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0. Introduction. In [10] we associate to a crossed module (T, G, 3) an invariant abelian
crossed module H2(T, G, 3). The construction uses presentations by Set-free crossed modules.
Now, Set-free crossed modules are special cases of totally free crossed modules, which are
algebraic models of 2-dimensional CW complexes used by several authors (see [1] and [6]).
The aim of this paper is to show that H2(T, G, 3) can also be constructed from presentations
by arbitrary totally free crossed modules.

Section 1 contains some standard definitions and results on crossed modules. In Section
2 we characterize a class £ of epimorphisms, with respect to which totally free crossed
modules are projective, and we prove the existence of £-projective presentations. We show
that this class is stable under pullbacks. With all the previous results we can use the proof
given in [10] to get in Theorem 5 the invariant H2(T, G, 3). In particular we obtain a formula
for the second integral homology of a crossed module which generalizes the Hopf formula in
group homology. For instance, it would allow us to obtain, for a crossed module, a gen-
eralized Hopf formula similar to the one obtained in [2] for a group. Also if we take a G-
module A, we get that H2(A, G, 0) = (//,((?, A), H2(G), 0).

Results of this type have also been obtained in [6], using topological methods.

1. Some results on crossed modules. A crossed module (T, G, 9) is a group homomorphism
3 : T -> G together with an action of G on T satisfying:

(1) 3 is a precrossed module, i.e., d(st) — gdtg~], for all g e G, t e T.
(ii) The Peiffer subgroup is trivial, i.e.,: a's = tst~l, for all t,s € T.

EXAMPLE (1) If A' is a path connected topological space and Y is a path connected sub-
space, Y c X, then 3 : n2(X, Y) ->• it\{Y) is a crossed module. This was the motivating
example for Whitehead [15].

(2) (G, Aut G, c) is a crossed module, where c assigns to each element g e G, the inner
automorphism of G, c(g): x -> gxg~{ for all x e G.

(3) {N, G, i), where A' is a normal subgroup of a group G, i is the inclusion and G acts on
N by conjugation. This way, every group G can be seen as as crossed module in the two
obvious ways: (1, G, i) or (G, G, id).

(4) (A, G, 0), where A is a G-module and the boundary operator is the zero map.
A morphism of crossed modules (f, </>): (T, G, 3) -> (7", G', &) is a pair of group morph-

i s m s / : T ->• 7" and <p : G -> G', such that

(0 97=03,
(ii) / i s a G-group morphism, via 4>,J{gt) =0 t e ) /(O, for all g e G, t 6 T.
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Taking objects and morphisms as denned above we obtain the category CM of crossed
modules. A morphism (f, <p) in CM is called injective if b o t h / a n d </> are injective as group
morphisms. A morphism (f, </>) in CM is called surjective if bo th /and <p are onto maps.

We denote by Aut (T, G, 9) the group of automorphisms of an object (T, G, 9). A crossed
module (7 ' , G', &) is a crossed submodule of a crossed module (7, G, 9) if:

(i) 7" is a subgroup of 7 and G' is a subgroup of G.
(ii) Sf = d\T,

(hi) The action of G' on T is induced by that of G on 7.

A crossed submodule (7 ' , G", 9') of a crossed module (7, G, 9) is a normal crossed sub-
module if:

(i) G' is a normal subgroup of G
(ii) *f e T, for all geG,t' e 7 '

(iii) *f • r 1 e 7 ' , for all g1 eG',teT.

CM has pullbacks, zero object, kernels and cokernels [3], [9].
A sequence of crossed module morphisms

( 7 \ G', 90 ^ (7, G, 9) ^ (7" , G", 9")

is called exacr if the crossed submodules of (7, G, 9), Im ( / <p) and Ker (/ ' , 0'), coincide.
If /T is a subgroup of G and S is a subgroup of a crossed G-module 7" we denote by [K, S]

the smallest subgroup of 7 containing the elements (ks)s~\ with k e K and s e S
The definition of commutator subgroup can be generalized in the following way.
If (S, H, 9) and (R, K, 9) are two normal crossed submodules of a crossed module

(T, G, 9), then we define the commutator crossed submodule of (S, H, 9) and (R, K, 9) as the
crossed submodule ([K, S][H, R], [H, K\, 9). This crossed submodule is denoted by
[(S, H, 9), (R, K, 9)], [11]. In particular the commutator crossed submodule [11] of (71, G, 9),
denoted by (T, G, 9)'= [(T, G, 9), (T, G, 9)], is denned as the crossed submodule ([G, 7], G', 9),
where [G, 7] = < p / r 1 / ' e T, g e G} > is the displacement subgroup of T relative to G, and
G' = [G, G] is the commutator subgroup of G.

