§ 4) and then for multiple
droplets (§ 5). In § 6 the conclusions and an outlook are given.

2. Numerical method and parameters

The simulation of droplet dissolution consists of two parts. The first is the coupled
solution of the velocity field ũ(x, t), the (kinematic) pressure field p̃(x, t) and the
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concentration field c̃(x, t) for the outside of the droplets, using the three-dimensional
Navier–Stokes equations, the advection–diffusion equation and the incompressibility
condition within the Oberbeck–Boussinesq approximation:

∂tũ+ (ũ · ∇)ũ=−∇p̃+

√
Sc
Ra
∇

2ũ+ c̃, (2.1)

∂tc̃+ (ũ · ∇)c̃=
√

1
RaSc
∇

2c̃, (2.2)

∇ · ũ= 0. (2.3)

The two dimensionless control parameters are the Rayleigh number,

Ra=
gβccsR3

0

νD
, (2.4)

and the Schmidt number,
Sc=

ν

D
. (2.5)

Here g, βc, cs, R0, ν and D are the gravitational acceleration, the solutal expansion
coefficient, the saturation concentration of the solute, the initial droplet radius, the
kinematic viscosity and the diffusion coefficient, respectively. Equations (2.1) and
(2.2) are already made dimensionless using the initial droplet radius R0, the free-fall
velocity uff =

√
βcgcsR0 (and the corresponding time tff = R0/uff ) and the saturation

concentration cs, such that the dimensionless radius, radial distance, velocity, time
and concentration are related to the dimensional ones in the way R̃= R/R0, r̃= r/R0,
ũ= u/uff , t̃= t/tff and c̃= c/cs.

The second part of the solver involves the equation that governs the dynamics of
the droplet dissolution, i.e. the rate of change of the droplet radius. In this study we
assume that the dissolution is in the constant contact angle mode at 90◦. Therefore,
the temporal change of the dimensionless droplet radius does not contain the explicit
contact angle dependence and can be written as

dR̃
d t̃
=

cs

ρd

1
√

RaSc

〈
∂ c̃
∂ r̃

∣∣∣∣
r̃=R̃

〉
S

. (2.6)

Here ρd and 〈·〉S represent the density of the droplet and the averaging over the
entire surface of the droplet, and (∂ c̃/∂ r̃)|r̃=R̃ is the outer concentration gradient at
the boundary of the droplet.

We solve the equations using the second-order finite difference method with a
fractional-step third-order Runge–Kutta (RK3) scheme (Verzicco & Orlandi 1996;
van der Poel et al. 2015). To impose the interfacial concentration of the immersed
droplet(s), the moving least squares (MLS) based immersed boundary method (IBM)
has been used (Spandan et al. 2017). For this method, the boundary of each droplet
is represented by a network of triangular elements (see inset of figure 1a) and the
movement of those elements is governed by (2.6), in which the concentration gradient
on the surface of the droplet (∂ c̃/∂ r̃)|r̃=R̃ can be computed through interpolating the
concentration at the probe located at a short distance (within the region where
concentration varies linearly with distance) outside the droplet.

The boundary condition at the surface of the droplet(s) is set to be the saturation
concentration cs for the concentration field, while it is assumed to be no-slip and
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(a) (b) (c) g

FIGURE 1. (a) Schematics for triangulated Lagrangian meshes for the immersed boundary
method. The configuration of multiple droplets with 2× 2 array is shown in (b) and 3× 3
array in (c).

no-penetration conditions for the velocity field (note that the convective flow develops
above the droplet surface but not exactly at the droplet surface), disregarding any
possible flow in the droplet. For the Cartesian container, the boundary condition
for the concentration field is taken as no mass flux at all walls, except the outflow
boundary condition taken for the top wall. The boundary conditions for the velocity
field are taken as (i) no slip at the bottom wall, (ii) periodic at the sidewalls and
(iii) outflow boundary condition for the top wall, which is done by setting the
vertical gradient of all the velocity components to be zero. It is worth noting that
the advantage of using the outflow boundary condition at the top wall is to minimize
the finite domain size effect. It is especially useful in the situation of large Ra where
upward-moving plumes are observed, as this outflow boundary condition prevents an
artificial accumulation of solute over the domain.

