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SOME ANALYTIC AND GEOMETRIC APPLICATIONS
OF THE INVARIANT THEORETIC METHOD

HISASI MORIKAWA

Determinant is a most useful tool in every branch of mathematics,
especially in linear mathematics. What kind of quantities do take a
similar universal important role as determinant, in advanced branches of
mathematics? In the present articles, showing the usefullness of semi-

invariants in the classical invariant theory, we shall give a partial answer
of the above question.

Chapter 1. Binary semi-invariants and automorphic forms

Let A be a commutative algebra over a field K of characteristic zero.
A is called an sl(2, K)-algebra, if there exists a Lie algebra homomorphism
of sl(2, K) into the Lie algebra of derivations of A over K. The most
familier example of si(2, K)-algebra is a polynomial algebra K[&©, ... 6 &™]
with Cayley-Aronhold’s operators;

# =3 (n— 209
=0

as(l)
9 —_ Zn: gs(l—l) a
= a{;w ?
n + a
4=2(n— 5 1)—*36“)

on which classical theory on n-forms works.

In the present chapter we shall show another important example of
sl(2, K)-algebra associating with formal power series with variable coef-
ficients, which is applied to automorphic forms.
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§1. Binary semi-invariants

1.1. Let K be a field of characteristic zero, and let w=(w,, - - -, wy)
be a vector with components in K such that w,, - .., w, are neither zero
nor positive integers, so that the generalized binary coefficients

(wj)zwj(wj“l)"'(wj_z"‘l) (¢=0,1,..-;1<j < N)
Z g! b b b —_— -—

never vanish. Let & = (¢, &M, &®,.-.), -+ -, &y = (EV, &P, &9, . . .) be vectors
of infinite length with independent variable coefficients &% (¢ = 0,1,2, ---;
1< j< N). Degree, weight and index are defined on the polynomial
algebra

K[&l’ Y §N] = K[(Sg‘l))ho,z,s,...;1sjszv]
as follows;

deg (§") =1, weight(¢”) =4, (¢4=0,1,2,---;1<j<N)

1.1
(.1 index (") = w; — 2¢.

Degree and weight are independent on the choice of w = (w,, - - -, wy),
but index depends on w = (w,, - - -, Wy).

A polynomial is called to be isobaric, if it is a sum of monomials of
same weight, and a polynomial is called to be index-homogeneous, if it
is a sum of monomials of same index.

Denoting by

K[&, Tty &N]Eu:I

the vector space of index homogeneous polynomials of index u, we get
a direct sum decomposition, called index-decomposition,

K[‘fx, "‘,‘EN] = (?K[fu o ‘,EN][u]-

To make K[¢&, .- -, &y] an sl(2, K)-algebra, we introduce Cayley-Aron-
hold’s differential operators;

y, 2
Ho= 3 > (w; — 20)e0——

=13 95“)
_ S peun 0
Q—jég%ﬁ&j 560 °
x o 2
4= _,,Zi z_(:) (w, — g)§£+l)w .

https://doi.org/10.1017/5S0027763000019048 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019048

INVARIANT THEORETIC METHOD 3

The next lemma shows that the action;

~1o] [00] : [01]
= Ho, = Pg, -4
[019" o L1 olfT7 lool? ™

gives an sl(2, K)-algebra structure on KJ[¢&,, - - -, &].
LemMma 1.1.
1.2) (9,41 = #, [#,9] =29, [#, 4 =—24.

Proof. It is enough to prove the equalities for the action on the
generators £;

[2, 469 = {(w; — O + 1) — b(w; — ¢ + DY
= (w; — 20)§ = HEP,
[, D1 = {8(w, — 26 + 2) — (w, — 20)0}&P
= 2£4Y = 2989,
[, 4169 = {(w; — Ow; — 26 — 2) — (w; — 20)(w; — HIEFHD
= —2w; — HEYY = — 2480,

The next lemma states that the index-decomposition
K[EI, ) SN] = @ K[&l’ R SN][u]
is the eigen-space decomposition with respect to operator .

LemmA 1.2. Let ¢ be an index-homogeneous polynomial of index u.
Then

Ko = up.

Proof. It is enough to prove Lemma for a monomial ¢. Since

dege, 0 = | 56| 5 50 ]9

537 0600 6 = weight (99,

Fov=Ia 0&sy

we have

#6= 55w, §y>]¢

= [ 55 w, deg (92 weignt (w)] — index (§)g .
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LemMma 1.8.
(1.3) (2,49 = > 6(u — ¢ + DA77,
1.4 4,21 = >, é(—u — ¢ + 1)D*xl¥3

where 7™ is the projection K[, ---,&y] = K[&, - - -, &4]™.

Proof. We shall prove (1.3) by induction on 4. For ¢ =1 (1.3) coin-
cides with (1.2). Assume that

[2, 41 = _T; ¢ — D@ — ¢+ 2t
Then we have
[2, 4] = D44 — ADA*' + ADA' — 447D
= 4 + A[D, 4710
=43 2+ 43¢0 — D)(u — ¢+ 2)4°2a™
=2.(u ~u24 + 2)4“‘:[“] + 25 — D)(u — £+ 2)4° 'z
- l\:j‘g(u — 0+ DAt ’
(1.4) is also proved by the similar way.
LEMMmA 1.4.
1.5) DK, -, &l C K[g,, - - -, £y ¢=012---)
(16  LK[g, -, & C K[E, - - -, Ex]

Proof. It is sufficient to prove ¢ = 1. For a monomial ¢ we have

deg, (2¢) = deg,, (4¢) = deg,, (¢) ,
weight (2¢) = weight (¢) — 1, weight (4¢) = weight (¢) + 1,

and thus
index (2¢) = 3. w, deg., (§) — 2 weight (§) + 2 = index () + 2,
=1

index (4g) = ﬁ w, deg,, () — 2 weight (§) — 2 = index () — 2 .

DerFiniTiON 1.1. A polynomial ¢ is called a binary semi-invariant if
99 =0. We denote by © the K-algebra of binary semi-invariants in

K[&l, ) GN]-
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Since 2 does not depends on the choice of w = (w,, - - -, wy), the al-

gebra of binary semi-invariants © is independent on w = (w,, - - -, wy).
LemMmA 1.5.

%)) S = (i») N

where

S =6 N K[g, -, &4]™
Proof. Let ¢ be an element of © and let
¢ =29 (pueK[&, -, &41™)
be the index-decomposition of ¢. Then by virtue of (1.2) we have
S udp. = DA Tg. = DHp = (DA — #D)p
= [2, #lp =29¢ = 0.

Since Z¢, are linearly independent, we have u%¢, = 0. Hence D¢, = 0
for u #+ 0, and thus

.@go(,:@go—;;@gou: 0.
The index-decomposition
G =) cm
depends on the choice of w = (w,, - - -, wy).

1.2. We shall next show that the K-algebra of binary semi-invariants
© is not so complicated.

LEmMmA 1.6. Denoting
¢
A8 ¢u®) = [0 Jermerep @ =28, 51<i <),

We have
9¢jl = 0
and

KIEP, 6078, 60,89, -]

= K[E?”: .(7'0)—15_(71), .(7'0)_1?5,12, 6;0)_2?513’ ° ]
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for each 1 < j < N.
Proof. From the definition of 2 it follows

94, = %~ 07( £ )¢ = pegrorerep 4 petorep ey
— gEoe = —1)? £—-1 (t-p=1) g ()P (@) ¢~1-p—1
S] pZ ( ) p 5.7' E J

=0

l —_
+ ey R () Peseprepr.
=0.

From the equations

5(!) —_ 5(0)—(4—1)¢ — Zei (__1)11( ¢ ) 5(_!—17)(5(9)_1&(1))13
J i¢ e p J J J

it follows

K[e.(iO)’ 55‘0)_15?), 65‘2)9 5(73)’ o ]
= KI[£, 677, 677 32, 6P sy -+ +1 .

ProrosrTiON 1.1.
Kl§, -+ 6w 607 -, 8071 =G -+, 607 6]
Proof. From the definition of 2 it follows
D(EPEP — E06N) = £8P — §PeP =0 (1 <Li,j<N).
This means that
P eClEl™, -, 607 EP], (<< N).

By virtue Lemma 1.6

I3

6 = &g — 2 (07( ey

=1
and 9¢,, = 0, hence by induction on ¢ we have
&0 G0, -, 897 8]

1.3. The following formal power series with coefficients £{°

(110 el =5 (%) a<i<m

¢=0
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are called the basic power series, and K[&, - - -, £4] is called the K-algebra
of coefficients of the basic formal power series. We denote briefly

1) el = (L) =012 1< <M.

Let y,, ---, ¥y be dependent variables with respect to the independent
variable z. We denote briefly

y&"z("dqz‘)lyj (=012 31<j<N).

