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0. Introduction. In [10] we associate to a crossed module (7, G, d) an invariant abelian
crossed module H,(T, G, d). The construction uses presentations by Set-free crossed modules.
Now, Set-free crossed modules are special cases of totally free crossed modules, which are
algebraic models of 2-dimensional CW complexes used by several authors (see [1] and [6]).
The aim of this paper is to show that H»(T, G, 3) can also be constructed from presentations
by arbitrary totally free crossed modules.

Section 1 contains some standard definitions and results on crossed modules. In Section
2 we characterize a class £ of epimorphisms, with respect to which totally free crossed
modules are projective, and we prove the existence of £-projective presentations. We show
that this class is stable under pullbacks. With all the previous results we can use the proof
given in [10] to get in Theorem 5 the invariant H»(7T, G, 9). In particular we obtain a formula
for the second integral homology of a crossed module which generalizes the Hopf formula in
group homology. For instance, it would allow us to obtain, for a crossed module, a gen-
eralized Hopf formula similar to the one obtained in [2] for a group. Also if we take a G-
module A4, we get that H,(4, G, 0) = (H(G, A), H,(G), 0).

Results of this type have also been obtained in [6], using topological methods.

1. Some results on crossed modules. A crossed module (T, G, 9) is a group homomorphism
d: T — G together with an action of G on T satisfying:

(i) 9is a precrossed module, i.e., 3(8f) = gdtg~', forallge G, 1€ T.
(ii) The Peiffer subgroup is trivial, i.e.,; s =tst™!, forall t,s € T.

ExampLE (1) If X is a path connected topological space and Y is a path connected sub-
space, Y C X, then 8:m(X, Y) - m(Y) is a crossed module. This was the motivating
example for Whitehead [15].

(2) (G, Aut G, ¢) is a crossed module, where ¢ assigns to each element g € G, the inner
automorphism of G, ¢(g) : x — gxg~' forall x € G.

(3) (N, G, i), where N is a normal subgroup of a group G, i is the inclusion and G acts on
N by conjugation. This way, every group G can be seen as as crossed module in the two
obvious ways: (1, G, i) or (G, G, id).

4) (4, G,0), where 4 is a G-module and the boundary operator is the zero map.

A morphism of crossed modules (f,¢) : (T, G, 9) — (T', G', &) is a pair of group morph-
isms f: T— T’ and ¢: G — G, such that

(i) of = @3,
(i) fis a G-group morphism, via ¢, fl81) =*® A1), forallge G, 1€ T.
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Taking objects and morphisms as defined above we obtain the category CM of crossed
modules. A morphism (f, ¢) in CM is called injective if both f and ¢ are injective as group
morphisms. A morphism (f, ¢) in CM is called surjective if both fand ¢ are onto maps.

We denote by Aut (7, G, d) the group of automorphisms of an object (7, G, 3). A crossed
module (T’, G', &) is a crossed submodule of a crossed module (T, G, 9} if:

(i) T’ is a subgroup of T and G’ is a subgroup of G.
(i) ¥ =34
(iii) The action of G’ on T’ is induced by that of G on T.

A crossed submodule (7', ¢’, &) of a crossed module (T, G, 3) is a normal crossed sub-
module if:

(i) ¢’ is a normal subgroup of G
(i) ¢ e T’ forallge G,/ € T’
(i) ét-r'eT forallg e G, teT.

CM has pullbacks, zero object, kernels and cokernels [3], [9].
A sequence of crossed module morphisms

.6, 69" 1 6,9

is called exact if the crossed submodules of (T, G, 3), Im (f, ¢) and Ker (f’, ¢'), coincide.

If K is a subgroup of G and S is a subgroup of a crossed G-module T we denote by [K, S]
the smallest subgroup of T containing the elements (k;)s™!, withk e Kand s € S

The definition of commutator subgroup can be generalized in the following way.