In this study, we focus on the cases of large Schmidt number, namely Sc = 1200
as for long-chain alcohol dissolving in water, as done in the experiments of Dietrich
et al. (2016). These simulations are challenging because the mass diffusivity is much
smaller than the viscous diffusivity, and thus the resolution for the scalar field is more
demanding than that for the velocity field, implying that – if the same grid is used for
all fields – the resolution for the most time-consuming momentum solver and pressure
solver becomes redundant. To overcome this challenge, we use the multiple-resolution
strategy to solve the momentum and the scalar equations (Ostilla-Mónico et al. 2015).
In all cases, the size of the domain is 16R0× 16R0× 16R0. The mesh of 144× 144×
144 is used to resolve the velocity field, whereas the mesh for the concentration field
has been doubled, which is 288× 288× 288. This mesh might appear still small for
Sc= 1200. In our case, however, we have a very small Ra; therefore the total Péclet
number Pe=

√
RaSc, which rules the scalar diffusivity, remains smaller than 700.

We will present the result of droplet dissolution for Rayleigh numbers spanning
almost four decades (0.1 6 Ra 6 400) and for Sc fixed at 1200. As seen from
(2.6), the dynamics of the dissolution is also governed by the ratio of the saturation
concentration to the density of the droplet, cs/ρd. Here we consider the particular
case where cs/ρd = 0.027, corresponding to 1-pentanol in water.

Apart from the single droplet dissolution, we also investigate convection in the
situation of multiple droplets. Two different multiple droplet configurations, namely
2 × 2 and 3 × 3 droplet arrays, have been explored. In both cases the droplet
separation (measured from the edge of the droplet) equals half of the droplet initial
radius (see figure 1 for the illustration of the set-up).
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FIGURE 2. (a) Numerical results (red curve) for the droplet radius as a function of time
for pure diffusion, compared to the EP theory (black dashed curve), with the correction
term proposed by Popov (2005). (b) Nusselt number Nu versus time t for the case of a
constant-temperature spherical object, where the black squares denote the dataset given by
Musong et al. (2016) and the blue curve is the result from our simulation.

3. Code verifications
Before presenting the results, we first verify our code against the analytical solution

and the existing results from the literature. In the first part of the verification, we
consider the dissolution of a sessile droplet with pure diffusion, i.e. we solve (2.2)
with the advection term being switched off.

Epstein & Plesset (1950) considered a particular case for a single spherical bubble
dissolving in the bulk fluid and analytically calculated the radius as a function of time.
Later Popov (2005) extended this calculation to the case of a droplet sitting on a
substrate at a given contact angle θ . However, Popov’s original model assumes the
quasi-static behaviour, i.e. the time-dependent term on the right-hand side of (1.1) is
eliminated. This assumption can greatly affect the numerical dissolution process, as
shown by Zhu et al. (2018). Therefore, in the verification, instead of directly using
the mathematical expression in (1.2), we adopt the contact angle correction factor f (θ)
as proposed by Popov (2005) to the classical EP theory. In the case of θ = 90◦ and a
single drop considered here, this just leads to the solution given in (1.1), and hereafter
we still call this the EP theory for simplicity. Note that, due to the axial symmetry
assumption in the calculation, it is only suitable for verifying the cases of a single
droplet without convection, but not for the cases of multiple droplets.

Figure 2(a) shows the normalized droplet radius R/R0 versus the dimensionless time
t̃ at Ra= 0.01. It shows the excellent agreement between the EP theory (black dashed
curve) and our numerical results (red curve) over the entire dissolution process. We
remark that there is a little deviation at the final stage of the dissolution because the
droplet size is getting smaller and the resolution of the Eulerian grid points in the
Cartesian container becomes insufficient to resolve the droplet. However, if we focus
on the lifetime of the droplet, which is the time for R/R0 to reach zero, the error is
less than 2 % and does not affect the final conclusion.