An element of K[(¥%);-0.1,....1<;<v] is called a differential polynomial, and
an ideal a is called a differential ideal if (d/d2z)a C a. Since

(6;”)e=0,1,2,---;1s;'s1v, (yy))ho,l,z,---;zs]‘szv’ (fy)(fj|z))e=o,1,z,---;13jgN

are three sets of algebraically independent quantities over K, there exist
K-algebra isomorphisms 6,, @, and 7'

K&, -+, 8x]

N

K[y(g‘g))ko,l,z,---;15jgN] —> K[(fy)(gj[Z»e=o,1,2,m;1sj5N]

such that
0,() = L ¥,
’ wiw; —1) - (w,— £+ 1)77
@) — 1 ®
(1.12) ¢u)(S] ) wj(wj _ 1) . (wj _ Z + 1) f] (Sjlz) b
U(yP) = P12 £4=012---;1<j<N).
LEmma 1.7.
(113) Duli) = exp (2)p() = 33— Ao(e)2".

Proof. From Leibniz’s rule
E(k
¢=0

it follows
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- k k k ¢ h
exp (o) = 3 - 2o = 220 5 (F)agarg

(2% =) & A”¢z)
xp (24)p exp (24)3

Obviously exp(24) is a linear operator, hence exp (z4) is a K-algebra

homomorphism of KI[¢,, - - -, &,] into K[(f{(&]2))i=01,2,....1<;<x)- Therefore it
is enough to show

.arl»a

w(fw)—’eXp(zA)fy) (6=0’ 1923;13]SN)~
From the definition of @, it follows

) = 1 @
@w(SJ wj(wj — ]_) “ao (wj — 4+ 1) fj (SJIZ)

i T ey ey L 5 P2 G4 L

= }; h—(w, — O)(w; — £ — )(w; — £ — h + )Mzt
e
= exp (24) .
LemMmA 1.8.
(1.14) d °0y = 0yo4,
dz
(1.15) d ¢, =d,04.
dz

Proof. From the definition of ®, and 4 it follows

1 d

2 (9,t0) = @

08 @, =1, -1 &
- 1 YD

wiw,— 1) (w,— 9"’
= (W; — £)B,E* = 0,(4£9) .

Since £ (¢ =0,1,2,---;1<j< N) are generators of K[, ---,&,], we
have d/dz-0, = 0,04. Similarly we can prove d/dzo®, = @, 4.
By virtue of (1.14) an ideal a of KI[&, ---,&y] corresponds to a dif-
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ferential ideal by 6,, if and only if a is 4-admissible, i.e. da C a.

DeFinITION 1.2. Let A be a commutative K-algebra and let a{’ (¢ =
0,1,2,---;1<j< N) be elements of A. For the system of formal power
series

fald =35 (Y )apz  a<i<N)

with coefficients a{? we associate two ideals; the kernel a of the homomor-
phism of K{¢,, ---, &y] into A such that

¢ —>a®  (£=0,1,2---;1<j<N)

and the kernel % of the homomorphism of K[(¥{)i=01,,...;1cj<y] 1iNtO
K[(f{*Y@;]2)i=0,1,2,.---:1<5<n] such that

¥ ——>f"ala) (¢=012--;1<j<N).

We call a and U respectively the coefficient ideal and the differential ideal
of the system (fi(a;]2), - - -, fv(ay|2) of formal power series.

ProprosiTION 1.2. Let a and U be the coefficient ideal and the differential
ideal of a system of formal power series

flalg =5 (%)ez  a<i<N).

Let a* be the largest A-admissible ideal contained in a. Then 0,(a*) = .

Proof. By virtue of (1.13) it follows that 0,(p) belongs to the dif-
ferential ideal ¥, if and only if

0= @w(¢)[€j=a/ = exp (zA)¢($)[€j=aj
= i Ld‘go(a_,)z‘ .
=0 ¢!
This means that 0,(p) € a, if and only if 49ea (/£ =0,1,2,-.-). On

the other hand a* = {p|d’%peca, £=0,1,2, .-} is the largest 4-admissible
ideal contained in a.

ProposiTioN 1.3. Let p be a prime ideal of K[¢, ---,&,], and let p*
be the largest A-admissible ideal contained in p. Then p* is also prime.

Proof. Denote a{” the class of & module p and put
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0@,)2) = (L) 5 (% )awzr (=012 .:1<j<N
fj (a’J]z) dz f§] h aJ 2 ( 0’ 1’ H ,ISJS )‘

By virtue of Proposition 1.2 @,, induces an isomorphism

Klg, - -, &y]/p* = K[(fjw(ajlz))z=o,1,2,---;1sjsN] .

Since p is prime, the residue algebra K[&,, - - -, £41/p is an integral domain,
hence K[f{*(@;|2));=0,1,2,....<;<v] 18 also an integral domain. Then shows
that p* is an prime ideal.

§2. Infinite dimensional representations of s/(2, K) and the decom-
position of K[¢,, ---, &y]

2.1. For each element u of K we shall construct an infinite dimen-
sional sl(2, K)-module W,, which is irreducible for v #+ 0,1,2, --- and re-
ducible for u =0,1,2, - - -.

ProposiTiON 1.4. Let {e,|¢ =0,1,2, ---} be a base of a vector space
W, of infinite dimension over K, on which

<-—3 g)ez = (u— 20)e,,

((1) g)e‘z(u‘“l)e;_l (¢=01,2-.),

(3 (1))e = (¢ + Dew

where e_;, = 0. Then the linear extension of these actions to sl(2, K) gives
an sl(2, K)-module structure on W,. If u+0,1,2, .., then W, is irredu-
cible, and if u=20,1,2, .-, the vector space Wu generated by {e,.,..|¢ =
0,1,2, ---} is an irreducible sl(2, K)-module isomorphic to W_,_, such that
W, /W, is an irreducible sl(2, K)-module of dimension u + 1.

Proof. From the definitions of the actions it follows

((g g), (g L(l)))e, = {6 + Du— ) — (— £+ e,

= (u— 20)e, = <—(1) (l))ee s
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«—1 O)’ (O O))ee = {w— ¢+ —20—2)— (u—20)u— £+ Dle,

0 1/'\1 0
_ 2(0 0) ,
10
5O Do
(T3 9@ g)e= e+ D= 20— 9 — @— 20 + Ve,
_ _2(0 O)eg
01
This means that W, is an sl(2, K)-module. Denoting P= {a e W, (‘1) 8)a=0},
we have
P={Ke° for u=+0,1, 2, ---

Ke, + Ke, ., foru=012---,

because u — ¢ +1=0 if and only if / =u+ 1. Let V be a non-zero
sl(2, K)-submodule of W,. For each non-zero element a there exists a po-

sitive integer n such that ((1) 8>na = 0. This means that VN P = {0}.
Hence, if ©+0,1,2,---, then Voe, and V= W,, i.e. V is irreducible.
If u=0,1,2,---, then W, is an si(2, K)-module isomorphic to W_,_,,

because

(75 Dewrs = = 20— 2evi = (—u—2ess.

The quotient W,/ Wu is the known irreducible sl(2, K)-module of dimension

u+ 1.

2.2. To proof semi-simplicity of sl(2, K)-module KI[&, ---,&y], it is
necessary the next condition;

Condition (C): The set {3.}., w,d;|d,, ---, dy are not all zero

non-negative integers}
contains neither zero nor positive integer.

TueoreM 1.1. If w = (w,, - - -, wy) satisfies Condition (C), then sl(2, K)-
module KI[&, - - -, &y] is semi-simple and K[&,, - - -, &y] is generated by binary
semi-invariants as a sl(2, K)-module.

Proof. For each non-zero element ¢ in @™ putting

_]:—Also (SD=091!2""),

@ —
LT
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we have from (1.3)

Hp® = (u — 2)p®, Dp® = _21'_@4490 _ Uu —g{ + 1) 410

= (u — £ + 1)p
dp® = —;—'A‘”so = (€ + L)p“*V .

This shows that the vector subspace is an sl(2, K)-module isomorphic to
W,; By virtue of Condition (C), the si(2, K)-module

W, = @)Kd‘go

is an irreducible si(2, K)-module. Let U be the si(2, K)-submodule of
K[¢&, - - -, &€4] generated by binary semi-invariants. Then U is a semi-simple
sl(2, K)-module. Thereforeit is enough to show K[, ---,&y] = U. Let
U™ be the vector subspace of K[&, ---, &y] generated by 4‘©*+*1 (¢ =
0,1,2---), ie.

ul=0Un K[&b Tty sl\l]l:u:l .
It is sufficient to show
U[u] D K[ela Tty "‘s:N][u-J .

Since each element ¢ in K[¢,, ---, &y] there exists a non-negative integer
n such that 27 € &, it is enough to prove the next assertion;

(+) If Dpe U™, then ¢ e U,

Case i) u+-—2, —3, —4, ---. Let ¢ be an element of K[¢,, - - -, &y]™
such that 2¢p ¢ U™*, and put

_ ® (—1)‘A‘9‘(p
P=rt u+2)u+3) - w+e+1) "

Then from (1.3) we have
D6 = Do + T (—1)'24'D'p
O R T D+ @t T D)
PN o (—1)‘4‘9‘“¢
ot T D+ 9wt 5D
+ 3 (=112, 412°
Sl u+2du+3) - w+i+1)
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_ i ( 1)BAl9l+lgD
SN+ 2)(u+8) - (u+4+1)
fl —1)%4(u + 2¢ — £ + 1)4*"' D'y
=W+ 2w+ 3w+ 4+1)

o

b

namely ¢ e &, Hence

: (=12 .
= & — e U1,
A AP R R Yo ey
Case i) u= —2, —3, —4, ---. Putting n= —u — 2, with a non-
negative integer n. Let ¢ be an element ¢ of K[&, ---, &,]"1 such that

D¢ e U™, Since 2¢ € U™**, we may express

Dp= A (he@I).

