Canad. Math. Bull. Vol. **54** (4), 2011 pp. 716–725 doi:10.4153/CMB-2011-033-6 © Canadian Mathematical Society 2011

Symplectic Lie–Rinehart–Jacobi Algebras and Contact Manifolds

Eugène Okassa

Abstract. We give a characterization of contact manifolds in terms of symplectic Lie–Rinehart–Jacobi algebras. We also give a sufficient condition for a Jacobi manifold to be a contact manifold.

1 Introduction

When *E* is a commutative graded algebra with unit 1_E over a commutative field *K* with characteristic zero, a *K*-linear map $\partial : E \to E$ is a differential operator of order ≤ 1 and degree *r*, $r \in \mathbb{Z}$, if ∂ is of degree *r* and satisfying

$$\partial(xy) = \partial(x) \cdot y + (-1)^{r \cdot |x|} x \cdot \partial(y) - (-1)^{r \cdot |x \cdot y|} x \cdot y \cdot \partial(1_E)$$

for homogeneous elements $x, y \in E$, where |x| denotes the degree of x. If ∂ is a differential operator of order ≤ 1 and degree r, if ∂' is another differential operator of order ≤ 1 and degree r', then the bracket

$$[\partial, \partial'] = \partial \circ \partial' - (-1)^{r \cdot r'} \partial' \circ \partial \colon E \longrightarrow E$$

is a differential operator of order ≤ 1 and degree r + r'.

The pair (E, ∂) is a differential algebra if *E* is a commutative graded algebra with unit 1_E and $\partial: E \to E$ is a differential operator of order ≤ 1 and degree +1 such that $\partial^2 = 0$. The usual differential algebras correspond with the case $\partial(1_E) = 0$.

Let *A* be a commutative algebra with unit 1_A over a commutative field *K* with characteristic zero. We denote $\text{Diff}_K(A)$, the *A*-module of differential operators of order ≤ 1 from *A* to *A*, *i.e.*, the *A*-module of *K*-linear endomorphisms $\varphi: A \to A$ such that for any $a, b \in A$, $\varphi(ab) = \varphi(a) \cdot b + a \cdot \varphi(b) - a \cdot b \cdot \varphi(1_A)$. A Lie–Rinehart algebra is a pair (\mathcal{G}, ρ) where \mathcal{G} is simultaneously an *A*-module and a *K*-Lie algebra, and $\rho: \mathcal{G} \longrightarrow \text{Diff}_K(A)$ is simultaneously a morphism of *A*-modules and *K*-Lie algebra satisfying

$$[x, a \cdot y = [\rho(x)(a) - a \cdot \rho(x)(1_A)] \cdot y + a \cdot [x, y]$$

for any $a \in A$ and $x, y \in \mathcal{G}$ [3,5].

Received by the editors October 7, 2008.

Published electronically March 8, 2011.

AMS subject classification: 13N05, 53D05, 53D10.

Keywords: Lie-Rinehart algebras, differential operators, Jacobi manifolds, symplectic manifolds, contact manifolds.

Let (\mathfrak{G}, ρ) be a Lie–Rinehart algebra and $\mathfrak{L}_{sks}(\mathfrak{G}, A) = \bigoplus_{p \in \mathbb{N}} \mathfrak{L}_{sks}^p(\mathfrak{G}, A)$, where $\mathfrak{L}_{sks}^p(\mathfrak{G}, A)$ is the module of skew-symmetric *A*-multilinear maps of degree *p* from \mathfrak{G} to *A* and finally $d_{\rho} \colon \mathfrak{L}_{sks}(\mathfrak{G}, A) \to \mathfrak{L}_{sks}(\mathfrak{G}, A)$ the cohomology operator associated with the representation ρ .

The pair $(\mathfrak{L}_{sks}(\mathfrak{G}, A), d_{\rho})$ is a differential algebra [3, Proposition 18].

For any $x \in \mathcal{G}$, the map $i_x \colon \mathfrak{L}_{sks}(\mathcal{G}, A) \to \mathfrak{L}_{sks}(\mathcal{G}, A)$ defined by

$$(i_x f)(x_1, x_2, \ldots, x_{p-1}) = f(x, x_1, x_2, \ldots, x_{p-1}),$$

for $x_1, x_2, ..., x_{p-1}$ elements of \mathcal{G} and for any $f \in \mathfrak{L}^p_{sks}(\mathcal{G}, A)$ is a derivation of degree -1 [1]. The map

$$\theta_x = [i_x, d_\rho] \colon \mathfrak{L}_{\mathrm{sks}}(\mathfrak{G}, A) \longrightarrow \mathfrak{L}_{\mathrm{sks}}(\mathfrak{G}, A)$$

is a differential operator of order ≤ 1 and of degree zero satisfying, for any $y \in \mathcal{G}$, $a \in A$,

$$[\theta_x, i_y] = i_{[x,y]}; \quad \theta_x \circ d_\rho = d_\rho \circ \theta_x; \quad \theta_x a = [\rho(x)](a).$$

For any $x \in \mathcal{G}$, the bracket that defines θ_x is the graded commutator.