As second verification, we verify the code by simulating the convective flow.
Musong et al. (2016) had used the IBM to study the heat transfer problem for an
isolated isothermal sphere at various Grashof numbers, Gr= gβT∆Td3/ν2, and Prandtl
numbers, Pr = ν/κ , where κ , βT , d and ∆T are the thermal diffusivity, thermal
expansion coefficient, diameter of the sphere and the temperature difference between
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FIGURE 3. (a) Time series for the radius of droplet R(t) for different Ra, where R and
t are normalized by the initial droplet radius R0 and the droplet lifetime estimated by
EP theory tEP(Ra). (b) Lifetime of the droplet τ normalized by tEP versus the Rayleigh
number Ra. As discussed in § 3, the small deviation from tEP for small Ra cases is due
to the grid resolution issue because the droplet becomes too small at the final stage of
dissolution.

the heated surface and the ambient fluid. We modified our droplet dissolution code to
deal with the heat transfer problem and compared with their result at Gr = 100 and
Pr= 0.72. Figure 2(b) shows how the normalized heat flux (characterized by Nusselt
number Nu defined as the total heat flux across the surface of the sphere over the
heat flux in the case of quiescent fluid) changes with time t. It can be seen that both
the data taken from Musong et al. (2016) (black squares) and our numerical results
(blue curve) agree with each other. The agreement is not only for the values after
reaching the statistical steady state but also for the temporal evolution of Nu over the
entire heat transfer process.

4. Convective effects for single droplet dissolution
In this section we first show how the radius of a single surface droplet changes

in time for different Ra. Figure 3(a) shows the normalized radius R(t)/R0 versus the
normalized time t/tEP for various Ra, where R0 and tEP represent the initial droplet
radius and the reference lifetime based on the EP theory. For the cases of 0.16Ra<
10, the curves almost collapse onto a single curve, and R(t)/R0 drops to zero when
t ' tEP. This suggests that the droplet dissolution is purely diffusive and we regard
those values of Ra as small. However, when Ra increases to 10, the buoyancy force
becomes significant, as indicated by the (green) curve being below the collapsed one
at small Ra. When Ra further increases from 10 to 400, the lifetimes of the droplet
are shortened progressively, as shown in figure 3(b), due to the increasing importance
of the buoyancy force. For our largest explored Ra(= 400), the lifetime of the droplet
even becomes half of tEP, i.e. half of what it would be for pure diffusion.

Another important quantity to be examined is the mass flux, which in dimensionless
form is expressed as the following Sherwood number:

Sh=
〈ṁ〉AR

Dcs
=
ρd

cs

1
√

RaSc
R̃

dR̃
d t̃
. (4.1)

Here 〈ṁ〉A is the mass flux averaged over the droplet surface and Dcs/R is the
reference mass flux for the case of the surface droplet (of 90◦ contact angle) dissolving

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

17
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.175


892 A21-8 K. L. Chong, Y. Li, C. S. Ng, R. Verzicco and D. Lohse

Ra

400
100
40
10

4
1
0.4
0.1

Equation (4.2)

10-1 100

100

Sh

t/† (Ra)

FIGURE 4. Instantaneous Sherwood number Sh(t) versus the normalized time t/τ(Ra) for
different Ra, where τ(Ra) is the droplet lifetime for the corresponding Ra. The dashed
line corresponds to (4.2). The vertical dotted line indicates the time instant for the Shinst
shown in figure 5.
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FIGURE 5. (a) Sherwood number Sh versus the Rayleigh number Ra. For the numerical
results, the Sherwood number is defined at the instant when the Sh curve is still relatively
flat, as shown in figure 4, which is represented by Shinst. For details, we refer to the main
text. (b) Sherwood number Sh compensated with Ra1/4 versus Ra. The experimental data
from Dietrich et al. (2016) have also been included. Note that the data compare one-to-
one and no fitting or scaling parameter is involved.

diffusively and quasi-statically. In (4.1) the expression for Sh is further rewritten to
connect it to the (dimensionless) radius shrinkage dR̃/d t̃ and the control parameters
Ra, Sc and ρd/cs.