Putting

=3 1 Ly = 1 £,

& (6 4+ 1)(4 — n) #n (L + D+ L+ 2

by virtue of (1.3) we have

ey, CAD@ 24U 11D
A (R (2 Y I

= A", .
By virtue of Condition (C) there exists no isobaric element of index n for

n>0. If n=0, then €™ = K. Since ¢ has no constant term, hence
whenever 9(¢p — ) = 4™, = 0. This shows that

p=v+(@— ¥
p—Pye@I,  gelU™,

and thus ¢ e U™.

TaeoreM 1.2 (Gram’s theorem). If w = (w,, - - -, wy) satisfies Condition
(C), then the following three conditions on an ideal a of K[&, ---, &y] are
equivalent;

i) «a is an sl(2, K)-admissible ideal.
ii) There exists a set of index-homogeneous binary semi-invariants
{p:l2 € A} such that a is generated by {4'p,|¢ = 0,1,2, ---;2¢€ 4} as an ideal.
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Proof. Let a be an sl(2, K)-admissible ideal. Then a is an si(2, K)-
invariant submodule, hence by virtue of Theorem 1.1 we have

a= QA0 NS =@ L N Sy,
=0 u £=0

This shows that i) implies ii). Let {¢,|1 € 4} be a set of index-homogeneous
elements of © such that a is generated by {4%,|¢ =0,1,2,:--;2€ 4} as
an ideal. Then elements of a are linear combinations of

¢A£§02 (¢6K[EI’ ',SN][u], Z = O, 1’2; o ;ZGA) .
Let us examine the actions of #, 2, 4 on such a element ¢4%;;

H(pdlp) = H g, + ¢p# Mg,

= (index (¢) + index (p,) — 2£)gd’e* ,

D(pd'0,) = Dpdp, + £(index (@) — ¢ + Dgd* ¢, ,

Agd'p,) = AL, + A, .
This shows that

#Ha, Da, daCa,

namely a is an sl(2, K)-admissible ideal.

§3. Robert’s theorem

3.1. We shall define the action of GL(2, C) on the basic formal power
series f,(&]2), - - -, fx(éx|2) and shall prove Robert’s theorem which gives a
canonical isomorphisms between the algebra of semi-invariants © and the
algebra of covariants.

For a complex number v we mean by z* the convergent power series

5(7)e-»

in the disc {|z||z — 1| < 1} with center at 1, which is a branch of the many
valued function z*.

Actions of elements (i g ) in GL(2, C) satisfying 6+#0 are defined as
follows:

amn £ Beie) = getarn(s 2 EL)  a<ism,

namely
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S(9G D)=

o ']
e E(7r(52)
(rz + 0) ¢Z=E, PR ey

((i fj)eGL(Z,C),B;&O,lgjgN).

We shall calculate <($ ﬁ)s,)w explicitely.

ProposiTioN 1.5.

1.19)

((

(G Do) =8 () Jpmeroe.

Proof. From (1.18) it follows

o p
r o«

Je) = () 2 &G Do)

R ol ) il s )«”+”Whmz+mnm

)
() B () oo

)t o

X
(BRI e
(ﬂ htu;) h 5 p ‘_, B

z=0

MS &'Q.. ||M8
< M- TMS

Putting A = p + ¢q and replacing p by ¢ — p, we have

because

(€ 200 = £ Preowrress

(7)) 2005 9= (7 G)

Applying (1.19) to special type of elements, we have,

COROLLARY 1.

(1.20)

(G 9e)" =
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(6 D) =

a2) ((; D) = £(; Jeroe

(6 90)"- 55 Qe
COROLLARY 2.

@29 2@ = 54 o)L,

(1.25) 400 = zol(o ),

Proof. Since both sides of (1.24), (1.25) are derivations acting on (&),
it is sufficient to prove (1.24), (1.25) for ¢(¢) = &. For such a case (1.22),
(1.23) imply (1.24), (1.25), respectively.

3.2. Let us give the definition of covariants.

DErFINITION 1.3. A covariant of index u is a formal power series
@, i 2) = 35 (% )ed®)2!

with coefficients c,(£) in C[£,, - - -, &y] such that

(1.26) F((‘: g)&(‘: ﬁ)fzv;z)

= G2+ O F(6, s & %z:[—g) ((i P)esLe 0,0 0).

We denote by ™! the vector space of covariants of index u, and denote
% = @, ¥™ is called the algebra of covariants.

LemMmA 1.9. If F(&, ---, &y; 2) is a covariant of index u, then F(&, - - -,
&y; 0) is a binary semi-invariant of index u, and

(1.27) F, - ,¢6y;2) = exp (AF(E, -+, &3 0) .

Proof. We shall first prove (1.27). Applying ((1) t1> to F(&, -+, &,; 2),

we have
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AF (&, -+, &, 2) = dt (( )EI, ceey ((1) ;)&22)

d
z_F R - = _ F bttt & .
7 (& &2+ 1) s (& £.52)

t=0

Since
e Eus s 1(d T
F@ - r8i D) = 5 (-L) e - 05 02,

we have

F(Sb""EN;z) 2_2‘_41?(519' ySn’O)z
= eXp(ZA)F(&, Tty SN,O) .

Similarly we have

otte - t501= & 5(( Yo (Do)

- %((tz + DU (8 b tz—i—l—))
= L F@, - 60 Ol

=0.

2=0,i=0

2=0,t=0

This means that F(&, - - -, &y; 0) is a binary semi-invariant. By virtue of
(1.20), (1.21).

i((lﬂ 0 ) )“’ :i(l gywi-2 <.e>>
dt 0 @A+ S jt=0 dt @+ & t=0

= (w; — 20)& = HEY .

Hence, to prove index (F(&, ---,&;0) = u, it is sufficient to show

%F((lgt (14(:t)-1)5""" (145,: (120-1)5”;0)

= uF(Sb "',51\1;0)-

t=0

Actually we have

”%F((lgt (1—|()~t)“)&"“’ (IJ(;t (1-(:0'*)5”;0)

t=0
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- d u oo, B
- dt(1+ t) F(El’ :EIV’

)
(1 + £)*/ ls=0,e=0

= uF(, -+, 6x;0) .

Lemma 1.10. Let (¢, - -+, &x) be an element of C[&, -+, &y]. Then
we have

(G D Do,

where @, is the isomorphism of C[&, ---, Ey] such that

o o 1
! wiw,; —1) - (w; — £+ 1)

11712 .
Proof. Since

fela = 5 (Y e,

by virtue of (1.23) we have

1
wiw; —1) - (w; — ¢+ 1)

D7) = 11912

- 1 i‘( w; ) (,l+q>(i>lze+q
wlw, —1) - (w, — £+ 1) =0\44q/"’ dz

i“ ww; —1)--- (wj —4—q+1) “+ ! £+ 50
=0 ww, =1 (w;,— ¢+ 1) ¢+q—0’

- gt:) (qu_é)fé-"*q)zq = (((1) i)gj)(z) '

Since @,, is an algebra isomorphism, we can conclude

(G ot ) =00,

LemMmA 1.11. An element (&, - - -, &) of Cl&, - -+, Ex] is a binary semi-
invariant of index u, if and only if

Il

(1.29) so((i 5‘_’,)5, (i 5?,)5N)=5“¢(s,,---,a) (1,5€C,50).

Proof. Let (¢, - -+, &y) be an element K[, - -+, &y]™. Since

(O]
(& 2oy =
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We have

o0 2ew - (0 D)) = ot .

Therefore it is enough to show Z¢ = 0 if and only if

(Y R G E9 T O R

R X o ]

the “if”’ part is obvious. Assume P¢p = 0. Then we have
@l e (o)

= arllesa Dol

=2l )6 De ()

d\\t 1/\o /" \o ¢

=oo((y oG o)) =0

Since

t=s

)or)..
. 1)

t=0

This shows that

(R 'S E.Y

Let us sum up the above results in the next theorem which is the
analogy of Robert’s theorem in classical invariant theory.

THEOREM 1.3 (Robert’s theorem). The isomorphism @, gives an C-
algebra isomorphism of the algebra of binary semi-invariants © onto the
algebra of covariants €. Moreover '

D,(S) = @1,

Proof. Let ¢(&, ---,&y) be an element of &M, TUsing the matric
relation
GG D=7 otn-)lo @ P7?) ([ Deste o),
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by virtue of (1.20), (1.21), (1.28), (1.29) we have

ol D0 D)

S S S

(AL R I

r  (z+0)Y\0 1
(7zr+ 8 o f a)—') ((1) (az + ﬁ){(rz + 6)) EN)
— (2 + 5)u¢(((1) (az + .B)ll(rz + 5))51, - ((1) (az + ﬁ)ll(rz + r)) 5N)
= (rz+ 5)"%(@(&, e B ‘;‘:I g) .
This means that @,(p) € ¥™. Conversely, if F(£, - -, £&y; 2) is an element

of ¢™, then by virtue of Lemmas 1.7 and 1.9 we have

F(Sl, STy EN;z) = exp(ZA)F(Sly tt Yy SN;O) = ¢w(§0)(51, ° ';éN;z) .