A Lie–Rinehart–Jacobi algebra structure on a Lie–Rinehart algebra (\mathcal{G}, ρ) is defined by a skew-symmetric 2-form $\mu: \mathcal{G} \times \mathcal{G} \to A$ such that $d_{\rho}\mu = 0$.

The triplet (\mathcal{G}, ρ, μ) is a Lie–Rinehart–Jacobi algebra [3]. A Lie–Rinehart–Jacobi algebra (\mathcal{G}, ρ, μ) is a Lie–Rinehart–Poisson algebra if $\rho(x)(1_A) = 0$ for any $x \in \mathcal{G}$ [3].

A Lie–Rinehart–Jacobi algebra (a Lie–Rinehart–Poisson algebra, respectively) (\mathcal{G}, ρ, μ) is said to be a symplectic Lie–Rinehart–Jacobi algebra (a symplectic Lie–Rinehart–Poisson algebra, respectively) if the skew-symmetric 2-form μ is nondegenerate [3], *i.e.*, the induced map $\mathcal{G} \to \mathcal{G}^*$, $x \mapsto i_x \mu$, is an isomorphism of A-modules where \mathcal{G}^* is the A-module of linear forms on \mathcal{G} .

We recall that a commutative algebra A with unit 1_A over a commutative field K with characteristic zero is a Jacobi algebra if A is a K-Lie algebra, with bracket $\{, \}$, such that for any $a \in A$, the inner derivation $ad(a): A \to A, b \mapsto \{a, b\}$, is a differential operator of order ≤ 1 .

Let (\mathcal{G}, ρ, μ) be a symplectic Lie–Rinehart–Jacobi algebra. For any $a \in A$, we denote x_a the unique element of \mathcal{G} such that $i_{x_a}\mu = d_{\rho}a$.

We have $\theta_{x_a}\mu = 0$.

For any $a \in A$ and for any $b \in A$, by letting $\{a, b\} = -\mu(x_a, x_b)$, we get

- (i) $\{a, b\} = [\rho(x_a)](b),$
- (ii) $x_{\{a,b\}} = [x_a, x_b],$

and the map $A \times A \to A$, $(a, b) \mapsto \{a, b\} = -\mu(x_a, x_b)$, defines a structure of Jacobi algebra on A [3].

When *M* is a smooth manifold and $C^{\infty}(M)$ the algebra of smooth functions on *M*, the manifold *M* is a Jacobi manifold if $C^{\infty}(M)$ is a Jacobi algebra.

If $\mathfrak{X}(M)$ denotes the $C^{\infty}(M)$ -module of vector fields on M, a locally conformal symplectic structure on M is a pair (ω, α) made up by a nondegenerate skew-symmetric 2-form $\omega: \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M)$ and a closed 1-form

$$\alpha \colon \mathfrak{X}(M) \longrightarrow C^{\infty}(M)$$

such that $d\omega = -\alpha \Lambda \omega$, where d is the exterior differentiation operator.

When $\alpha = 0$, *M* is a symplectic manifold.

The characterization of locally conformal symplectic manifolds in terms of symplectic Lie–Rinehart–Jacobi algebras is the following one [3, 4]: a manifold M is a locally conformal symplectic manifold if and only if $\mathfrak{X}(M)$ admits a symplectic Lie–Rinehart–Jacobi algebra structure.

Let *M* be a Jacobi manifold and let

$$\omega_M \colon [C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M))] \times [C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M))] \longrightarrow C^{\infty}(M),$$

be the Jacobi 2-form of the Jacobi algebra $C^{\infty}(M)$ [3]. A sufficient condition for a Jacobi manifold *M* to be a locally conformal symplectic manifold is that the restriction

 $\omega_M|_{[\Omega_{\mathbb{R}}(C^{\infty}(M))]\times[\Omega_{\mathbb{R}}(C^{\infty}(M))]}\colon [\Omega_{\mathbb{R}}(C^{\infty}(M))]\times[\Omega_{\mathbb{R}}(C^{\infty}(M))]\longrightarrow C^{\infty}(M)$

is nondegenerate [3].

A (exact) contact manifold is a manifold with dimension 2n + 1 and with a differential 1-form α such that $\alpha \Lambda (d\alpha)^n$ is a volume form.

The main goal of this paper is to give a characterization of (exact) contact manifolds in terms of symplectic Lie–Rinehart–Jacobi algebras. We also give a sufficient condition for a Jacobi manifold to be a (exact) contact manifold.