Given the temporal evolution of the droplet radius, as shown in figure 3(a), the
corresponding temporal evolution of Sh can be computed (see figure 4). Since the
lifetimes for various Ra differ a lot from each other, we normalize the time t by the
respective lifetime of the droplet τ(Ra) in each case for better comparison. First, for
0.1 6 Ra< 10, we again observe that the curves collapse onto each other. Moreover,
Sh changes slightly with time for these cases throughout the entire dissolution process.
Using Ra = 0.1 as an example, the value of Sh is approximately 1.3 at t = 0.1τ ,
and then Sh decreases gradually to 1 until the droplet is completely dissolved. In
order to understand this trend, we substitute the analytical solution (1.1) given by
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the EP theory into the expression for Sh in equation (4.1). This gives Sh(t) for the
diffusion-dominated case as

Sh= 1+
R

(πDt)1/2
. (4.2)

It can be seen that the correction leads to an additive term R/(πDt)1/2 to the purely
diffusive case under the quasi-static approximation where Sh= 1. The significance of
this term diminishes when t gets larger and Sh approaches 1 eventually. However, on
increasing Ra from Ra= 10, the expression (4.2) does not hold any more due to the
increasing influence of buoyancy. Upon increasing Ra, we observe that the magnitude
of Sh becomes larger. Furthermore, taking the largest Ra (= 400) as an example, one
observes that the mass flux remains at a constant value (Sh∼ 3.8) over a large portion
of the dissolution time, until, near the final stage of the dissolution, the value of Sh
decreases rapidly. The decrease of the mass flux can be understood by the smaller
effective Rayleigh number caused by the reduced droplet size, such that the effect of
buoyancy is weaker.

Next, we examine the dependence of the dimensionless mass flux Sh on Ra. Notice
from figure 4 that Sh only slightly decreases for t 6 0.5τ but then sharply decreases
near the final stage of dissolution. It leads us to define an instantaneous Sherwood
number Shinst at the instant when the Sh curve is still relatively flat. Here, the
moment of t= 0.2τ is chosen to calculate Shinst (indicated by the vertical dotted line
in figure 4). Note that our conclusion is not sensitive to the choice of the specific
time, since Sh does not change much near t = 0.2τ . In figure 5(a), it can be seen
that, on increasing Ra, there is a clear transition of Sh(Ra) scaling from a constant to
Ra1/4. This reflects that the droplet dissolution changes from a diffusively dominated
process to a convectively dominated process because of the increasing significance
of buoyancy. To have a better insight into the scaling change, we further plot Sh
compensated with Ra1/4 in figure 5(b), which indeed clearly reveals the 1/4 scaling
exponent.

We now compare our numerical results with the recent experimental results by
Dietrich et al. (2016), who studied a long-chain alcohol droplet dissolving in water
and also found an enhanced dissolution rate due to the occurrence of convective flow.
In figure 5, we plot the experimental data points from Dietrich et al. (2016) together
with our numerical data for comparison. First, from their experiment, data points from
different alcohols have collapsed onto almost the same curve, and this curve also
displays the change of scaling exponent to 1/4 on increasing Ra. As explained in
Dietrich et al. (2016), this scaling can be understood as follows: For large enough Ra,
there is a concentration boundary layer developed on top of the droplet surface. The
thickness of this boundary layer δc has the Pohlhausen power-law dependence with
Ra, which is δc/R∼Ra−1/4 (Pohlhausen 1921; Schlichting & Gersten 2016). By using
δc as the typical length scale for estimating the mass flux, which is 〈ṁ〉A ∼ Dcs/δc,
one can obtain Sh ∼ Ra1/4. Apart from the scaling change, our numerical results
also confirm the value of the transitional Rayleigh number, Rat ' 12.1, found in the
experiments.

To further characterize the two different dissolution regimes, we compare the
respective flow morphologies. Figure 6 shows instantaneous slices of the concentration
field taken at the vertical mid-plane. We visualize the time evolution of the
concentration by showing the field at different time instants for two different Ra.
First, for small Ra (= 0.1), as shown in the upper panels, the dissolution happens
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FIGURE 6. Instantaneous snapshots for the concentration field together with velocity
vectors for Ra = 0.1 (a) and Ra = 100 (b) in the case of a single surface droplet.
The location of this vertical cross-section is taken in the middle of the droplet (also
the middle of the domain). The interface of the droplet at different time instants is
indicated by the solid line. Movies can be seen in the supplementary material available
at https://doi.org/10.1017/jfm.2020.175.