§3. Binary semi-invariants and automorphic forms

3.1. Rankin is the first who noticed the relation between binary semi-
invariants and automorphic forms®. In this paragraph we shall give more
complete and systematic treatment of the relation.

To aboid the confusion between definitions in invariant theory and
automorphic function theory, we shall use the following language:

Automorphic form of index —2k, instead of automorphic form of di-
mension —2k.

LEMMma 1.12.

1 d , 3y
ww—1) - (w—£+1) (d((ocz T BlGz + 5))) ((rz + 8)~"h(2))

v ¢ (d/dz)'~*h(2) k w2k
w30 =3 ( 1)(k) T s+ D

((‘; ﬁ) e SLE, c)) .

Proof. Let us prove (1.30) by induction on 4. It is obvious for ¢ =0.

1) See [21].
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Assume (1.30) for ¢ and let us show (1.30) for ¢ + 1. Since ad — fy = 1,

we have
d _ . d
d(@z + PlGz+3) Gz + 33
and
1 d £+1 w
— 2 1
= 0T - {w(w—l) Sy
d ¢ w
X <d((afz + B)(rz + 6))) Gz + 9)""h(2) }
— o ¢ % (d/dz)‘f"‘h(z)
=L gz+ {5 (] e L
X Tk(Tz + 5)-w+2e—k}
> (—1)F (d/d2)"**-*h(z)
w1 )< >w(w—l) w—¢—1+k+1)
X (w — ¢ + k)rk(rz + 5)—w+2(£+1)—k
1 ¢ 0k Y (d/dz)“‘“k"h(z)
+ w—/¢ k=0( 1)< )w(w—- Yoo -w—¢—1+kE+1+1)

X (_w + 20 — k)rk+1(7,z+ 5)-w+2(z+1)—k—x

_ 1 ()" thtey-trz + 9w

ww—1) - (w— ) \dz
+ (__1)z+lre+l(rz+ 5)—w+t+1h(z))

Lo (d)dz)"*'-*hz
P A e PR | B gy gy gy

Gz + 5)-w+2<t+1>-k{(i)(w 0+ R)— (kfl)(—w +20—k+ 1)} :

Since
1 ((¢
L A(fJw—e+n—(,° J—w+2—r+ )]
_ 1 Al B ~ ~
= o MG hr D@ Rkt D+ w20+ k- DR}
1 21

we+w—se+=(*11),

T w—C Rl —Fk+ D! k

https://doi.org/10.1017/5S0027763000019048 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000019048

22 HISASI MORIKAWA

we have
1 d o+1 »

_l+1 _ kg_{_l (d/dz)£+1—kh(z)
’kgo( D( k )w(w-l)---(w—e—1+k+1)

X rk(rz + 5)—w+2(£+!)-k .

Let D be a domain in C containing the origin, and I" be a subgroup
of SL(2, C) which acts on D properly discontinuously. We mean by a I-
automorphic form of index v a meromorphic function F(z) on D such that

(i) == ore (D))

and F(2) is also meromorphic at the cusps of I. A ['-automorphic form
is called to be integral, if it is holomorphic at each point in D and each
cusps.

THEOREM 1.4. Let k,, - - -, ky be positive integers and put w, = —2k,, - - -,
wy = —2ky. Let ¢(§) be a binary semi-invariant of index u, where index
is given by w = (w,, - - -, wy). Let hy(2), ---, hy(2) be I'-automorphic forms
of index —2k,, - - -, —2ky, respectively, and let O(p)(2) be the differential poly-
nomial given by the replacement;

o 1 {_C.l_)eh
J ww; —1) - (w; — £ + 1) \ dz @)

in o(&). Then D(p)(2) is a I'-automorphic form of index u. If h(2), - - -, hy(2)
are integral, then ®(p)(2) is also integral.

Proof. Since @(p)(2) is a differential polynomial in A,(2), - - -, hy(2) with
constant coefficients and A,(2), - - -, hy(2) are meromorphic in D and at the
cusps, hence O(p)(z) has the same properties. By virtue of (1.30) for each

(5 ﬁ) in I" we have
7 a

1 (a@ o) )
wiw, — 1) - W, — £+ 1) \d(@z + Pz + )/ \rz+ 35

_ 1 . d ‘ »
B wiw; —1) - (w;, — £+ 1) (d((az + Bl(rz + 5))) (2 + 0)"**h(2))
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Tk(Tz + 5)-wj+2e—k

- Sen(d) (dJdz)'*hy(2)

R/ ww,—1) - (w,—¢+Ek+1)

— —wji+2e 4 VA (d/dz)l_k
= (rz + 9) g%(;)w,(wj—l)--~(wj—é+k+1)

X (=1Grz + 0)7)" .

Since ¢(---,£, ---) is a binary semi-invariant of index u, putting ¢t =
—71(yz 4+ 6)7*, we have

(D(Sa)(ozz—l- ﬁ) - 9D(. 2+ 5)_w,+ugo<i)

12+ 0
(d/d2)*h,(2) " )
wiw, —1) - W, — L+ k+ 1)
iy [ (dd2)"*h2) -
_.(7'2+5)SD( ,kZ=0<k>wj(wj—l)..'(wji‘g_k_k'*'1)t, )
L, (10, (dJd2)h, (@)
= (yz + d) ¢(<t 0)61’ ’ (t 1)51\’) e;z) wj(wj -1 --- (wj — ¢4+ 1)

- (d[d2)'h(2)

= (7’2 + 5)u¢(§1, C, SN) e;” = wj(wj —1) - (wj —¢+1)

= (12 + 0)'0,(2) .

Since 9(p)(2) is a differential polynomial in A,(2), - - -, ~y(2), D(p)(2) is integral
provided that A,(2), - - -, hy(2) are integral.

We shall show the converse of Theorem 1.4 is also true provided that
the Zariski closure of I is SL(2).

ProrositioN 1.6. Let hy(2), - - -, hy(2) be I'-automorphic forms of index
—2k,, - - -, —2ky, respectively, and let a be the differential ideal of

¢ [((Edz_)lyj)lﬂ],l,?,"‘ SN ]

consisting all the elements annihilated by (h(2), ---, hy(2)). Put w, =
—2k, -+, wy = —2ky. If the Zariski closure of I' coincides with SL(2),
then a is an sl(2)-admissible ideal with respect to w = (w,, + -+, Wy).

Proof. Replacing

e (2 M(EE D) (2 ED)

(¢ D<)
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in an element

F( .. (d/dz)y, . )
T ww,— 1) w,— £+ 1)

in a, by virtue of (1.30) we have

O=F(--- 1
’ ww, —1) - (w; — £+ 1)

X (d((ozz + p()i/(rz + 5)))zhf(:: i g) . )

=F( 1
’ wlw; —1) - (w; — £+ 1)

d ‘ ) .
% (d((ozz + Bz + 5))) (rz + 0)™'hy(2), )

(d/d2)"*h,(2)
w(w; —1) - (w;,— ¢+ k+1)
X (=rGrz + 07 --).

- F( c 2+ 8w ,éo(i)

Putting s = yz+ 6 and t = —y(yz + )~', we have

o B gt ) <o

This is an algebraic equation in s and ¢. Since the Zariski closure of I
is SL(2), we may put s = 1 and consider ¢ a variable. Hence we have

F(é(i) wy(w, — 1).-.(t;,~ C+Ek+1) (gg)t—kh’(z)’ ) =0

Using the algebra isomorphism 6,. we have

#(( Do Do)

= F( . g(i)gy-“t", ---)e@;l(a).

From the definition of 2

om0 S (Yo ) e

t=0

This means that 0,(2F) is the coefficient of ¢ in
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g tk d -k
k=o(k) w,(w,—1)---(wj—e+k+1)\5) Yi )
and thus

- (d/d2)’h,(2) —
¢ wiw; —1) -+ (w; — £+ 1)

Namely 2(6;%(a)) C 6;%(a). Since d/dz-0, = 0,04, we have

463 = 6:1(-La) € 05w .
dz
This shows that 0;%(a) is an sl(2)-admissible ideal and thus a is sl(2)-admis-
sible with respect to w = (w,, - - -, wy).
THEOREM 1.5. Let k,, - - -, ky be positive integers and put w,= —2k,, - - -,

wy=—2ky. Let h(2), ---, hy(2) be I'-automorphic forms of index —2k,, - - -,
—2Fky, which are holomorphic at the origin. If the Zariski closure of coin-
cides with SL(2), the algebra of covariants of (h(2), - - -, hy(2)) with respect

tow = (w,, - - -, wy) coincides with the algebra of I'-automorphic forms which
can be expressed as differential polynomials in h,(2), - - -, hy(2) with constant
coefficients.