If (S, H,9d) and (R, K, d) are two normal crossed submodules of a crossed module
(T, G, 9), then we define the commutator crossed submodule of (S, H, d) and (R, K, 9) as the
crossed submodule ([, S][H, R],[H, K],3). This crossed submodule is denoted by
I(S, H, 3), (R, K, 3], [11]. In particular the commutator crossed submodule {11] of (T, G, 9),
denoted by (T, G, 3)'= [(T, G, d), (T, G, )], is defined as the crossed submodule ([G, T], G, ),
where [G, T) =< {8117!/t € T, g € G} > is the displacement subgroup of T relative to G, and
G' =[G, G} is the commutator subgroup of G.

ExaMpLES. (1) Let N be a normal subgroup of G. The commutator of (N, G, i) is
[(N,G,D),(N,G, )] = (G, N}, G, ).

(2) Regarding a group G as a crossed module in the two usual ways, N=1or N =G,
then [(G, G, 1d), (G, G, Id)] = (G, ¢, Id) or [(1, G, i), (1,G, D) = (1, G, ).

(3) If A is a G-module, then (4, G, 0)'= (4 - IG, G, 0), where IG is the augmentation ideal
of G, [7].

We define the first homology crossed module of a crossed module (T, G, 9) by

H\(T, G,d) = (T, G, )/(T, G, 3= (T/[G, T], G/[G, G], 3).

ExaMPLES. (1) If N is a normal subgroup of G, then H(N, G, i) = (N/[G, N], H\(G), i).

(2) Viewing a group G as a crossed module in the two usual ways, we have H (1, G, i) =
(1, Hi(G), i), and H\(G, G, 1d) = (H(G), H\(G), 1d),

which gives the first integral homology group of a group as a particular case.

(3) If A4, is a G-module, then H,(4, G, 0) = (Hy(G, A), H(G), 0).
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For a crossed module (T, G, 3), we denote by Der (G, T) the set of all derivations from G
to T, i.e., the set of maps d: G — T satisfying

d(xy) = d(x)*d(y) (x,y € G)

Each derivation d defines endomorphisms o(= ;) and 6(= 6,) of G and T respectively,
given by o(x) = dd(x)x, 6(t) = do(t)t,x e G,t € T.
There is a monoid structure on Der(G, T), given by d, - d; = d, where

d(x) = dy04,(x)da(x) (= 64, d2(x)d\ (%));

the identity is the trivial derivation which sends every element of G to the identity of 7. The
Whitehead group D(G, T) is defined as the group of units of Der (G, T), and its elements are
called regular derivations [12].

In [12], Norrie defines the actor of a crossed module (7, G, d), which is denoted by
A(T, G, d), as the crossed module (D(G, T), Aut(T, G, d), A), where A(d) = (6,0) and the
action of Aut (T, G, 3) on the group D(G, T) is defined by:

(“Pd)(x) = adp™"(x), (@, ¢) € Aul(T, G, 3),d € D(G, T), x € G.

There exists a morphism of crossed modules (, y) : (T, G, 3) — A(T, G, 3), where n(t)(x) =
17! y() = (ay, ¢y), where ay(s) =7s, y(x) = yxy~' fors,1 € T, x,y € G.

In the same way as in group theory, we define the center of the crossed module Z(T, G, 9)
as Ker (1, y) which is the crossed module (7%, Z(G) N stg(T), d) where TC = {1 e T/%1 =1
forall g € G} and stg(T)is the stabilizer in G of T, i.e. stg(T) = [g € G/t =tforallt € T}[11].

One says that the crossed module (7, G, 8) is abelian if (T, G, d) = Z(T, G, 9), [11]. The
crossed module (7, G, 8) is abelian if and only if G is abelian and the action of the crossed
module is trivial, which implies that T is also abelian.