basically through diffusion, and one can see that the dissolution rate is almost the
same in all directions. On the contrary, this isotropic mass transfer is broken for
larger Ra, specifically for Ra > 10. For example, at Ra = 100, as shown in the
lower row, the vertical velocity above the droplet strengthens significantly so that the
concentration field is mainly displaced upwards rather than sidewards. Near the initial
stage of dissolution at t = 0.05τ , one can observe the emission of a concentration
plume from the top of the droplet. When the solute dissolves into water, it results
in less dense liquid in the denser surrounding, and such an unstable stratified region
leads to the emission of plumes. This mechanism of concentration plume emission
is similar to the thermal plume emission in Rayleigh–Bénard convection, which is
a classical model for thermal convection with a fluid layer heated from below and
cooled from above (Shang et al. 2003; Ahlers, Grossmann & Lohse 2009). As the
droplet continues to dissolve, a long tail of the plume remains connected to the top
of the droplet, but of a smaller size, until the droplet is completely dissolved.

5. Convective effects for multiple droplet dissolution
Given the good agreement with the experimental results, we now extend our

numerical study to the case of multiple droplets. Two different multiple droplet
configurations are studied, namely 2 × 2 and 3 × 3 droplet arrays. To compare the
different dissolution dynamics in the diffusion-dominated and convection-dominated
regimes, figure 7(a) shows the top view (cutting near the bottom plate on which
the droplets are placed) of the concentration fields for Ra= 0.1 and Ra= 100 using
the 3× 3 array as an example. To also have a quantitative comparison, figure 7(b,c)
shows the normalized radius R/R0 versus the normalized time t/tEP, where tEP is the
lifetime estimated by the EP theory for a single droplet.

For Ra = 0.1 the collective dissolution leads to much faster accumulation of
solute among the droplets as compared to the single droplet dissolution. This is
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FIGURE 7. (a) Top view for the instantaneous concentration fields taken at the layer close
to the bottom plate for Ra = 0.1 and Ra = 100. To guide the eye, the interfaces of the
droplets are also outlined by the grey surfaces. (b,c) Time series for the normalized radius
R(t)/R0 versus the normalized time t/tEP for Ra= 0.1 in (b) and Ra= 100 in (c). Here
R0 and tEP denote the initial droplet radius and the single droplet lifetime estimated by
the EP theory. To denote the droplets at different topological locations, they are indexed
with the number 1, 2 and 3 as indicated in (a) for t= 0.1τ1.

the so-called shielding effect (Carrier et al. 2016; Laghezza et al. 2016; Bao et al.
2018; Michelin et al. 2018; Wray et al. 2019). The existence of the neighbouring
droplets tends to lower the concentration gradient experienced by all the droplets and
results in a decreased dissolution rate. Another feature of the shielding effect is that
the dissolution of the multiple droplets follows the sequence τ3 < τ2 < τ1, where τi

is the lifetime for the ith droplet – see figure 7(a) for t = 0.1τ1 for the locations.
Indeed, both the qualitative visualization in figure 7(a) and the radius time series in
figure 7(b,c) confirm such a sequence of dissolution. Moreover, we show that, for all
the droplets, they dissolve slower than the single droplet case with pure diffusion.

In contrast, the dissolution pattern changes significantly when convection plays
a role. The second row of figure 7(a) shows the concentration field for Ra = 100.
From the footprint of the concentration field at t = 0.4τ1, it shows that the solute
tends to flow towards the central droplet. Apart from the change in the concentration
distribution, figure 7(c) further shows that the dissolution time of droplet 3, τ3,
becomes comparable to that of droplet 2, τ2. This feature is non-trivial and opposes
the expectation from the shielding effect.
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FIGURE 8. Instantaneous snapshots for the concentration field together with velocity
vectors in the vertical mid-plane for Ra= 100 in the case of the 3× 3 multiple droplet
array. Note that the mid-plane cuts through the centre of droplets 1 and 2. Snapshots at
different time instants indicate the formation of a single, larger plume from individual
plumes. The time τ1 represents the lifetime of the central droplet (droplet 1). A movie of
this process can be seen in the supplementary material.