Proof. We assume that a differential polynomial with constant coeffi-
cients in A,(2), - - -, hy(2)

F( , (d/dz)'h,(2) . )
’ w,(wj—l)---(wj—ﬂ—l-l),

is a non-constant I'-automorphic form of index ¥ = —2m. Then for each
(5 ‘B)eF we have
7 a
1
0= (-
ww,—1)---(w;,— £+ 1)

X (d((ozz + g/w + 3) )‘h’<:zzi§) )

(- : EAVYI
— Gz + o (-, w,(wj—1)---(w,—4+1)(dz)h’(z)’ )
— 2(kg+46) Ll (_r(rz_'_a)—l)k

() ho )
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— =+ 6)2"‘F(- v w(w, — 1) - 1 (w, — ¢+ 1) (-c;iz‘)éhj(z)’ N ) ’

This is an algebraic equation in s =72+ 6 and ¢t = —y(yz + 6)~'. Since
the Zariski closure of I" is SL(2). we may regard s and ¢ as independent
variables. Let F(&) = 3, FI-%(¢) be the index-homogeneous decomposition
of F(£). Let a be the ideal consisting of all the polynomials ¢(- - -, &%, ---)
such that

(d/d2)'h,(2) )=
SD( ’w,(wj—l)---(Zvj-—é—i—l)’ ) 0.

Then a is an .él(2)—admissib1e ideal. We shall show that > .., FI-*(&) ea.
Putting ¢ = 0, we have

F(‘ . sZ(kj-l-l) (d/dz)lh_/(z) , - .)
- smF(. . (d[dz)°h,(2) ) )
w(w; —1) - (w; — £+ 1)
Namely
F(---,s7ort2g® ) — g F(..., &0, .. )ea,
and thus

;supt—m(. C P ) — smF (e 8D, L)

— sm,Z sz(e-mF[—N](. . 55!’), -.)ea.
#=m

Since a is index-homogeneous, we have FLI-*)(&)ea (£ = m). This shows
that we may assume that F(¢) is an index homogeneous polynomial of
index —2m. Putting s = 1. we have

F( o ki‘:o(f;) w,(w; — 1) - -t-k(w, —4+4+1) (%)l—khj(z)’ )

(e () e ) = 0.

The coefficient of ¢ in this equation must be zero, and it is nothing else
than

1 (CNh. ...) =
(QF)( ,wj(wj“l)"'(wj—5+1)\dz>h’(z)’ ) 0.
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This shows that 2F(&)ea, since w, ---, Wy are negative integers, Con-
dition (C) in §2 is satisfied by w,, ---. wy. Hence by virtue of Theorem
1.2 there exist binary semi-invariants ¢\(§), ---, ¢,_(§) of index —2m,
—2(m — 1), ---, —2 such that

FE) =5 4040

and 4%, (0 < k< m — 1) are linearly independent. Hence by virtue of
(1.3) we have

ADFE) = 495, 0.6 = 45, 19, 41

m—

= 2 K(—2(m — k) — k + 1)4%(¢)

.

=5 Mm+ b+ DA,

and thus (49)YF(&) = > 7ot (B(—m+k+1))Y 40 (8). On the other hand by
virtue of Proposition 1.6 we have

UDYFE) = 5 (b(—m + k— Ddp@e¥ (=12 ).

This means

Ak?k(&)e?l (k=1727""m—1)9
and thus

F*() = ¢(§) mod U .
Namely
F( (d/d2)’h,(2) )

wiw; —1) - (w; — £+ 1)

— ... (d/dz)’h(2) .

“%( ’ w,(wj—l).--(zjl;j—z+1)’ )

with the semi-invariant ¢,(¢) .

Chapter 2. Differential invariants of linear ordinary
differential operators

We shall be concerned with linear ordinary differential operators of
order n
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Llan = (&) v+ 5(5)p@(5) 7

where z is a complex independent variable and the coefficients p,(2), - - -,
D.(2) are holomorphic at the origin. Similarly as in the case of binary
forms, the binomial coefficients <’Z) play a quite important role.

Pseudo-group G of variable transformations

pust (5,9) —> (@, @) (24D = 0,20) = 0)
acts on L,(p|z,y) as follows,
L.(0.,{P)|2, y) = (—:;)ny + ;1 (Z )pu,z(p)a(z)(%)ny

- (%)"z(z)"Ln(pl u(2), A(2)y) .

The pseudo-group G acts also naturally on the differential polynomial

algebra
C [((%)lpj(z))ISJSn;2=0,1,2,~--] .

A linear differential operator L,(Q|z, y) is called a Laguerre-Forsyth’s
canonical form if @,(2) = @.(2) = 0.

Forsyth has proved that for each L,(p|z,y) there exists a variable
transformation p,,; such that L,(p, (p)|2, ¥) is a Laguerre-Forsyth’s canoni-
cal form. He also has proved that a variable transformation p,, maps
a Laguerre-Forsyth’s canonical form to a Laguerre-Forsyth’s canonical
form, if and only if

_az+ B _ c
ue) = T2 KD =

where

(5 ﬂ)eSL(z,C), c+0eC.
7y «
A differential polynomial ¢(- - -, (d/dz)’p,(2)- - -) is called a differential

invariant of weight p, if ¢(-- -, (d/d2)'p,(2), - - -)(d2)" is invariant by the
action of G.
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Forsyth has found a system of basic differential invariants (6,(2), - - -,
0.(2)) of L(p|z,y) such that i) 6,(2), ---,0,(2) are weight 3, - - -, n, respec-
tively, ii) if L,(Q|z, y) is a Laguerre-Forsyth’s canonical form of L,(p|z, ),
then

12 (—=)(p—2!p!@Cp—-—s—2)! (d
0 = 5 51 < _s_l),(p_s),(zp_s),s,( Q@

B<p<n)
iii) all the differential invariants of L,(p|z,y) can be obtained from
0,2), - - -, 6,(2), by successive making of jacobians, iv) 6,(2), 6,(2), - - - do not

depend on n, ie. for v’ > n (6,(2), - - -, 6,(2)) is a part of the system of
basic differential invariants of

L.(plz,y) = (—dd;yy + BZO (';’I)pz(z)(gz—y'_zy :

In the present chapter first we shall prove that, if we put

0,2 = 53 (7 ot
=0\ ¢

w, = —2p

B<Lp<n,

then the ring of all the differential invariants of L,(p|z, y) is nothing else
than the ring of covariants of formal power series 6,(2), ---,6,(2) in the
sense of chapter 1, namely ¢ is a differential invariant of L,(p|z, y) if and
only if there exists a binary semi-invariant F(---, &, --.) of index w, =
—2p such that

—7... (d/d2)'6,(2) N
“’—F< i w, — 1) - - (zjuj—ﬂ+1) )

We choose a fundamental solution (¢,(2), - - -, ¢.(2)) of L,(p|z,y) =0,
and consider

z2—>($i(2), - - -, $u(2))

a curve in projective space P"~' of dimension n — 1. Then 6,(2)(dz)? - - -,
0.(2)(d2)" projective invariants of the portlate of the projective curve.

We shall show an application to automorphic forms as follows; let
#:(2), - - -, $.(2) be a set of linearly independent integral automorphic forms
of index —2k with respect to a group I', and put
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(@) o () e

L.(plz,y) = wy(2)™"

9, Bry e ) bn

Let (64(2), - - -, 0.(2)) be the system of fundamental differential ivari-
ants of L.(p|z,y). Then 6,(2) is a I-automorphic form of index —2p
whose denominator a factor of a power of Wronskian W,(z). It is remark-
able that the system of automorphic forms (6,(2), -- -, 6.(2)) is uniquely
determined by the vector space > 7., Cé,(2). If {¢,(2), - - -, #.(2)} is a base
of differential forms of 1% kind of an algebraic curve of genus n, then
0=)(dz2)’, - - -, 0,(2)(d2z)" are invariants of the function field of the algebraic
curve.

§1. Laguerre-Forsyth’s canonical forms

1.1. We shall first sketch the outline of Laguerre-Forsyth’s theory of
canonical forms.

We denote by #(n) the complex vector space of all the homogeneous
linear differential operators of degree n

L.(plz,y) = (_d%)"y + g ('; )p,(Z)(%)n_dy

whose coefficients p,(2), - - -, p.(2) are holomorphic at the origin. It must
be noticed that the highest coefficients of elements of #(n) are always 1.
We denote by G the pseudo-group of variable transformations

Pu,it (2, ¥) —> (u(2), 2(2)y)
such that u(z) and A(2) are holomorphic at the origin and du(0)/dz + 0,

A0) = 0.
We mean by G, the pseudo-subgroup of G conmsisting of all the de-
pendent variable transformations

G, = {0u,:]38 0 are holomorphic functions at the origin such that} .

Pseudo-subgroup G, of independent variable transformations around the
origin means
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G: = {04,142/ ~0 are holomorphic functions at the origin such that} .

G is generated by G, and G,.
The action of G on #(n) is defined by

21) L. D)2y = (;z)n ﬁ( )P“ *(p)‘(z)(ﬁd‘)

= () {(G)y + 2 (D)pe(g) wn)

= <Ti%) A(2) 'L, (p|u(z), 2(2)y).

The action of G, is rather complicated, but the action of G, is quite simple.