In what follows, M denotes a smooth manifold, $\mathfrak{X}(M)$ the $C^{\infty}(M)$ -module of vector fields on M, 1 the unit of $C^{\infty}(M)$ and $\mathcal{D}(M)$ the $C^{\infty}(M)$ -module of differential operators of order ≤ 1 on $C^{\infty}(M)$. By "contact manifold" we will mean "exact contact manifold".

2 Contact Manifolds

Let id: $\mathcal{D}(M) \to \mathcal{D}(M)$ be the identical map. We denote δ the cohomology operator associated with the representation id. The cohomology operator is restricted in this paper to the subspace of the usual Chevalley–Eilenberg complex that is made up of $C^{\infty}(M)$ -multilinear skew-symmetric cochains.

We recall that if $\varphi = f + X$ and $\psi = g + Y$ are two differential operators of order ≤ 1 , with f and g elements of $C^{\infty}(M)$, X and Y elements of $\mathfrak{X}(M)$, then the bracket on $\mathcal{D}(M)$ is given by $[\varphi, \psi] = X(g) - Y(f) + [X, Y]$.

When $\eta: \mathcal{D}(M) \times \mathcal{D}(M) \to C^{\infty}(M)$ is a skew-symmetric 2-form, then the 1-form

$$i_1\eta: \mathcal{D}(M) \longrightarrow C^{\infty}(M), \varphi \longmapsto \eta(1, \varphi),$$

is such that $i_1\eta|_{C^{\infty}(M)} = 0$.

Proposition 2.1 If η : $\mathcal{D}(M) \times \mathcal{D}(M) \to C^{\infty}(M)$ is a skew-symmetric 2-form such that $\delta \eta = 0$, then $\eta = \delta(i_1\eta)$.

Proof For any $\varphi, \psi \in \mathcal{D}(M)$, we get

$$0 = (\delta\eta)(1,\varphi,\psi) = 1 \cdot \eta(\varphi,\psi) - \varphi[\eta(1,\psi)] + \psi[\eta(1,\varphi)] - \eta([1,\varphi],\psi) + \eta([1,\psi],\varphi) - \eta([\varphi,\psi],1).$$

As $[1, \varphi] = [1, \psi] = 0$, then

$$0 = (\delta\eta)(1,\varphi,\psi) = \eta(\varphi,\psi) - \varphi\left[(i_1\eta)(\psi)\right] + \psi\left[(i_1\eta)(\varphi)\right] + (i_1\eta)\left[\varphi,\psi\right].$$

Thus for any $\varphi, \psi \in \mathcal{D}(M)$

$$\eta(\varphi,\psi) = \varphi\left[(i_1\eta)(\psi)\right] - \psi\left[(i_1\eta)(\varphi)\right] - (i_1\eta)\left[\varphi,\psi\right] = \left[\delta(i_1\eta)\right](\varphi,\psi).$$

We deduce that $\eta = \delta(i_1\eta)$.

_

Thus if we denote $H_{\mathcal{D}}(M)$ the cohomology space of the differential complex $(\mathfrak{L}_{sks}(\mathcal{D}(M), C^{\infty}(M)), \delta)$, then $H^2_{\mathcal{D}}(M) = \{0\}$.

2.1 Symplectic Lie–Rinehart–Jacobi Algebra Structure on the Lie–Rinehart Algebra $(\mathcal{D}(M), id)$

In this part, we consider a symplectic Lie–Rinehart–Jacobi algebra structure $(\mathcal{D}(M), \mathrm{id}, \omega)$ on the Lie–Rinehart algebra $(\mathcal{D}(M), \mathrm{id})$.

In this case, $\omega : \mathcal{D}(M) \times \mathcal{D}(M) \to C^{\infty}(M)$ is a nondegenerate skew-symmetric 2-form such that $\delta \omega = 0$. For any $f \in C^{\infty}(M)$, we denote $\varphi_f \in \mathcal{D}(M)$ the unique differential operator of order ≤ 1 such that $i_{\varphi_f}\omega = \delta f$. For any $f \in C^{\infty}(M)$, we have $\theta_{\varphi_f}\omega = 0$, since $\theta_{\varphi_f}\omega = i_{\varphi_f}\delta\omega + \delta i_{\varphi_f}\omega = 0 + \delta(\delta f) = 0$. Let *TM* be the tangent vector bundle of *M*. The $C^{\infty}(M)$ -module $\mathcal{D}(M)$ is the $C^{\infty}(M)$ -module of sections of the vector bundle $\mathbb{R} \times TM \to M$. As ω is a nondegenerate skew-symmetric 2-form on $\mathcal{D}(M)$, then for any $p \in M$,

$$\omega(p): (\mathbb{R} \times T_p M) \times (\mathbb{R} \times T_p M) \to \mathbb{R}$$

is a nondegenerate skew-symmetric 2-form on $(\mathbb{R} \times T_p M)$. Thus the dimension of M is odd.