EXAMPLES. (1) Let N be a normal subgroup of G. The commutator of (JV, G, /) is
[(N, G, i), (N, G, 0] = ([G, N], G', i).

(2) Regarding a group G as a crossed module in the two usual ways, N = 1 or N = G,
then [(G, G, Id), (G, G, Id)] = (G\ G', Id) or [(1, G, /), (1, G, /)] = (1, G', /)•

(3) If ^ is a G-module, then (^, G, 0)'= (^ • /G, G', 0), where /G is the augmentation ideal
ofG,[7].

We define the first homology crossed module of a crossed module (7, G, 9) by

Hx(Tt G, 9) = (7, G, 9)/(7, G, 9)'= (T/[G, 7], C/[G, G], 9").

EXAMPLES. (1) If N is a normal subgroup of G, then / / , (# , G, /) = (N/[G, N], HX{G), i).
(2) Viewing a group G as a crossed module in the two usual ways, we have H\(\,G, i) =

(1, //,(G), /), and Hi(G, G, Id) = (//,(G), //,(G), Id),
which gives the first integral homology group of a group as a particular case.
(3) If A, is a G-module, then H\(A, G, 0) = (//0(G> A), H{(G), 0).
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For a crossed module (7", G, 3), we denote by Der (G, T) the set of all derivations from G
to T, i.e., the set of maps d : G -*• T satisfying

= d{xfd{y) (x,yeG)

Each derivation d defines endomorphisms a(= ad) and 6(= 6d) of G and T respectively,
g i v e n b y a{x) = dd(x)x, 6{t) = dd{t)t, xeG,teT.

There is a monoid structure on Der(G, 7), given by d\ • di = d, where

d(x) = d{adl(x)d2(x) (= 6dtd2(x)di(x));

the identity is the trivial derivation which sends every element of G to the identity of T. The
Whitehead group D(G, T) is denned as the group of units of Der (G, 7), and its elements are
called regular derivations [12].

In [12], Norrie defines the actor of a crossed module (T, G, 3), which is denoted by
A(T, G, 3), as the crossed module (D(G, T), Aut(r, G, d), A), where A(d) = (d, a) and the
action of Aut (7", G, 3) on the group D(G, T) is defined by:

({a-'t>)d)(x) = ad<p-\x), (a, </>) e Aut(r, G, 3), d e D{G, T), x e G.

There exists a morphism of crossed modules (rj, y) : (T, G, 3) ->• A(T, G, 3), where r](t)(x) =
txt~l, y(j>) — (a,,, </>,,), where ay(s) = ys, 4>v(x) = yxy~l for s, t e T, x, y e G.

In the same way as in group theory, we define the center of the crossed module Z{T, G, 3)
as Ker (rj, y) which is the crossed module (TG, Z(G) n stG(T), 3) where TG = {t e T/gt = t
for all g e G} and s t ^ r ) is the stabilizer in G of T, i.e. stG(T) ={geG/gt = t for all t e T) [11].

One says that the crossed module (T, G, 3) is abelian if (T, G, 3) = Z(T, G, 3), [11]. The
crossed module (T, G, 3) is abelian if and only if G is abelian and the action of the crossed
module is trivial, which implies that T is also abelian.

We say that a crossed module (T, G, 3) acts on {S, H, pi) if there exists a morphism of
crossed modules (T, G, 3) -> ^4(5, H, pi). If (S, H, 3) is a normal crossed submodule of
{T, G, 9), then there exists a canonical morphism (JI, y) : (T, G, 3) —> A(S, H, 3), where
r): T-> D(H, S) is given by n{t){h) = thr\ and y : G -+ Aut(S, # , 3) is given by y(g) =
(ag, 4>g), with ctg(s) = gs, (pg{h) = ghg~x for s e S, t e T,h e H,g e G.

Let (Af, P, /x) and (JV, V, v) be two crossed modules, and let (e, p): (N, V, v) ->•
A(M, P, fx,) be an action of (JV, K, v) on (M, /*, /A), i.e., the following diagram is commutative.

N —• K
u

DC/3, A/) —> Aut(Af, P, pi)
A

If Pi : V -> Aut(A/), and p2 : ^ -^ Aut(P) are the two components of p, then N acts on
Af via p\ • v and V acts on P via p2, and so we can consider the semi-direct products M >\ N
and Px\ V.