LemMma 2.1

@) Lia®z) = (L)y+ i@ 35 (2 )elm i@ (L) 7y

Proof. From the definition of the action of p,, it follows

LipaiDl) = 17 (L) a@n + 5 (7)p@( L) a@m)

- (@) (e

#5620 el (E)

(hf Q("‘Z”) - (Z)(Z)

the coefficient of (d/d2)"~*y in L,(o« D)|2, ¥) is given by

o (w0 5 (2o ol )20

= A2) ( )Lu(pl2 2@ -

Since

1.2. When (d/d2)’ps(z) 1<j<n;¢=0,1,2, ---) are algebraically
independent over C, we define weight in the algebra of differential poly-
nomials
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(&) picscnco]

as follows
2.3) weight ((%)‘p,(z)) —jte.

DerFintTION 2.1. A linear differential operator L.(P|z,y) is called a
semi-canonical form if P(z) = 0.

ProrositioN 2.1. For each L,(p|z,y) there exists a unique semi-canoni-
cal form L,(p|z,y) such that

Ln(P‘z’ y) = Ln(pid,l(p)lz’ y)

with an element py,, in pseudo-group G,. Moreover the coefficient P(z) of
(d/dz2)""*y in L,(P|z,y) is expressed as an isobaric polynomial of weight ¢
in (d/d2)'py2) O < k< n;1<j< n).

Proof. It is well-known in calculus that L, (o4 (p)|2,y) is a semi-
canonical form if and only if

@) | x2)p2) = 0.
dz

Since the quotient of two solutions of this equation is a constant and for
non-zero constants ¢

Ln(Pid,cx(p)|z, y) = Ln(pid,l(p)lzs ¥,

hence the semi-canonical form

L.(P|z,y) = L,(0ua,{P)|2, ¥)
of L,(p|z, y) is unique within G,. Again by virtue of
) — _p@i@
z

there exists an isobaric polynomial ¢, of weight ¢ in (d/d2)*p,(z) (0 < k < n)
such that

2(z)'1<%)‘2(z) — .

From (2.2) it follows
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Py(2) = (2)"L{(p|2 1))
=17 ( L)@ + 5 (L )pi@ie (L) @

I/
= ¢, + >, ( )pk?’t—k .
=i\ k

This shows that P, is an isobaric polynomial of weight ¢ in (d/dz)*p,(2)
A<Lj<nm k=012, ---).

DEerFINITION 2.2. A differential polynomial ¢ in

J((CoLL N

is call a differential semi-invariant, if

(o (Y o) = (o () )

for every p., in G,

ProrosiTioN 2.2. Let L,(P|z,y) be the semi-canonical form of L.(p|z, ¥).
The ring of all the differential semi-invariants coincides with

g ((COLLNG

Proof. Since the semi-canonical form L,(P|z, y) of L,(p|z, y) is unique
within G,. Therefore the coefficients P,(2) (2 < j < n) are differential semi-
invariants of L,(p|z,y). Moreover the derivatives (d/d2)'p,(2) (2 <j < n;
£=0,1,2,.-.) are also differential semi-invariants. The rings of differ-
ential invariants of L,(p|z, y) and L, (P|z, y) coincide, because L,(p|z, y) is
transformed to L,(P|z,y) within G,, and the ring of differential semi-
invariants of L,(P|z,y) is a subring of

(G5 L) B

This proves Proposition 2.2,

DErFINTTION 2.3. A linear differential operator L,(Q|z,y) is called a
Laguerre-Forsyth’s canonical form if @,(z) = @,(2) = 0.

1.3. We shall be next concerned with the action of pseudo-group G,
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of independent variable transformations. We shall state two lemmas with-
out proofs.

LemMA 2.3.2 Let z be a function in u and put

Then we have

2.5) %‘E‘ _ ( Z_z )m
()
- QS

o = (3)(a) <(a) ™+ () (@)

LEmMmA 2.3.2 Putting

- (&) ()

we have

(210) pui®@ = (Z) " (pw + 25 1y)
@1 @ = () {pw + (0 — Doty

1( 2 2 n_z)/}
—((8n*— 11 10
+12(n n + 10)7* + g )7

d _(d2\7f N n—1,, n-1,
@12 L@@ = (Z) (s - ptiy - 2717 + 2Ly,
where ()Y = (d/du)( ).
LemMmaA 2.5.

— /-1 Zl(u) n—1
(213 puseP(@) = 2 {pi) + £+ 2Ly},

2) See p.20-22, § 3II [4].
3) See (26), (26a), (27) §41I [4].
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where (Y = (djdu)( ) and 5 = 2"/2.
Proof. From (2.1) it follows
L(punP)23) = 220" Lo(plu, 2w))
= 20 (-L) G + (3 )pw (L ) (@) + -}

-l () ol )

On the other hand from (2.10) it follows

(L) (e ) )

= (dii) y+ z"‘{(px(u) + Z;((Z)) + n; 177)(%)%13' + },

hence

@ = 7 {p + 5 4 22},

ProPOSITION 2.2. A transformation in G
Pt (2, Y) —> (u, A(w)y)

maps any semi-canonical form to a canonical form, if and only if

_ c
(2.14) Au) = W‘ ’

where ¢ is a non-zero constant.

Proof. Let L,(P|z,y) be a semi-canonical form, i.e. Py(z) =0. From
(2.13) it follows

o) = 2P + A L 2oL ZY

hence we observe that
pu,Zou(P)l = 0
if and only if

A(w) n—1
A(w) + 2

ll
o
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The solutions of this equation are given by

_ c
A(u) = —(W (ceO).

ProrositioN 2.3. Let L,(P|z,y) be a semi-canonical form, and let
L, (Q\z,y) be the semi-canonical form of L,(o,.(P)|z,y). Then

(2.15) Q2) = 2 { Pw) + nlgl 2 _ n—gl”,}’

where (Y = djdu( ), 5 = 2|2

Proof. Since L,(Q|z,y) is the semi-canonical form of L,(p, .(P)|z,y),
there exists a function A(2) such that

L.(Q|z,y) = L.(o1,:(p..(P))|2,¥)
awfn d \"¢
= (2) ;1 ( g)Ll(pu,l(P)[z, z@))(a) y

and
1 dA(2) _
A(2) _dz— + Pu,1(P)(z) =0,
Since

1@ (-2 )a@) = 10+ 2L (H2) - —2@) L 4@p..(PY)

dZ(Z) Ou, 1(P h— i{’u (P),

—A(2)! i

= pu,l(P)ﬁ -

(;lz pu,l(P)l ’

we have
Q(2) = A(2)"'Lypu(P)|2, A(2))
= 3@ (-L) @) + 2@ 0 (PL D). 4 p, (P,

= Pu,l(P)Z — p,M(Pl)z — Pu,l(P)l .

dz
Using (2.10), (2.11), (2.12) and P, = 0, we have

Q) =2 ’Z{Pz(u) + %5(3n2 — 11n + 10} + * g 27/}
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— -t (n’;' 1)2”2_5-2{_"; -; 1772 + n; ].v/}

— -2 P n’l‘lz_n—l/}.
z {z(u)+ 157 6 7

Finally we can now prove fundamental theorems due to Forsyth.

TuEOREM 2.1 (Forsyth). For each L,(P|z,y) there exists a transforma-
tion; p,,1.y; (2, ¥) = (u, A(w)y) such that L,(p,,...(P)|2, y) is a Laguerre-Forsyth’s
canonical form, i.e. p, 1.(P) = pu,1..{P). = 0.

Proof. It is enough to start from a semi-canonical form L,(P|z, y), i.e.
P, =0. Let p,..: (2,5 — (u, A(w)y) be a transformation such that

c
) = —e
(£) - 32) - 4 greo
z 2\ 2 n+1 277

where ¢ is a non-zero constant and ( ) = (d/du)( ). By virtue of Propo-
sition 2.2 the first relation implies that L,(p,,...(P)|2, ¥) is a semi-canonical
form. From the second relation and (2.13) we have

7\ 2 AN
s =0+ () - 22

Hence L,(p,,;..(P)|2,y) is a Laguerre-Forsyth’s canonical form.
It must be notice that, to get a Laguerre-Forsyth’s canonical form,
we need to solve a Ricattis equation

(Z) - 2(%) =P

in 2”/2.

THEOREM 2.2 (Forsyth). A transformation p,,,., maps a Laguerre-For-
syth’s canonical form to a Laguerre-Forsyth’s canonical form, if and only if

. s (az+ B cy ) ((619 SL(2
Pu,z.u.(%y) <‘)’Z+5’ (rz+6"“ Ta)e (,C), C#OGC).

Proof. Let p, ;. be a transformation which maps a Laguerre-For-
syth’s canonical form L,(Q|z, y) to a Laguerre-Forsyth’s canonical form
Ln(pu,luu(Q)lz, y)' Then; Since
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Q= Qz = Pu,xou(Q)1 = pu,lou(Q)2 =0,

from Proposition 2.2 and Lemma 2.6 we have

A(w) = ¢

2/ (n=1)2
77\’ 7\ 2
() - 3z) -0
-4 2\ 2
The second equation means that the schwarzian {z, u} of z with respect
to u vanishes. This shows

_az+ B _ (du)‘"“)/2 _ c
= . Aw) = o[ = ¢
“ 2+ 0 @ =c dz (rz + o)~

§2. Differential invariants

2.1. A linear differential operator L,(p|z, y) is called to be algebrai-
cally generic, if (d/d2)'p,(2) 1<j<n;£=0,1,2,..-) are algebraically
independent over C. Such a case each variable transformation p, , induces
a differential algebra homomorphism

Pust € [((-;_z)lpj (z))lsjsn: é=°’1’2""]

—C [((%)gpu,x(p)j(v))

1<j<n; e=01112a"‘]
such that

d \¢ d \*¢ .
pi((L) 2@ = (L) ouiP®)  A<i<mie=012:),
dz dv
where uov = 2z, i.e. u(v) = 2.
Let us give the rigorous definition of differential invariants of linear
differential operators.