Proposition 2.2 For any $f,g \in C^{\infty}(M)$, the bracket $\{f,g\} = -\omega(\varphi_f,\varphi_g)$ is a Jacobi bracket on $C^{\infty}(M)$.

Proof Since in this case the triplet $(\mathcal{D}(M), \mathrm{id}, \omega)$ is a symplectic Lie–Rinehart–Jacobi algebra.

Thus, *M* is a Jacobi manifold.

We note that for any $f, g \in C^{\infty}(M)$, we have $\{f, g\} = \varphi_f(g)$.

As $C^{\infty}(M)$ is a Jacobi algebra, we denote $\xi = ad(-1)$ the fundamental vector field of the Jacobi manifold *M*. We deduce the following proposition.

Proposition 2.3 We get

(i) $\xi = -\varphi_1$; (ii) $i_{\xi}\omega = -\delta 1.$

Proof For any $f \in C^{\infty}(M)$, we get $\xi(f) = [ad(-1)](f) = \{-1, f\} = (-\varphi_1)(f)$. We deduce that $\xi = -\varphi_1$.

The second assertion is obvious.

Corollary 2.4 We have $(i_1\omega)(\xi) = 1$. Moreover, for any $\varphi \in \mathcal{D}(M)$, $(i_{\xi}\omega)(\varphi) = 0$ if and only if $\varphi \in \mathfrak{X}(M)$.

Proof As $i_{\xi}\omega = -\delta 1$, for any $\varphi \in \mathcal{D}(M)$ we get $(i_{\xi}\omega)(\varphi) = -\varphi(1)$. We deduce that $(i_{\xi}\omega)(-1) = 1$. Thus $(i_{1}\omega)(\xi) = 1$.

For any $\varphi \in \mathcal{D}(M)$, from the relation $(i_{\xi}\omega)(\varphi) = -\varphi(1)$, we deduce the second assertion.

Proposition 2.5 We have $\theta_{\xi}(i_1\omega) = 0$ and $(i_1\omega)[\xi,\varphi] = \xi[(i_1\omega)(\varphi)]$ for any $\varphi \in$ $\mathcal{D}(M).$

Proof As $\omega = \delta(i_1\omega)$ (see Proposition 2.1), for the first assertion, we obtain

$$\theta_{\xi}(i_1\omega) = i_{\xi}\delta(i_1\omega) + \delta i_{\xi}(i_1\omega) = i_{\xi}\omega + \delta \left[(i_1\omega)(\xi) \right]$$
$$= i_{\xi}\omega + \delta 1 = -\delta 1 + \delta 1 = 0.$$

For the second assertion, for any $\varphi \in \mathcal{D}(M)$, we get

$$\omega(\xi,\varphi) = [\delta(i_1\omega)] (\xi,\varphi),$$

$$(i_{\xi}\omega)(\varphi) = \xi [(i_1\omega)(\varphi)] - \varphi [(i_1\omega)(\xi)] - (i_1\omega) [\xi,\varphi],$$

$$-\varphi(1) = \xi [(i_1\omega)(\varphi)] - \varphi(1) - (i_1\omega) [\xi,\varphi].$$

Thus $(i_1\omega) [\xi, \varphi] = \xi [(i_1\omega)(\varphi)].$

Corollary 2.6 We have $[\xi, \operatorname{Ker}(i_1\omega)] \subset \operatorname{Ker}(i_1\omega)$.

Let $\mathcal{D}(M)^*$ be the dual of the $C^{\infty}(M)$ -module $\mathcal{D}(M)$. The sets

$$\mathcal{D}(M)^*_{\xi} = \{\eta \in \mathcal{D}(M)^* / \eta(\xi) = 0\}$$

and

$$\mathcal{D}(M)^*_{C^{\infty}(M),\xi} = \{\eta \in \mathcal{D}(M)^*/\eta|_{C^{\infty}(M)} = 0; \eta(\xi) = 0\}$$

are modules over $C^{\infty}(M)$.

For any $X \in \mathfrak{X}(M)$ ($X \in \text{Ker}[i_1\omega|_{\mathfrak{X}(M)}]$, respectively), we verify that $i_X\omega \in \mathcal{D}(M)_{\mathcal{E}}^*$ ($i_X \omega \in \mathcal{D}(M)^*_{C^{\infty}(M),\xi}$, respectively).