We say that a crossed module (7, G, d) acts on (S, H, ) if there exists a morphism of
crossed modules (7, G,3) —» A(S, H, ). If (S, H,9) is a normal crossed submodule of
(T, G, 8), then there exists a canonical morphism (n,y): (T, G, 3) — A(S, H,3), where
n:T— D(H,S) is given by n(r)(h) = ¢"+~', and y: G — Aut(S, H, ) is given by y(g) =
(atg, Bg), With a(s) = &s, ¢e(h) = ghg™' forse S,1e T,he H, g € G.

Let (M, P,u) and (N, V,v) be two crossed modules, and let (g, p): (N, V,v) -
A(M, P, 1) be an action of (N, V, v) on (M, P, ), i.e., the following diagram is commutative.

N — V

el Pl
D(P, M) - Aut(M, P, 1)

If py : V > Aut(M), and p; : ¥V — Aut(P) are the two components of p, then N acts on
M via p; - vand V acts on P via p;, and so we can consider the semi-direct products M x N
and P x V.

Now, there exists an action of P x ¥V on M x N defined as follows:

©9m, ) = (pCm)eCr)p) ™ )

https://doi.org/10.1017/50017089500032675 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500032675

326 A. R-GRANDJEAN AND M. LADRA

for (p,v) € Px Vand (m,n) € M x N, where 'm means p;(v)(m). Then (M x N, P x V,m)is
a crossed module, where m: M x N — P x V is defined by n(m, n) = (u(m), v(n)). This
crossed module [13] is called the semi-direct product of (M, P, ) and (N, V, v) relative to
(g, p) and it is denoted by (M, P, u) x (N, V, v).

If (T, G, 9) is a semi-direct product (S, H, d) ¥ (R, K, 3), then there exists a short exact
sequence of crossed modules split by (i,)) : (R, K, 3) — (T, G, 9):

(S,H,3) - (T,G,9) — (R, K, 9),

where (i, /) 1s the inclusion morphism. Conversely, given any such split short exact sequence
of crossed modules we have (T, G, 3) = (S, H, 8) x (R, K, 3), where the action of (R, K, 8) on
(S, H, d) is given by the composite (n, y) - (s1, 52) where (s, 52) : (R, K, 3) — (T, G, d) is the
section and (n, y) : (T, G, 8) = A(S, H, 3) is the morphism defined above [13].

2. Totally Free Crossed Modules. Let /4 : X — F be a function from a set X to a free
group F. A crossed module (7, F, d) is called totally free on h if

(i) X is a subset of T with 4 the restriction of 3 and,

(i) for any crossed module (7', G, &), function v: X — T’ and morphism ¢ : F > G’
satisfying &'v = ¢h there is an unique morphism of crossed modules,

(,9):(T.F.9) > (T", G, 3),

extending v. The totally free crossed module on s : X —» Falwaysexists:letd:< X x F>— F
be the totally free precrossed module on A[S], that is, < X x F > is the free group with basis
the set X x F with action of F defined by f(x,f) = (x,ff) and &(x,f) = h(x)f"" for
x € X,f,f € F.dis zero on the Peiffer subgroup P and then (< X x F> /P, F, 9) is the totally
free crossed module on 4 [4].

The totally free crossed module on 4 : X — F is clearly unique up to isomorphism. The
Set-free crossed module on a function 4: X — Y is the totally free crossed module on
h: X — Y CF, where F is the free group with basis the set Y. The set-free crossed module
can be interpreted by adjoint functors [10].

ProposiTiON 1. Let (p,p"): (T',G', &) — (T, G, d) be a surjective morphism of crossed
modules. Then the following assertions are equivalent.

(1) The morphism Kerd — Kerd is surjective and the morphism Cokerd — Cokerd is an
isomorphism.
(i1} The morphism T' — TxgG' is surjective.

We denote by £ the class of epimorphisms satisfying the conditions above.