Now, there exists an action of P * V on Af xi JV defined as follows:
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for (p, v) e P » Kand (m, n) e M xi N, where vm means p\(v)(m). Then (M xi N, P XI K 7r) is
a crossed module, where 7r: M xi TV" ->• /> xi K is defined by 7r(m, n) — (ix(m), v(n)). This
crossed module [13] is called the semi-direct product of (M, P, n) and (N, V, v) relative to
(e, p) and it is denoted by (M, P, /z) xi (Af, V, v).

If (71, G, 9) is a semi-direct product (S, H, 3) xi (/?, K, 9), then there exists a short exact
sequence of crossed modules split by (i,j) : (R, K, 3) -*• (T, G, 3):

(S, H, 9) -+ (T, G, 3) -* (/?, A:, 9),

where (/,/) is the inclusion morphism. Conversely, given any such split short exact sequence
of crossed modules we have (T, G, 9) s (S, H, 9) x (i?, isT, 9), where the action of (R, K, 9) on
(5, H, 9) is given by the composite (rj, y) • (s\,s2) where (s\,s2): (/?, /C, 9) -» (7, G, 9) is the
section and (rj, y): (7", G, 9) - • ,4(5, H, 9) is the morphism defined above [13].

2. Totally Free Crossed Modules. Let h : X —> F be a function from a set J t o a free
group F. A crossed module (T, F, 3) is called totally free on // if

(i) A' is a subset of T with /; the restriction of 3 and,
(ii) for any crossed module (T1, G', 3'), function v : X ^ T' and morphism </>: F ->• G'

satisfying &v = <ph there is an unique morphism of crossed modules,

(/, <A): (7, F, 9) ->- (7", G', S7),

extending v. The totally free crossed module on h : X -*• F always exists: l e t 9 : < A ' x F > - > / r

be the totally free precrossed module on h[5], that is, < X x F > is the free group with basis
the set XxF with action of F defined by f(x,f):=(x,f'f) and d(x,f)=MxV~l for
x € X,ff e F.d is zero on the Peiffer subgroup P and then (< X x F > /P, F, 3) is the totally
free crossed module on h [4].

The totally free crossed module on h : X ->• F is clearly unique up to isomorphism. The
Set-free crossed module on a function h : X -»• y is the totally free crossed module on
/i : A" -»• 7 c F, where F is the free group with basis the set Y. The set-free crossed module
can be interpreted by adjoint functors [10].

PROPOSITION 1. Let {p,p'): (7", G', tf) -» (T, G, 3) be a surjective morphism of crossed
modules. Then the following assertions are equivalent.

(i) The morphism Ker^ ->• Ker9 is surjective and the morphism Coker9/ ->• Coker9 is an
isomorphism.

(ii) The morphism T' —> TXQG' is surjective.

We denote by ^ the class of epimorphisms satisfying the conditions above.

Proof. There is a commutative diagram with exact rows given by

1 -* Ker9 - • 71 -» G -> Cokera ->• 1
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such that p and p' are surjective. Diagram-chasing shows that T' ->• TxGG' is surjective if
and only if Kerd' -> Ker3 is surjective and Coker^ -*• Coker3 is an isomorphism.

PROPOSITION 2. Every totally free crossed module is £ projective.

Proof. Let (M, F, /u) be a totally free crossed module on It: X-+ F, (p,p') : (T', G', ff) ->•
(T, G, 9) a morphism in the class £, and (w, M') : (M, F, ix) -*• (T, G, 9) a morphism of crossed
modules. If we donote by u the restriction to X, we have 3M = u'h.

Since F is a free group, there exists v' : F -» G' with /?V = M'. The maps v'h and M give a
unique map / : X -» TxGG' with qt — u and yf = v'/i. Proposition 1 gives that /I is surjective,
and then there exists a map t': X -> 7" with A/7 = t. Then we get 9Y = v'A and therefore a
morphism (/, v'): (M, F, p) -> {T1, G', 91) that verifies (p,p')(t, v') = (w, «')•

PROPOSITION 3. Every crossed module (T, G, 9) is the quotient of a totally free crossed
module (M, F, /x) and there is an exact sequence:

(V, R, II)*-+(M, F, (T, G, 3) with (p,p') e £.

Proof. Let F be the free group with basis G, and TXGF the pullback of 3 and p', with
q' : TXGF—»T. The crossed module (Tx.GF,F,y) is a quotient of the totally free crossed
module (M, F, n),q:M —» T\GF, on the function y : TxGF -> F. If p = <?'<?, we have the
following diagram.