Proposition 2.7 We get $\mathfrak{X}(M) = \operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}] \oplus C^{\infty}(M) \cdot \xi$. Moreover, the maps

$$\mathfrak{X}(M) \longrightarrow \mathfrak{D}(M)_{\varepsilon}^{*}, X \longmapsto i_{X}\omega_{\varepsilon}$$

and

Ker
$$|i_1\omega|_{\mathfrak{X}(M)}| \longrightarrow \mathcal{D}(M)^*_{C^{\infty}(M),\xi}, X \longmapsto i_X\omega,$$

are isomorphisms of $C^{\infty}(M)$ -modules.

Proof For any $X \in \mathfrak{X}(M)$, we write $X = [X - (i_1\omega)(X) \cdot \xi] + (i_1\omega)(X) \cdot \xi$. We verify that

 $[X - (i_1\omega)(X) \cdot \xi] \in \operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}]$

and

$$\left(\operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}]\right) \cap C^{\infty}(M) \cdot \xi = \{0\}.$$

Thus $\mathfrak{X}(M) = \operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}] \oplus C^{\infty}(M) \cdot \xi$. Since the map

 $\mathcal{D}(M) \longrightarrow \mathcal{D}(M)^*, \varphi \longmapsto i_{\varphi} \omega,$

is an isomorphism of $C^{\infty}(M)$ -modules, then the maps

$$\mathfrak{X}(M) \longrightarrow \mathfrak{D}(M)_{\mathcal{E}}^*, X \longmapsto i_X \omega,$$

and

$$\operatorname{Ker}\left[i_{1}\omega|_{\mathfrak{X}(M)}\right]\longrightarrow \mathcal{D}(M)^{*}_{C^{\infty}(M),\xi}, X\longmapsto i_{X}\omega,$$

are injective.

Let $\eta \in \mathcal{D}(M)^*_{\xi}$ be a linear form on $\mathcal{D}(M)$ such that $\eta(\xi) = 0$ and let φ be the unique element of $\mathcal{D}(M)$ such that $i_{\varphi}\omega = \eta$. We get

$$0 = \eta(\xi) = (i_{\varphi}\omega)(\xi) = -(i_{\xi}\omega)(\varphi) = \varphi(1).$$

We deduce that $\varphi \in \mathfrak{X}(M)$. Thus the map $\mathfrak{X}(M) \to \mathcal{D}(M)_{\xi}^*, X \mapsto i_X \omega$, is also surjective.

Let $\sigma \in \mathcal{D}(M)^*_{C^{\infty}(M),\xi}$ be a linear form on $\mathcal{D}(M)$ such that $\sigma|_{C^{\infty}(M)} = 0$ and $\sigma(\xi) = 0$, and let φ be the unique element of $\mathcal{D}(M)$ such that $i_{\varphi}\omega = \sigma$. As $\sigma(\xi) = 0$, then $\varphi \in \mathfrak{X}(M)$.

Since $\sigma|_{C^{\infty}(M)} = 0$, we obtain $0 = \sigma(1) = (i_{\varphi}\omega)(1) = -(i_{1}\omega)(\varphi)$. We deduce that $\varphi \in \operatorname{Ker}[i_{1}\omega|_{\mathfrak{X}(M)}]$. Thus the map $\operatorname{Ker}[i_{1}\omega|_{\mathfrak{X}(M)}] \to \mathcal{D}(M)^{*}_{C^{\infty}(M),\xi}, X \mapsto i_{X}\omega$, is also surjective.

The $C^{\infty}(M)$ -module $\mathcal{D}(M)^*_{C^{\infty}(M),\xi}$ is canonically isomorphic to the dual $\operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}]^*$ of the $C^{\infty}(M)$ -module $\operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}]$. As $\omega = \delta(i_1\omega)$ (see Proposition 2.1) if *d* is the de Rham differential, thus the restriction of ω to

$$\operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}] \times \operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}]$$

is nondegenerate, *i.e.*, $d[i_1\omega|_{\mathfrak{X}(M)}]$ is a nondegenerate skew-symmetric 2-form on the $C^{\infty}(M)$ -module Ker $[i_1\omega|_{\mathfrak{X}(M)}]$.

For any $f \in C^{\infty}(M)$, we verify that the linear form

$$\xi(f) \cdot i_1 \omega - \delta f + f \cdot \delta 1 \colon \mathcal{D}(M) \longrightarrow C^{\infty}(M)$$

belongs to $\mathcal{D}(M)^*_{C^{\infty}(M),\xi}$ and we denote X_f the unique element of Ker $[i_1\omega|_{\mathfrak{X}(M)}]$ such that $i_{X_f}\omega = \xi(f) \cdot i_1\omega - \delta f + f \cdot \delta 1$.