Proof. There is a commutative diagram with exact rows given by

1> Kerd > T'—> G — Cokerd -1

\ Vp )y {
1> Kerd—» T—- G- Cokerd —1
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such that p and p’ are surjective. Diagram-chasing shows that T’/ — TxsG' is surjective if
and only if Kerd — Kerd is surjective and Cokerd — Cokerd is an isomorphism.

PROPOSITION 2. Every totally free crossed module is € projective.

Proof. Let (M, F, u) be a totally free crossed moduleon h: X — F,(p,p) : (T',G, 3) —
(T, G, 8) a morphism in the class £, and (u, v') : (M, F, u) = (T, G, 3) a morphism of crossed
modules. If we donote by u the restriction to X, we have du = v/ h.

X \
\T’ MP\’%T
' \ /
P \TxGG' 3

~, Y

v
\ G, pr N

Since F is a free group, there exists v : F — G’ with p'v' = . The maps v'h and u give a
unique map ¢ : X — TxgG’ with gt = u and yt = v'h. Proposition 1 gives that A is surjective,
and then there exists a map ¢’ : X — T’ with A = ¢. Then we get 3¢ = v'h and therefore a
morphism (¢, V') : (M, F, u) —» (T', G’, &) that verifies (p, p')(¢', V) = (u, v).

PRrOPOSITION 3. Every crossed module (T, G, 3) is the quotient of a totally free crossed
module (M, F, 1) and there is an exact sequence:

(V, R ) — (M, F, 1) 2% (T,G, ) with (p,p) € £.

Proof. Let F be the free group with basis G, and TxgF the pullback of 3 and p’, with
¢ : TxgF—»T. The crossed module (TxgF, F, y) is a quotient of the totally free crossed

module (M, F, u), g : M —» Tx¢F, on the function y : TxgF — F. If p=¢'q, we have the
following diagram.

M—9 rx F— 9 .7

S,k

We will prove that (p, p) € £ because p', p and g are surjective (see Proposition 1).

PROPOSITION 4. In a pullback of crossed modules
P04 - (T'6,0)

(4.9)1 L@, p)
(T//’ G//, al/) __> (T’ G, a)

if the morphism (p,p") € £, then (q,¢') € €.
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Proof. One has P=T"xrT' and @ =G"xcGalso T' > T,G' - Gand T' - TxcG'
are surjective. One can now check that P - T”,Q — G” and P — T" x@Q are surjective.

3. HXT,G,3). Now we will introduce the second homology crossed module of a crossed
module using an £-projective presentation, and we will show that this definition constitutes
an invariant of the crossed module.

Given an E-projective presentation

(V, R, u)+—(M, F, u) —»(T, G, 3)
of the crossed module (7, G, 8), we define the abelian crossed module H,(7, G, 3) by

HQ(T, Ga 3) = ((Vv R’ ,LL) N [(M’ F7 /'L)v (M’ Fv /L)])/[(Mv F’ /“')’ (V7 Rv /'l’)]
= (VNIF, MJ/[R, MI[F, V], RO (F, FY/[F, R}, 1)
THEOREM 5. Hy(T, G, 9) is independent up to isomorphism of the chosen E-projective pre-

sentation and the correspondence (T, G, d) » H.(T, G, d) defines a functor H : CM — ACM,
where ACM denotes the category of abelian crossed modules.

Proof. Consider the following two £-projective presentations of the crossed module
(T,G,9): (V, R, w)+—(M, F, u) —(T, G, 9),
and
(V, R, u)y—M F, 1) —(T, G, 9
Using the pullback construction, we get the following diagram:

(VII’ RN’ ILN) M )(M’Ii F!I’ ll,”) (V” R,,#,)

(R i A —— (M

11', ®)

G’
where (M",F", 1"} is an E-projective presentation of (P, Q,4),(V',R",u") =
Ker((M”, F”, u") - (T, G, 8)), by construction of the puliback, and (P, Q, 1) —»(M, F, u)

and (V" R", u") —»(V, R, ) both belong to £ by Proposition 4. We obtain in this way a
third £-projective presentation