We will prove that (p,p') € E because p',p and q are surjective (see Proposition 1).

PROPOSITION 4. //J a pullback of crossed modules

{P,Q,X) (T',G',af)

(T",G",af)

morphism (p,p') € £, //ie« (#, ^') e
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Proof One has P = T"xTT' and Q = G"xGG'; also 7" -* T,G' - • G and 7" -* TxGG'
are surjective. One can now check that P -*• T", Q -> G" and P -> T"\G»Q are surjective.

3. H2(T,G,9). Now we will introduce the second homology crossed module of a crossed
module using an £-projective presentation, and we will show that this definition constitutes
an invariant of the crossed module.

Given an £-projective presentation

(V, R, n)^{M, F, n) -H>(7\ G, 3)

of the crossed module (T, G, 3), we define the abelian crossed module H2(T, G, 3) by

H2(T, G, 3) = ((V, R, n) n [(M, F, (x), (M, F, n)])/[(M, F, M), (V, R, p.)]

= (VD[F, M]/[R, M\[F, V\,RVi [F, F\/[F, R], M.)

THEOREM 5. 7/2(7", G, 3) is independent up to isomorphism of the chosen E-projective pre-
sentation and the correspondence (T, G, 3) ->• 7/2(7", G, 3) defines a functor H2 '• CM -* ACM,
where ACM denotes the category of abelian crossed modules.

Proof. Consider the following two £-projective presentations of the crossed module

(T, G, 3) : (V, R, M)<—>(M, F, fx) —»(T, G, 3),

and

(V, R', ix')^(M', F, fx') —o(r, G, S)

Using the pullback construction, we get the following diagram:

(V", R", tx") -» > W", F",

where (M",F",fi") is an £-projective presentation of (P,Q,X),(V",R",n") =
Ker((M", F", At") - • (T, G, 3)), by construction of the pullback, and (P, Q, X) -^{M, F, n)
and (V", R", /x") —»{V, R, ix) both belong to £ by Proposition 4. We obtain in this way a
third £-projective presentation

(V, R", IM")^(M", F", IX") —»(T, G, 3)

for (T, G, 3). Since (n, r 2 ) : (M", F", ^") —*(M, F, fi) belongs to £ and (M, T7, //,) is a totally
free crossed module, there exists a section (si, ^2) : (M, F, /x) -> (M", F", 11"). By the proper-
ties of the pullback we have a section (V, R, /x) -> (V, R", /x").

Now, split short exact sequences with a chosen section (si, s2) are equivalent to semi-
direct products, and we have
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(AT, F", IM") 9* (N, E, fx) xi (M, F, fx) = (N xi M, E x F, jr),

(F", /?", M") = W £, At") * (K, *, A*) = ( # * V,E» R, n)

To show the independence of //2<T> G, 3) from the £-projective presentation it will be
enough to find an isomorphism between (Vn[F, M\)/[R, M][F, V\, R n [F, F]/[F, R], A**) and
(K' fl [F", ¥"] / [«" , r ] [ F " , T ] , J!" n [F", F"]/[F", ff'], /i;'). Taking into account that the
following diagram of short exact sequences commutes

V" n |F", M"]/[R", M"] [F", V"

V n [F, M]/[R, M] [F, V]

>[F", M"]/[R", M"] [F", V"]

I1'
[G, T]

+» [C, 71

R" n [F", F"]/[F", R"] -*

R n [F, F]/[F, R]

it is enough to show that the induced morphism

+* [G, G]

U, r2*) : [F", M"]/[R", M"][F", V], [F", F"]/[F", R"],

- • ([F, M])/[7?, M\[F, V), [F, F\/[F, R], At.)

is an isomorphism of crossed modules, as it passes to the kernels.
The classic theory of Hopfs invariant [8] gives us that i2» is an isomorphism of groups.

T|, is also an isomorphism: given that z\ • s\ = id^, one has ru • Ji* = id[F, M\)/[R, M\[F, V\,
where J i , ( W [ « , M][F, V\) = sxi{mm-x)[R", M"][F", V] with / e F, m e M, and
Tu(«2(/)(WiSl (w))(m,(«,))"'[/?", Af"][/"', K"]) = fmm-\R, M\[F, V\, where e e £, « e AT,
es2(f) € F", ns\(m) e M", because (ri,r2) is a morphism of crossed modules. To see
that su-xim = id[F",M"]/[R",Afr\[F",V"], i.e., es^(nsi(m))(nsi(m))-l[R",M"][F",r'] =
^ ^ " , M"][F", V'l notice that

= esl(f)

since C J ^

€ [F", V"].