Proposition 2.8 For any $f \in C^{\infty}(M)$ and for any $g \in C^{\infty}(M)$,

- (i) $[\xi, X_f] = X_{\xi(f)};$
- (ii) $\varphi_f = \xi(f) X_f f \cdot \xi;$ (iii) $\{f,g\} = -\omega(X_f, X_g) - f \cdot \xi(g) + g \cdot \xi(f).$

(iii) $\{f,g\} = -\omega(X_f,X_g) - f \cdot \xi(g) + g \cdot \xi(f).$

Proof (i) For any $f \in C^{\infty}(M)$, we get $i_{[\xi,X_f]}\omega = \theta_{\xi}[i_{X_f}\omega] - i_{X_f}[\theta_{\xi}\omega]$. As $\theta_{\xi}\omega = 0$, we obtain

$$\begin{split} i_{[\xi,X_f]}\omega &= \theta_{\xi}[i_{X_f}\omega] = \theta_{\xi}[\xi(f) \cdot i_1\omega - \delta f + f \cdot \delta 1] \\ &= \xi \left[\xi(f)\right] \cdot i_1\omega + \xi(f) \cdot \theta_{\xi}[i_1\omega] - \delta\xi(f) + \xi(f) \cdot \delta 1 + f \cdot \delta\xi(1). \end{split}$$

As $\theta_{\xi}(i_1\omega) = 0$, (see Proposition 2.5), we deduce that

$$i_{\left[\xi,X_{f}\right]}\omega = \xi\left[\xi(f)\right] \cdot i_{1}\omega - \delta\xi(f) + \xi(f) \cdot \delta 1 = i_{X_{\xi(f)}}\omega$$

and we conclude that $[\xi, X_f] = X_{\xi(f)}$. (ii) For any $f \in C^{\infty}(M)$, we get

$$\begin{split} i_{\varphi_f - (\xi(f) - X_f - f \cdot \xi)} \omega &= i_{\varphi_f} \omega - \xi(f) \cdot i_1 \omega + i_{X_f} \omega + f \cdot i_{\xi} \omega \\ &= \delta f - \xi(f) \cdot i_1 \omega + \xi(f) \cdot i_1 \omega - \delta f + f \cdot \delta 1 - f \cdot \delta 1 = 0. \end{split}$$

Thus $\varphi_f = \xi(f) - X_f - f \cdot \xi$.

(iii) We verify that $\{f, g\} = -\omega(X_f, X_g) - f \cdot \xi(g) + g \cdot \xi(f)$ for any $f, g \in C^{\infty}(M)$. The conclusion follows from the facts, $(i_1\omega)(\xi) = 1, (i_{X_f}\omega)(1) = 0$, and $(i_{\xi}\omega)(X) = 0$ for all vector fields on M.

Theorem 2.9 The 1-form $i_1\omega|_{\mathfrak{X}(M)}$: $\mathfrak{X}(M) \to C^{\infty}(M)$ is a contact form on M.

Proof For any $x \in M$ we have $\xi_x \neq 0$ since $(i_1\omega)(\xi) = 1$. Thus the 1-form $i_1\omega|_{\mathfrak{X}(M)}$ is nonzero everywhere. Let $x \in M$ and let T_xM be the tangent vector space at x. As the dimension of M is odd, let 2n + 1 be the dimension of M. The set

$$(\operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}])_x = \{X(x) \in T_x M / X \in \operatorname{Ker}[i_1\omega|_{\mathfrak{X}(M)}]\}$$

is a vector space of dimension 2*n*. Since $d[i_1\omega|_{\mathfrak{X}(M)}]$ is a nondegenerate skew-symmetric 2-form on the $C^{\infty}(M)$ -module Ker $[i_1\omega|_{\mathfrak{X}(M)}]$, then $(d[i_1\omega|_{\mathfrak{X}(M)}])(x)$ is a nondegenerate skew-symmetric 2-form on the vector space $(\text{Ker}[i_1\omega|_{\mathfrak{X}(M)}])_x$ since for any $x \in M$ and for $X, Y \in \text{Ker}[i_1\omega|_{\mathfrak{X}(M)}]$

$$\left[(d[i_1\omega|_{\mathfrak{X}(M)}])(X,Y) \right](x) = \left[(d[i_1\omega|_{\mathfrak{X}(M)}])_x(X(x),Y(x)) \right].$$