(V,R, ) -+ > M, F,u) ——» (T,G,0) ,

(Vﬁ, R”, M”)*_)(M”, F”, Mll) _9(T, G, a)

for (T, G, d). Since (11, 12) : (M", F", u”y —»(M, F, u) belongs to £ and (M, F, u) is a totally
free crossed module, there exists a section (s|, s2) : (M, F, u) = (M", F”, u"). By the proper-
ties of the pullback we have a section (V, R, u) — (V", R", u”).

Now, split short exact sequences with a chosen section (sy, 5;) are equivalent to semi-
direct products, and we have
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M" F", u"y= (N, E,u) x (M,F, 1) =(Nx M,Ex F, ),

V' R, uWY=ZWN,E,u)yxa (V,R,u)=(Nx V,Ex R, 7)
To show the independence of H»(T, G, 8) from the £-projective presentation it will be
enough to find an isomorphism between (V N[F, M])/[R, M][F, V], RO [F, FJ/[F, R], 1.) and

(V' N[F", M")/[R", M")[F", V"], R" O [F", F")/[F", R"], u}). Taking into account that the
following diagram of short exact sequences commutes

VH A I‘FH' M"]/[R”, M"] [F”, VN]_"___)[FH, MH]/[RH, MII] [F”, V”]—") [G, T]

NN

Vo [F, MJ/[R, M][F,V] +———[F, M)/[R, M] [F,V]—— [G, T]

RII ~ [F”, F”]/[F", RH] ‘“—‘—‘_)[F”, F”]/[F”, RN] - [G, G]

el N

R [F, FUIF, Rl +————s [F, FY/[F, Rl ——— [G. G|

it is enough to show that the induced morphism

(tl*, t2*) : [F”, M”]/[R”, M”][F”, V”], [F”, F”]/[F”, R”], I.L:)
— ([F, M])/[R, M][F, V], [F, FI/[F, R], 1)

is an isomorphism of crossed modules, as it passes to the kernels.
The classic theory of Hopf’s invariant [8] gives us that 1,, is an isomorphism of groups.

14 18 also an isomorphism: given that 7, - 5| = idyy, one has 7y, - 51, = id[F, M])/[R, M][F, V],
where s, (/mm™'[R, M][F, V]) = s; (mm™")[R", M"][F", V"] with feF,meM, and
T (2D (s (m))(nsi (m)) ' [R”, MYIF”, V') =/mm~'[R, M][F, V], where e€E, neN,
esa(f) € F', ns\(m) e M”, because (71,7;) is a morphism of crossed modules. To see
that sy, - 71, = id[F", M")/[R", M"I[F", V"), ie., “D(nsi(m))(nsi(m))"'[R", M"][F", V"] =
stlmm=")[R", M")[F", V"], notice that
exz(j)(nsl(m))(nsl(m))—l —es2(f) nesz(f)sl(m)sl(m)'ln_lsl(m)—l

=)y esz(/')sl(m) s;_([)sl(m)—l sz(/)sl(m) xl(m)_'n—lsI (m)—l

= ey )2y ™ 0 sy s )™

—e()y, esz(f)sl(m)sz(/)sl(m)—l w's) (fmm“);,l—lsl (fmm—l)
=Ny esz)sl (m) a2, (m)_l salfoulm)] y=1g, (fmm_l)

=) ey, (m) sy (m) ™" 2=t 2V 2™ (2= (™)

= sl(fmm'l)

since 2, (m) =5, (m) " & [R", M"], 2 Dp =1 e [F7, V"], and 2y 2(Ue00lf ) (21
e [F", V).
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To see the action on the arrows, let (f,¢): (T',G',d) — (T, G, d) be a morphism of
crossed modules, and consider an £-projective presentation for each of the two crossed
modules. Since (M, F, u') is E-projective, one can consider the following commutative
diagram.