To understand this counter-intuitive result, we thus explore the morphological
changes in the flow caused by the significant influence of convection for multiple
droplets. Figure 8 visualizes the concentration field at the vertical mid-plane for
Ra= 100. At the initial stage of dissolution (t= 0.02τ1), we observe plumes emitted
mainly from the two side droplets. For the central droplet, the concentration gradient
is largely diminished due to the existence of the neighbouring droplets. Therefore,
at t = 0.03τ1, we find that the upward velocity above the central droplet is weaker
than that above the side droplets. However, instead of just moving upwards, the
concentration plumes tend to merge together above the central droplet. Eventually,
the merging event results in a single larger plume moving vertically upwards at
t = 0.04τ1. Finally, at t = 0.05τ1, the narrow tail of the plume is maintained and
this morphology remains for the rest of the dissolution process until the droplets are
completely dissolved.

So far, we have revealed that the plumes need not be individual but that they can
interact with each other, leading to a new mechanism for collective droplet dissolution
through merging of plumes. This somewhat mimics the daily-life example (in the
days of Michael Faraday) of two merging flames from two nearby candles: as the
fluid in the middle of the two candles receives the strongest heating from the two
flames, there is a stronger updraft between the two candles and the merged flame
can reach a higher position. Likewise, a more energetic merged plume can form
for multiple droplet dissolution which enhances the mass transfer. We cite Michael
Faraday’s ‘Chemical History of a Candle’ (Faraday 1861): ‘There is no better, there is
no more open door by which you can enter into the study of natural philosophy than
by considering the physical phenomena of a candle.’ Here, we have recognized the
similarity between the candle melting and the droplet dissolving in their collective
behaviours, and therefore it enlightens the research on droplet dissolution. In the
analogous case – a bubble – Lhuissier & Villermaux (2012) have also found that
rich fluid mechanics can be learnt through studying the bursting bubble similar to the
study of the melting candle.

To demonstrate the effect of the merging event on the lifetime of the droplets,
figure 9(a,c) shows the normalized lifetime τ/τsingle versus Ra for 2 × 2 and 3 × 3
droplet arrays. Here the lifetimes τ have been normalized by the respective reference
value τsingle(Ra), which is the Ra-dependent lifetime corresponding to the single
droplet case. In addition, we also plot the maximum vertical velocity wmax at the
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FIGURE 9. (a,c) Normalized droplet lifetime τ/τsingle in the case of multiple droplets
versus Ra for 2 × 2 droplet array in (a) and 3 × 3 droplet array in (c). Here τsingle
represents the lifetime in the case of a single droplet. The indices represent the droplets
from different locations, as indicated in figure 7(a). The inset in (c) shows that the
multiple droplet lifetime can be shorter than the single droplet lifetime for large enough
Ra. It also shows the minimal normalized lifetime at Ra = 20. (b,d) Maximum vertical
velocity wmax normalized by that in the single droplet case, wmax,single, versus Ra for the
2 × 2 droplet array in (b) and the 3 × 3 droplet array in (d). Both show a pronounced
maximum around Ra= 4.

mid-height versus Ra for both arrays in figure 9(b,d). Again, the vertical velocity
has been normalized by the value obtained from the respective single droplet case,
wmax,single(Ra), which also depends on Ra, of course. Here we only consider the
magnitude of the vertical velocity because we focus on the enhancement of mass
transfer in the buoyancy-driven flow where gravity is acting in the vertical direction.

For the 2 × 2 droplet array, all four droplets are topologically equivalent and
therefore figure 9(a) only shows one set of data. When Ra 6 1 the normalized
dissolution time τ/τsingle is not sensitive to the change of Ra and the multiple
droplets dissolve slower than the single droplet with τ = 1.5τsingle. However, τ/τsingle
decreases with increasing Ra when Ra becomes larger than 1. As Ra increased up
to around 40, the lifetimes of the multiple droplets become comparable to that of
the single droplet. With further increasing Ra, the value of τ/τsingle again becomes
insensitive to the change of Ra and stays at around 1. This reduction in the lifetime
τ compared to τsingle can be explained by the enhanced vertical velocity shown in
figure 9(b). Owing to the merging of the concentration plumes, the maximum velocity
wmax is considerably larger than that of the single droplet case, wmax,single.