Thus $(\text{Ker}[i_1\omega|_{\mathfrak{X}(M)}])_x$ is a symplectic vector space and $(d[i_1\omega|_{\mathfrak{X}(M)}])^n(x)$ is a volume form. We deduce that $(d[i_1\omega|_{\mathfrak{X}(M)}])^n(x) \neq 0$. Let $(v_1, v_2, \ldots, v_{2n})$ be a basis of $(\text{Ker}[i_1\omega|_{\mathfrak{X}(M)}])_x$. We have $(d[i_1\omega|_{\mathfrak{X}(M)}])^n(x)(v_1, v_2, \ldots, v_{2n}) \neq 0$. We note that

$$\nu = [i_1 \omega |_{\mathfrak{X}(M)}](x) \Lambda (d[i_1 \omega |_{\mathfrak{X}(M)}])^n(x)$$

is nonzero since

$$\nu(\xi(x), v_1, v_2, \dots, v_{2n}) = (d[i_1 \omega|_{\mathfrak{X}(M)}])^n(x) (v_1, v_2, \dots, v_{2n}) \neq 0.$$

As *x* is abitrary, we conclude that $[i_1\omega|_{\mathfrak{X}(M)}]\Lambda(d[i_1\omega|_{\mathfrak{X}(M)}])^n$ is a volume form on *M*. Thus $i_1\omega|_{\mathfrak{X}(M)}$ is a contact form on *M*. Therefore *M* is a contact manifold.

We finally conclude that when the Lie–Rinehart algebra $(\mathcal{D}(M), \mathrm{id})$ admits a symplectic Lie–Rinehart–Jacobi algebra structure, then *M* is a contact manifold.

2.2 Characterization of Contact Manifolds

In this part, we give a characterization of contact manifolds in terms of symplectic Lie–Rinehart–Jacobi algebras.

Let $\alpha: \mathfrak{X}(M) \to C^{\infty}(M)$ be a differential 1-form on M. We denote $\widetilde{\alpha}: \mathcal{D}(M) \to C^{\infty}(M)$ the unique linear form on the $C^{\infty}(M)$ -module $\mathcal{D}(M)$ such that $\widetilde{\alpha}|_{C^{\infty}(M)} = 0$ and $\widetilde{\alpha}|_{\mathfrak{X}(M)} = \alpha$.

We verify that $i_1(\delta \widetilde{\alpha}) = \widetilde{\alpha}$.

Theorem 2.10 ([4]) If M is a contact manifold with contact form

$$\alpha \colon \mathfrak{X}(M) \to C^{\infty}(M).$$

then the triplet $(\mathcal{D}(M), \mathrm{id}, \delta \widetilde{\alpha})$ is a symplectic Lie–Rinehart–Jacobi algebra.

Proof Let *R* be the Reeb vector field and let $\varphi = f + X_0 + h \cdot R$ be an element of $\mathcal{D}(M)$, with $f, h \in C^{\infty}(M), X_0 \in \text{Ker } \alpha$, such that $i_{\varphi}(\delta \widetilde{\alpha}) = 0$. We get

$$0 = [i_{\varphi}(\delta \widetilde{\alpha})](1) = -[i_1(\delta \widetilde{\alpha})](\varphi) = -\widetilde{\alpha}(\varphi) = -h \cdot \alpha(R) = -h.$$

Thus, h = 0.

On the other hand, we have

$$0 = [i_{\varphi}(\delta\widetilde{\alpha})](R) = (\delta\widetilde{\alpha})(\varphi, R) = \varphi(1) - \widetilde{\alpha}[f + X_0, R] = f - \alpha[X_0, R] = f,$$

since $[R, \text{Ker } \alpha] \subset \text{Ker } \alpha$ [2]. Thus f = 0.

As f = h = 0, we finally have $i_{X_0}(\delta \tilde{\alpha}) = 0$. Thus for any $Y \in \text{Ker } \alpha$, we obtain

$$0 = [i_{X_0}(\delta \widetilde{\alpha})](Y) = [i_{X_0}(d\alpha)](Y).$$

Since $d\alpha$ is a nondegenerate skew-symmetric 2-form on Ker α , therefore we get $X_0 = 0$. We conclude that $\varphi = 0$, *i.e.*, the map $\mathcal{D}(M) \to \mathcal{D}(M)^*, \varphi \mapsto i_{\varphi}(\delta \tilde{\alpha})$, is injective.

https://doi.org/10.4153/CMB-2011-033-6 Published online by Cambridge University Press

The map $\mathcal{D}(M) \to \mathcal{D}(M)^*, \varphi \mapsto i_{\varphi}(\delta \widetilde{\alpha})$, is also surjective since if $\beta \colon \mathcal{D}(M) \to C^{\infty}(M)$ is a linear form on $\mathcal{D}(M)$ and if $X \in \text{Ker } \alpha$ is the unique vector field such that $i_X d\alpha = \beta|_{\text{Ker } \alpha}$, the differential operator $\varphi = \beta(R) + X - \beta(1) \cdot R$ is such that $i_{\varphi}(\delta \widetilde{\alpha}) = \beta$. Thus $\delta \widetilde{\alpha} \colon \mathcal{D}(M) \times \mathcal{D}(M) \to C^{\infty}(M)$ is a nondegenerate skew-symmetric 2-form.