V,R, ) — M, F.u) — (TG0
\ \ A
(V,R,u) +> WM, Fu) —» (T,G,09

In the same way as above, we get the morphism

HAT', G, 8y = (V'N[F', MR, MIF, V], R 0\[F', F/[F, R, 1)
— (VN [F, M/[R, M][F, V], RO[F, FI/[F, R], ua) = HAT, G, 9)

Checking the conditions of functoriality is now routine.

COROLLARY 6. If (M, F, ) is a totally free crossed module, then Hy(M, F, u) = (1, 1, 1).
Proof. (1,1, )+—(M, F, u) —> (M, F, ) is an & projective presentation of (M, F, ).

ExampLES (1) If we consider a group G as a crossed module in the two usual ways,
(G, G,id) or (1, G, i), then from the classic formula of Hopf [8] we obtain H»(G, G, id) =
(H2(G), Hy(G), id), or Hy(1, G, i) = (1, H2(G), i).

(2) If A is a G-module, then H,(4, G, 0) = (H(G, 4), H»(G), 0). Indeed, let R+—F —>G
be a free presentation of G and (V, R, u)+—(M, F, u) —»(4, G, 0) a totally free presentation
as in Proposition 3, where A xgF = AxR. Then u(M) = R, M, is a free G-module [4] and
V/[IM, M] —» My —> A is a projective presentation of G-modules for 4. So H\(G, 4) =
Ker(V/[M, M]®¢ Z — Ma ®c Z), where V/[M, M] ®¢ Z = (V/IM, M))/[G, V/[M, M]] and
Mau ®6 Z = Mw/1G, M) 14).

As VN[F, M|/[R, M][F, V] = Ker(V/[R, M][F, V] - M/[F, M)), the following commu-
tative diagram, obtained by using the cross lemma[14], gives the result.

M, M] -+ > R, _M][E V] w»I[G, VIIM, M]]
AN I\ PN
M, M) 4 —  |[F M] # G, M,]

. R R
g N N

M, M l
M, M % AI/I l oM,
N4
MIIE

S
~i

(3) If R+>F—»G is a free presentation of G and (V,0, 0)+>(M, F, u) —>(R, F, i) a
totally free presentation as in Proposition 3, then V> M, —» R, is a free presentation of

> VIR, M][F V]

+  VIM, M®,Z

+
-

M] b M,8®.Z .

?
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G-modules for Ry [4]. So H(G, Rp)=Ker(V®sZ — My Q¢ Z) = Ker (V/[F, V] -
M/[F, M]) = VN [F, M]/[F, V], using the same reasoning as in (2). By the reduction theorem
(7] Hi(G, Rep) = H3(G) and so Hy(R, F, i) = (H;(G), 0, 0).

THEOREM 7. Let (P, N, 8)+—(T, G, 8) —»(U, Q, w) be a short exact sequence of crossed
modules, such that the epimorphism (T, G, 38) — (U, Q, w) belongs to £. Then there exists the
Sfollowing five term exact (and natural) sequence in homology:

H(T, G, d) - Hy(U, Q,w) — (P/[G, P|[N, T}, N/[G, N], 3) — H\(T, G, d)

- Hi(U,Q0,0) = (1,1, 1)

Proof. See 4.1 Theorem in [10].

ExaMmpLEs. (1) If we consider a group G as a crossed module in any of the two usual
ways, we get the five term exact sequence in integral homology of groups [7]:

Hy(G) — Hy(Q) — N/[G, N] - H\(G) — H\(Q) — 1

where | - N — G — Q — | is a short exact sequence of groups.

(2) Considering the sequence (4', 0, 0)+— (4, G, 0) —»(A4”, G, 0) we get in the first com-
ponent the last five terms of the long exact sequence of homology associated to a short exact
sequence 4’+— A —» A" of G-modules [7].
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