Likewise, for the 3 × 3 droplet array, the trend of τ/τsingle is similar to that for
the 2 × 2 array but there is a stronger collective effect. In this 3 × 3 array, there
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FIGURE 10. Horizontal profiles of the normalized vertical velocity w/wmax for various Ra,
where wmax is the maximum value of the respective profile. The dimensionless horizontal
coordinate is represented by x̃ and we plot the vertical dashed line to show the locations
of droplet 2 (blue) and droplet 1 (black).

are three topologically different droplets. We display their lifetimes versus Ra in
figure 9(c). From that, we can basically classify three different regimes based on the
slopes of the curves: in regime I, where Ra 6 1, the normalized lifetime remains
unchanged with increasing Ra. In this parameter range, the droplet dissolution is still
limited by diffusion and the shielding effect dominates the dissolution process. In
the range 1 6 Ra 6 10, regime II, we recall that the single droplet dissolution within
this Ra range should be diffusion-dominated. However, here we observe the decrease
of the normalized lifetime with increasing Ra, which reflects the increased influence
of the buoyancy force due to the collective droplets. Indeed, figure 9(d) also shows
the significant enhancement in the vertical velocity in this Ra range. In regime III,
Ra > 10, we observe that the normalized lifetime of the outermost droplet 3 has
reached a plateau where τ/τsingle stays at around 1. To inspect the behaviour of
τ/τsingle at the transition from regime II to III in more detail, we zoom in to the
region around Ra = 10 as shown in the inset of figure 9(c). We observe that there
is an optimal case at Ra= 20 where the lifetime of droplet 3 becomes even shorter
(approximately 5 %) than that in the case of a single droplet. This in fact holds for
the whole range 10 6 Ra 6 100.

Given that larger Ra represent a relatively stronger buoyancy effect, the above
observation indeed raises the question of why there is an optimal Ra at which there
is a maximum reduction in the droplet lifetime compared to the single droplet case.
We explain it by showing the horizontal profiles of the vertical velocity w (normalized
by the maximum vertical velocity wmax) taken at the mid-height in figure 10. The
profiles are taken at the instant when droplet 2 is half of its initial radius. For all
Ra, the profiles exhibit a maximum at the centre (x̃= 0, where the entire horizontal
extent ranges from x̃=−8 to x̃= 8) and the profiles are symmetric about the central
line. A key feature is that, when Ra increases from 4 to 400, the profiles become
narrower, as noticed by the half-maximum of the profiles. The consequence is that
at the location of the droplet 2, which is either x̃ = −3 or x̃ = 3, the value of
w/wmax actually decreases with increasing Ra. This suggests that, although the effect
of buoyancy is stronger at larger Ra, the vertical velocity experienced by the edge
droplets can be diminished due to the shrinkage in width of the upward-moving
merged plume.
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FIGURE 11. Time series of Sherwood number Sh versus the normalized time t/τ , where
τ is the lifetime of the droplet at Ra = 0.1 in (a) and Ra = 20 in (b). For each Ra,
the blue curve represents the case of single droplet while the black curve represents the
outermost droplet (droplet 3) in the case of the 3 × 3 droplet array. In (b), the vertical
cross-section of the concentration fields at different time instants is also shown. Depending
on the moment in time, the collective dissolution is either stronger or weaker than that
of the isolated droplet.

To better understand the optimal case, for which the normalized dissolution time
is minimal as a function of Ra, we examine the time series of Sh. For comparison,
we begin with the time series for the case of Ra= 0.1 in figure 11(a). It shows that,
for the outermost droplet (droplet 3), the value of Sh during the entire dissolution
process is lower than that of the single droplet dissolution, thanks to the shielding
effect. However, at the optimal case of Ra= 20, figure 11(b) shows that the value of
Sh for the outermost droplet is not always smaller than that in the single droplet case:
First, when t is below 0.1τ , the value of Sh for droplet 3 is lower than that of the
single droplet. By the corresponding concentration field over that period of time, one
can see that the individual concentration plumes just emit from the droplets without
merging at this early stage. However, there is a cross-over around t= 0.1τ where the
individual plumes are observed to just merge into a single plume. After that, Sh for
the outermost droplet remains larger than that for the single droplet case. The result
again confirms that it is the merging of plumes that leads to the enhancement of the
dissolution rate.