DerFiNiTION 2.4. Let L,(p|z,y) be an algebraically generic linear dif-
ferential operator, and let m be a non-negative integer. A differential in-
variant of weight m of L,(p|z, y) means a polynomial ¢(- - -, (d/d2)’p,(2),- - -)
in (d/d2)p(z) 1<j<n;¢=0,1,2, ---) such that

ol (o0 ) = (2o ()

(04,:€ G) ,
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where uov =id, i.e. u(w) =z Let L,(qlz,y) be any linear differential
operator. A differential invariant of weight m of L,(q|z,y) is the image
of a differential invariant ¢(- - -, (d/d2)'p,(2), - - -) of weight m of L,(p|z, y)
under the specialization:

el (Lot ] el (oo ]

such that

(Dp@—(L)e@ a<i<nme=012-).

Obviously this definition of differential invariants of L,(q|z,y) does
not depends on the choice of an algebraical generic L,(p|z, ¥).

LemmaA 2.6. Let L(Q|2,y) = L,(0.,..(D)|2,y) be a Laguerre-Forsyth’s
canonical form of L,(p|z,y), and let ¢(- - -, (d/d2)’Q,(2), - - -) be a polynomial
in (d/d2)'Q,z) B<Lj<n;¢=0,1,2, ---) such that

o ()@, )@

is invariant with respect to the transformation group

1= fer— . oL o)

Then there exists a polynomial ¢(---, (d/du)p;(w), ---) in (d/du)p,(u)
1<j<n;£=0,1,2, .-..) such that

o+ (L) Y = o,

where m is a non-negative integer.

L)@, )@@,

Proof. Since the coefficients of the semi-canonical form of L,(p|z,y)
are expressed as polynomials in (d/d2)’p,(z) 1<j<n;£=0,1,2,.-.),
we may assume that L,(p|z, y) is itself a semi-canonical form, i.e. p, = 0.
Since L,(Q|2,y) = L.(01.0..1(P)|2, ¥), by virtue of Lemma 2.1 we have

(+)  LQE=Y=(L)y+i1 5 (7 )Lloutolz i@ (-L) Ty

Since L,(p|z,y) is a semi-canonical form, by virtue of Proposition 2.2 and
2.3 it follows
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(x+) 3@) = czn,

,_1,. 6
(k) 7 2v+n+1

q(w) ,

where ( Y = (d/du)( ) and » = 2"[2.
From (xx) and (xxx) it follows

d _n—12" _n-—1
Eil(z) =5 A(2) = 3 7A(2)
and
a _ g g
dz du

This shows that i) A(2)"(d/dw)*a(2) (k=10,1,2, ---) can be expressed as
polynomials in 7, p,(«), pi(w), p'(w), - - - and ii) (d/d2)*=21i &.{n, 2 ~*)(d|du)’
with polynomials g, ,in » and 2~'. Hence by virtue of (x) we can express

oo (LY@ ) = S (), -y

with a finite number of polynomials ¢,,. On the other hand for (i g ) €
SL(2, C)

<ocz + B )' _ -4
rz+0/ (Gz+ o’
((z+ BlGz+ o) _ =" _ 202" _ 22"

(@z+ Pz + Y 2  12+6 | qz+o

Since of- - -, (d/d2)'Q,(2), - - -)(d2)™ is invariant with respect to H, putting
s = (rz + 0)* and t = —2r2’*(yz + 9)”', we observe that for (? g ) e SL(2, C)

so(- " (%)bj(z), . -)(dZ)"‘
=3 ¢q’r<. . (_d_E)‘p’(u)’ .. .)zf—qﬂr(dz)m

q,7

d
- Bl (G )

q( = )
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= Ztar(- o () pw, - Jsrz 0 — 07"

Here we may choose y and § such that s and ¢ are algebraically inde-

pendent over
¢
e ((E)pw). ).
u 1<7<n; 6=0,1,2,0+

hence we have ¢ = m and r = 0. This means

dy\ d\
y)( ey (__) Qj(z), . )(dz)m = ¢m,0<. e ( )pj(u)’ . .)(du)m .
dz du
THEOREM 2.3. Let L,(Q|z,y) = L,(04,:..(P)|2, ¥) be a Laguerre-Forsyth’s
canonical form of an algebraically generic L,(p|z,y). Then a polynomial
o(- -+, (d]d2)'Q,(2), - - -) is a differential invariant of weight m of L,(Q|z,y),
if and only if ¢(- - -,(d[d2)'Q,(2), - - -)(d2)™ is invariant with respect to the
transformation group

H= {(Z, ) > (j:i g’ Gz +y5)n—l)

(" ﬁ) e SL(, C)} :
r

Proof. Let ¢(-- -, (d/d2)’Q,(2), - - -)(d2z)™ be invariant with respect to H.
Then by virtue of Lemma 2.6 we get a polynomial ¢(- - -, (d/duw)’p,(w), - - -)
such that

d\ d\
(Do Ydwn = (L) Qe - )da,

du dz
where ¢ is uniquely determined. Let p,,, be any element and put g,,;.., © 052,
=p,..c- Then, since L,(Q|z, y) is also a Laguerre-Forsyth’s canonical form of
L,(px,{P)|2, ¥), specializing (w, p,(), - - +, Po(W) (%X, Pu,u(DI(X), - - *5 P, (P)(%)),
we get ¢(- -, (d/dx)py,(P)y(x), - - - )Ax)" = (- - -, (A]d2)’Q2), - - -Nd2)" =
é(- - -, (@d/du)'p,(w), - - -)(duw)™. This means that ¢(- - -, (d/du)’p,(w), --+) is a
differential invariant of weight of L,(p|u,y). Moreover, specializing
(%, p®), - -+, Pa(W) = (2,0,0, @(2), - - -, @u(2)), we get ¢(- -, (d/d2)'Qs(2),
< NdR™ = ¢(- - -, (d]d2)'Qy(2), - - -)(d2)™, and thus ¢(. - -, (d/d2)'Qy(2), - - -) is
a differential invariant of weight m of L,(Q|z,y). Next, we assume con-
versely that ¢(- - -, (d/d2)'Q,(2), - - -) is a differential invariant of weight m of
L.(Q|z,y). Then there exists a differential invariant ¢(- - -, (d/d2)'p,(w), - - -)
of Ly(plu,y) such that ¢(---, (d/d2)Q2), ---) = o(---, (dldD)Q), - - ).
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Since ¢(-- -, (d/du)’p(u), ---) is a differential invariant of weight m of
L.(p|u, y), we have

o (E)p, ) = pusa(9( - ()o@, -+ ) @)

4 <ddz )‘Q]<z), - )dam =, (ddz )@@, - )@

This shows that ¢(- - -, (d/d2)'Q,(2), - - - )(dz)™ is independent on the choice
of a Laguerre-Forsyth’s canonical form L,(Q|z,y). Hence by virtue of
Theorem 2.2 it is invariant with respect to H.

2.2. We shall first quote a fundamental result on differential in-
variants due to Forsyth without proof.

THEOREM 2.4 (Forsyth). We denote

_ 1S CEDG=2H —k=2)! (d)
@16 D=5 G—k—DIG— B! — 3! (E) -1(2)

B<Liji<n

then 0,(2)(dz), - - -, 0,(2)(d2)" are invariant with respect to the transformation.
group

fer— (22, o0 Heston < soec).

COROLLARY. 642), - --, 6,(2) are differential invariants of L.(Q|z,y) of
weight 3, - - -, n, respectively.

This is an immediate consequence of Theorem 2.3 and Theorem 2.4.

DEFINITION 2.5. (64(2), - - -, 0,(2)) in Theorem 2.4 is called the system
of fundamental differential invariants of L.(Q|z, y).

DEFINITION 2.6. Let L.(Q|2, %) = L.(04.:..(q)|2,¥) be a Laguerre-For-
syth’s canonical form of L,(q|z,y). Then there exists a unique system of
differential invariants (6,(u), - - -, 6,.(w) of L,(q|z, y) such that

b, = 0,()d"  (B<i<n).

We call (6,(w), ---, 6,(u)) the system of fundamental differential invariants
of L.(ql|u,y).

4) See p.27-32, §41II [4].
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We shall next show a relation between binary semi-invariants in
chapter 1 and differential invariants of linear differential operators.

THEOREM 2.5. Let &= (&, &, ---), -+, &, = (€9, &P, . ..) be vectors of
infinite length with variable entries, and put w,=—2j (3 <j < n). We regard
the polynonial ring C[&, - - -, &,] as an sl(2, C)-admissible ring with respect
to w= (w, -, w,). Let L,(Q|z,7y) be a Laguerre-Forsyth’s canonical form
such that (d/d2)'Q,(2) BZj<n;¢=0,1,2, ---) are algebraically independent
over C. Then a polynomial ¢(-- -, (d/d2)'0,(2))/(w;(w; — 1)- - -(w; — £ + 1)))
is a differential invariant of weight m of L,(Q|z, y), if and only if p(&, - - -,&,)
=¢(--+, &9, ---)is a binary semi-invariant of index —2m, where (02), - - -,
0.(2)) is the system of fundamental differential invariants of L,(Q)|z, y).