As $\delta(\delta \widetilde{\alpha}) = 0$, we conclude that the triplet $(\mathcal{D}(M), \mathrm{id}, \delta \widetilde{\alpha})$ is a symplectic Lie– Rinehart–Jacobi algebra.

When (M, α) is a contact manifold, M is a Jacobi manifold. In this case, the Jacobi bracket of two smooth functions $f, g \in C^{\infty}(M)$ given by $\{f, g\} = -(\delta \tilde{\alpha})(\varphi_f, \varphi_g)$ is the usual bracket for a contact manifold and the fundamental vector field $\xi = \operatorname{ad}(-1)$ is the Reeb vector field.

We state the following characterization.

Theorem 2.11 A smooth manifold M is a contact manifold if and only if the Lie– Rinehart algebra $(\mathcal{D}(M), id)$ admits a symplectic Lie–Rinehart–Jacobi algebra structure.

Let *M* be a Jacobi manifold and let

$$\omega_M \colon [C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M))] \times [C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M))] \longrightarrow C^{\infty}(M)$$

be the Jacobi 2-form of the Jacobi algebra $C^{\infty}(M)$ [3]. Following [3], we have $d_{\widetilde{ad}}\omega_M = 0$ and if ω_M is nondegenerate, the map

ad :
$$C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M)) \longrightarrow \mathcal{D}(M)$$

is an isomorphism of $C^{\infty}(M)$ -modules.

A sufficient condition for a Jacobi manifold to be a contact manifold is the following one.

Proposition 2.12 If M is a Jacobi manifold and if the Jacobi 2-form

$$\omega_M \colon [C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M))] \times [C^{\infty}(M) \oplus \Omega_{\mathbb{R}}(C^{\infty}(M))] \longrightarrow C^{\infty}(M)$$

of the Jacobi algebra $C^{\infty}(M)$ is nondegenerate, then M is a contact manifold.

Proof In this case $\omega_M \circ ([\widetilde{ad}]^{-1} \times [\widetilde{ad}]^{-1})$ is a nondegenerate skew-symmetric 2-form on $\mathcal{D}(M)$ and

$$\delta\big(\omega_M \circ ([\widetilde{\mathrm{ad}}]^{-1} \times [\widetilde{\mathrm{ad}}]^{-1})\big) = (d_{\widetilde{\mathrm{ad}}} \omega_M) \circ ([\widetilde{\mathrm{ad}}]^{-1} \times [\widetilde{\mathrm{ad}}]^{-1} \times [\widetilde{\mathrm{ad}}]^{-1}) = 0.$$

Thus $(\mathcal{D}(M), \mathrm{id}, \omega_M \circ ([\widetilde{\mathrm{ad}}]^{-1} \times [\widetilde{\mathrm{ad}}]^{-1}))$ is a symplectic Lie–Rinehart–Jacobi algebra. Therefore M is a contact manifold.

In this paper we showed that a contact structure on a manifold M is due to the existence of a nondegenerate skew-symmetric 2-form $\omega \colon \mathcal{D}(M) \times \mathcal{D}(M) \longrightarrow C^{\infty}(M)$ such that $\delta \omega = 0$.

In this case, we will say that ω is the contact 2-form of the contact manifold M and $i_1\omega$ is the contact 1-form of the contact manifold M.

Thus the parallelism between symplectic manifolds and contact manifolds is obvious: a symplectic structure on a manifold M is due to the existence of a nondegenerate closed skew-symmetric 2-form on $\mathfrak{X}(M)$ whereas a contact structure on a manifold M is due to the existence of a nondegenerate closed skew-symmetric 2-form on $\mathfrak{D}(M)$.

References

- [1] C. Godbillon, *Géométrie différentielle et mécanique analytique*. Hermann, Paris, 1969.
- [2] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. Pures Appl. 57(1978), no. 4, 453–488.
- E. Okassa, Algèbres de Jacobi et Algèbres de Lie-Rinehart-Jacobi. J. Pure Appl. Algebra 208(2007), no. 3, 1071–1089. doi:10.1016/j.jpaa.2006.05.013
- [4] _____, On Lie–Rinehart–Jacobi algebras. J. Algebra Appl. 7(2008), no. 6, 749–772.
- doi:10.1142/S0219498808003107
- [5] G. Rinehart, *Differential forms for general commutative algebras*. Trans. Amer. Math. Soc. 108(1963), 195–222. doi:10.1090/S0002-9947-1963-0154906-3

Université Marien NGOUABI, Faculté des Sciences, Département de Mathematiques, B.P. 69 Brazzaville, Congo

e-mail: eugeneokassa@yahoo.fr