Note that Laghezza et al. (2016) have also experimentally observed the enhancement
of the mass flux for collective and convective dissolution. Indeed, they find that the
dissolution time of the droplets at the edges can reduce to values below that of a
single isolated droplet. Thanks to our numerical work, this dissolution enhancement
can now be linked to the merging of the plumes.

6. Concluding remarks and outlook
In summary, we numerically modelled and investigated convective droplet dissolution

over a wide range of Ra from 0.1 to 400 with Sc being fixed at 1200 and cs/ρd
fixed at 0.027 (representing 1-pentanol in water). For all our explored cases, we
consider the constant contact angle dissolution mode with contact angle being fixed
at 90◦. As the starting point, we verified our code for the pure diffusive droplet
dissolution by comparing with the analytical results by Epstein & Plesset (1950) and
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Popov (2005). We then provided further verification to show our proper implementation
of the convective term in our code by comparing to the heat flux data in a heat
transfer problem. Then we used this numerical code to simulate droplet dissolution
for both the single droplet and multiple droplets scenarios.

For a single droplet, we showed that the Sherwood number Sh stays at around 1
regardless of Ra, provided that Ra is smaller than 10. However, Sh undergoes a
transition to Sh ∼ Ra1/4 when Ra is above 10. Our numerical results agree with the
previous experimental results by Dietrich et al. (2016) for single droplet dissolution,
in which the transition from a constant value to Sh ∼ Ra1/4 was also found at
the same Rat ' 10. Moreover, we gained insight into the change in the flow
morphologies by comparing the concentration fields in the different regimes. An
essential feature of the convective regime Sh∼ Ra1/4 is that there is a clear emission
of concentration plumes above the droplet, which carries large amount of solute away
from the droplet. Our results thus illustrated, from both the Sh behaviour and the flow
morphologies, how, with increasing Ra, the dynamics of droplet dissolution changes
from diffusion-dominated to convection-dominated.

When we extended the geometry to multiple droplets, richer phenomena could be
observed. With multiple droplets, the traditional view was that the shielding effect
can lead to the large suppression of mass flux due to the smoothened concentration
gradient around the droplets. However, the basis of the shielding effect is that
the diffusion dominates the dissolution process. Here, with the significant role of
convection for large Ra, we first showed that the outermost and the second outermost
droplets (in 3× 3 droplet array) have comparable lifetimes, which opposes the view of
a shielding effect. Thanks to the numerical simulations, we further revealed that the
concentration plumes can merge into a large, single plume, which is the mechanism
leading to the collective enhancement of droplet dissolution. With the help of plume
merging, the magnitude of vertical velocity is greatly increased and the dissolution
time for the outermost droplet can be shorter than that of a single droplet by 5 %
(at Ra = 20) for our explored parameter range. Based on qualitative experimental
observations, Laghezza et al. (2016) had also reported the enhanced mass flux for
multiple droplet dissolution. Here, we understand this enhancement by linking it
to the newly found mechanism – plume merging. Another non-trivial result is the
existence of an optimal Ra. We have provided an explanation by showing that the
updraft associated with the large plumes becomes narrower for larger Ra. It eventually
limits the mass flux of the droplets near the edge, as those droplets are less affected
by the upward-moving merged plume.

To the best of our knowledge, our study is the first of its kind to provide a
detailed physical quantification of the convective collective droplet dissolution problem
using numerical simulations. The present study reveals a variety of physical effects
thanks to the interplay between the two mechanisms, namely the shielding effect
and the merging of concentration plumes. Our findings have thus provided a more
comprehensive picture of the collective behaviour of multiple droplet dissolution.

Many questions remain open. For example, how does the separation between
multiple droplets influence the relative strength of the two mechanisms? How do
things change for different contact angles θ 6= 90◦, or even for different dissolution
modes, namely for the constant contact radius mode rather than the constant contact
angle mode as employed here? Another question is on the convective effect for
negative Rayleigh number, i.e. for droplets consisting of denser liquid dissolving in
a less dense host liquid. As we have demonstrated some non-trivial and at first sight
counter-intuitive results in collective and convective droplet dissolution, it is clearly
worthwhile to further explore the parameter space of this system.
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