Proof. Let p,, be a variable transformation in H;

(5 ) (( Deso)

Applying p,,; on 6,(2). we have

av + B\ _ [(d((av + B/Gv + 8) ! — -wy
o,(2E8) — ( B ) 0ui0)®) = (v + 8 00 (0)(2)

where z = (av + B)/(yv + 8). By virtue of Lemma 1.12 we have

(@/(d((av + B)(rv + )N)0,(av + P)/(yv + 9))
ww; — 1) - (w;— £+ 1)
_ (@l @((av + B)lGv + MGy + 8)"/p.,(0,)(v)
wyw; — 1) -~ wy — &+ 1)
— —wj+28 (¢ (d/dv)e'k{?u,x(ﬁ () k
—(TU+5) I;,(k)w/(w]_l)(wj_jg+k+1)t9

where t = —y(yv + 6)~! and p,,, means the homomorphism
d\* d\* .
() e@— (L)o@ G=izn=012 .
dz dv

We first assume that F(&, ---, &) = F(---, &%, ---) is a binary semi-
invariant of index —2m, then we have

... (d/d2)'6,(2) .
F( ’ wj(wj-—-l)---(ljvj——ﬂ—}-l), )
_ F( .. (@/(d((a@v + B)/Gyv + N)O(av + BIGv + 9) . )
’ wiw; — 1) -+ W, — £+ 1) ”
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_ ; —wj+2e (d/dv)’*p,,{0,)(w) o
= F( Gz +9) Z( )w,(w,—l) (w,—jz+k+1)"’ )

e (A 'S

_ (@A)
0" ww, =1 -(w,— £41)

- -am .. (d/dv)’p.,(6,)(V)

- (TU + 5) F(Es, Ty gn) (‘) wj(wj — 1) R .(w;_ g + 1)

_ (d((av + B)/Gv + 5))) F( .. (@/dv)’p.,(6,)(V) . )
dv Tww, -1 (w;— £+ 1)

_ (dz\" ... (d/dz)6,(2) ..

- (%) p“’k(F< Tww; — 1) -(w, — £+ 1) ) )

This shows that

, (d/dzY0,2) N\
(+) F( e =) w,— D) >(dz)

is invariant with respect to H, hence

*k ... (d/ dz)‘ﬂj(z) ..
() F( ’ wiw; —1) - (w; — £ + 1) )

is a differential invariant of weight m of L.(Q|z,y). We assume next that
() is invariant with respect to H, i.e. (xx) is a differential invariant of
weight m of L(Q|z,y), then, putting s =yv+ d and t = —y(yv + 9!, we

have
2m e (d/dv)‘pu,z(aj)(v) e
§ F( Tww,—1) - (w,— £+ 1) )
_ (... (d/dZ)‘ﬁj(z) .
o F( Tww, —1) - (w,— £+ 1) >

- F( (@/(d((ev + P)I(Grv + 5))))‘0;((av +AIGv+ ) . )
w(w,—1---(w,— 4+ 1)

_ T (4 (d/dv)’*p,,(0,)(V) ko,
—F< '8 jz§o<k)wj(wj—l)---(wj——jé+k+1)t’ )

Hence we have a polynomial relation in s and ¢

*kok L. Qerd (4 (@/dv)’*p.,(0,)(v) oL,
(xx) F( 8 jé(k)wj(wj—1)~~(w,—jé+k+1)t’ )
_enpf. .. (d/dv)’p.,(0,)(v) ) =
§ F( ,wj(wj—‘l)"'(wj—g-}‘l)' ) 0.
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We may choose 7 and ¢ such that s and ¢ are algebraically independent
over C[-- -, (d/dv)p,, (0)V), ---]. If we put s = 1, then the coefficient of
t in (x*xx) given by

7 ( N (d)dv).,.(6)()
N ww, -1 w,— £+ 1)

- . — (d/dv)p.,(0,)()
= DF(ES’ b Sﬂ) 5;” wj(wj _ 1) .. (wj _ g + 1) b

where D = 3, >, ¢£¢20/0t®.  Since 6,(2) — @,(2) is a polynomial in
@d2)Q,(z)83<Lj<p—1;¢£=0,1,2, ---), we have C[-- -, (d/d2)4,(2), - --)
= C[---,(d|d2)’Q,(2), - - -1, and thus (d/dv)’p,,(6,) B<Lj<n; £=0,1,2,--)
are algebraically independent over C. This shows that DF(§,, ---.&,) =0,
ie. F(¢&, - -,¢&,) is a binary semi-invariant. Putting ¢ = 0 in (x*x), we

have
F< .. gowitH (d/dv)’p.,0,)(v) . )
’ ww, —1) - (w; — £+ 1)’
_ a-2m . (d/dv)gpu.l(ﬁ )(©) R
=° F( ’w,(w,—l)---(wj——é—}—l)’ )’

and thus F(-..,s %9 ... ) = g7 F(---, £, ---). Namely F(&, ---,¢&,)
is a binary semi-invariant of index —2m.

THEOREM 2.6. Let (642), - - -, 0.(2)) be the system of fundamental dif-
ferential invariants of a Laguerre-Forsyth’s canonical form L,(Q|z,y). Then
a polynomial ¢(---,(d/d2)'Q,(2), - - -) is a differential invariant of weight m
of L,(Q|z,y), if and only if it is a covariant of index —2m of (042), ---,
0.(2)) for the action of SL(2, C) with respect to w = (—6, —4, ---, —2n).

Proof. This is an immediate consequence of Theorem 2.5 and Robert’s
theorem.

2.3. We shall next be concerned with differential invariants of the
linear differential equation of automorphic forms.

THEOREM 2.7. Let I' be a subgroup of SL(2,C) which acts properly
discontinuously on a domain in C containing the origin, and let (h,(2), - - -,
h,(2)) be a system of linearly independent automorphic forms of index w
such that h(2) (1 <j <n) are holomorphic at z= 0. We denote
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A ‘ R0
ww—-1)---w—-—n+2" S ww—-1)---w—n+2)
hiﬂ—z) h;bn—Z)
W@ =\w-1--w-—n+3 ww—1) - (w—n+ 3)
hiy s ha
and

L(plz,y)=ww—1) - (w—n+ DHW,(2)™"

y(ﬂ) h{n) hfbﬂ)
ww—1)---w—n+1)" ww-1)---w—n+1)"  ww-1)---(w—n+1)
y(n—l) hfn-l) hfn—l)
ww-1)---w—n+2) ww-1)---(w—n+2)  ww-1)---(w—n+2)

-

Y, hu ’ hn

where () = (d|dz){( ) Let (6:(2), - - -, 6.(2)) be the system of fundamental
differential invariants of L,(p|z,y). Then 642), - - -, 0.(2) are I'-automorphic
forms of index —6, —8, ---, —2n, respectively. If hy (2) 1 <j< n) are
integral, then W,(2)™6,(2) (3 < j < n) are integral with suitable non-negative
integers m; (3 < j < n).

Proof. Obviously (A,(2), - - -, h,(2)) is a fundamental solution of L,(p|z, y)
=0. The Wronskian W,(2) is a [-automorphic form. which is integral
provided that &,(2) (1 < j < n) are integral. Moreover W,(2)p,(2) (1 <j < n)
are expressed as polynomials in 2{?(2) 1 <j<n;£=0,1,2, ---,n); hence
it is enough to show

o228 =wroow ({0 )er).

Putting z = (av + B)/(yv + d) ((? ﬁ) € I’), by virtue of Lemma 1.12 we have
(@/(d((av + B[(rv + MG + vy
ww—1)---(w—4£¢+1)

— e (d/dv)’y _ ~1)\k
=@v+9 Ié(k)lﬂ(w—l)"'(w—e‘l‘k'{‘l)( v +97)

and
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(@/(d((av + B)(rv + )MN°h,(av + B)/(rv + 9))
ww—1)---w—4¢+1)
_ (d/(d((@v + P)/Grv + ))'Gv + 8 *h(v)
ww—1---w—2+1)

_ By (djdv)*~*h,(v) B
= (v + ) k=o<k)w(w_1)...(w_’g+k+1>( Hv + 9"

Hence, putting these two relations into L,(p|(av + B)/Gv + 8), (yu + 8)~y),
we get

(sl gty ey

L U+ D7) = (v + 9 "Lu(p|2,3) -

This means that p, (p),(V)=p;(v) A< j<n), where p, ;: (2, y)—(az+B)/(yz+9),
(yz+9)"™y). Since 6,(v) is a differential invariant of weight j of L.(p|n,y),

we have
oS E) o(28) = iora
= pu,(0))(AV) = 6,(v)(dv)’
and thus
o) = () oo =m0 (¢ Her).

CoroLrARY. Differential invariants of weight m of L.(p\z,y) are I'-
automorphic forms.

Proof. This is an immediate consequence of Theorem 2.6 and Theorem
1.5.
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