[/?"

i (m

)s2if) )S[

e [F", V], and
W l) («»C/) r t -
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To see the action on the arrows, let (/, <p): (T', G', &) -»• (T, G, S) be a morphism of
crossed modules, and consider an £-projective presentation for each of the two crossed
modules. Since (M', F, fi') is £-projective, one can consider the following commutative
diagram.

(V,R',lx') •-»• (M',F',[xr) -* (T',G',&)

I I I
(V,R,n) •-> (M,F,fi) —B- (T,G,d)

In the same way as above, we get the morphism

[F't ', V], R' n [F't F']/[F', R'], //,)

, M][F, V\,RC\ [F, F\/[F, R], ̂ ) = H2(T, G, d)

H2(T',

Checking the conditions of functoriality is now routine.

COROLLARY 6. If{M, F, /x) is a totally free crossed module, then Hi{M, F, /x) = (1, 1, 1).

Proof. ( 1 , 1 , \)t—>(M, F, (*.) ->• (M, F, /x) is an S projective presentation of (M, F, n).

EXAMPLES (1) If we consider a group G as a crossed module in the two usual ways,
(G, G, id) or (1, G, i), then from the classic formula of Hopf [8] we obtain Hi{G, G, id) =
(H2(G), H2(G), id), or H2{\, G, i) = (l,H2(G), i).

(2) If A is a G-module, then H2(A, G, 0) = (H\{G, A), H2(G), 0). Indeed, let R^-F^-G
be a free presentation of G and (V, R, /A)*—>(M, F, n) —\>(A, G, 0) a totally free presentation
as in Proposition 3, where AxGF= AxR. Then n(M) = R, Mah is a free G-module [4] and
V/[M,M]—»Mab—»A is a projective presentation of G-modules for A. So H\(G,A) =
Ker(K/[M, M]®GZ^- Mab <g>c Z), where V/[M, M]®GZ = (V/[M, M])/[G, V/[M, M]] and
Mab ®GZ = Mab/[G, Mab\ [4].

As Vn [F, M]/[R, M][F, V\ = Ket(V/[R, M][F, V\ - • M/[F, M]), the following commu-
tative diagram, obtained by using the cross lemma[14], gives the result.

[M, M] -H- [R, M][F, V]

[M,M] T.\
[M,M]

[F, M]

t

;, V/[M, M]\

t..\

[M,M]

V/[M, M]

M M

-» V/[R, M][F, V]

ab

VI[M,M]®rZ

MI[F, M]
ab G

(3) If R+UF^>G is a free presentation of G and (V, 0, 0)*-+(M, F, fi) —»•(/?, 7?, /) a
totally free presentation as in Proposition 3, then Vi—>Mab —»Rab is a free presentation of
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G-modules for Rab [4]. So //,(G, Rab) = Ker(K®G Z -+ MaA <g>G Z) = Ker(V/[F, V\ ->
M/[.F, A/]) = Kn [F, A/]/[F, F], using the same reasoning as in (2). By the reduction theorem
[7] //,((?, Rab) = H3(G) and so H2(R, F, i) = (//3(G), 0, 0).

THEOREM 7. Let (P, N, d)t—>(T, G, 3) —*(U, Q, co) be a short exact sequence of crossed
modules, such that the epimorphism (T, G, 3) —> (U, Q, co) belongs to £. Then there exists the
following five term exact (and natural) sequence in homology:

H2(T, G, 3) -* H2(U, Q, co) -»• (P/[G, P][N, 7], N/[G, N], d) -+ HX{T, G, 3)

^ Hx{U,Q,to)^ (1,1,1)

Proof. See 4.1 Theorem in [10].

EXAMPLES. (1) If we consider a group G as a crossed module in any of the two usual
ways, we get the five term exact sequence in integral homology of groups [7]:

H2(G) - • H2(Q) ->• N/[G, N] - • //,(G) - • HX{Q) - • 1

where l-»./V->-G->(2->- l i s a short exact sequence of groups.
(2) Considering the sequence {A1,0, 0)-t—>{A, G, 0) —»(A", G, 0) we get in the first com-

ponent the last five terms of the long exact sequence of homology associated to a short exact
sequence A'i—>A —»A" of G-modules [7].
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