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Geometric versions of Schwarz’s lemma
for spherically convex functions
Maria Kourou and Oliver Roth
Abstract. We prove several sharp distortion and monotonicity theorems for spherically convex
functions defined on the unit disk involving geometric quantities such as spherical length, spherical
area, and total spherical curvature. These results can be viewed as geometric variants of the classical
Schwarz lemma for spherically convex functions.

1 Introduction and results

Let f be a holomorphic function on the unit disk D = {z ∈ C ∶ ∣z∣ < 1}, and let T = ∂D
be the unit circle. In [21, p. 165, Problem 309], Pólya and Szegő observed that if Le
denotes the euclidean length of a curve, the function

r ↦ Le( f (rT))
Le(rT) = 1

2π

2π

∫
0

∣ f ′(re i t)∣ dt(1.1)

is increasing on the interval (0, 1). Much more recently, it was proved by Aulaskari
and Chen [1] and Burckel et al. [5] that if Ae denotes the euclidean area of a domain,
the function

r ↦ Ae( f (rD))
Ae(rD) = 1

πr2 Ae f (rD)(1.2)

is also monotonically increasing. These investigations have since then led to a series
of monotonicity results comparing other euclidean geometric and euclidean potential
theoretic quantities of the image f (rD) with those corresponding to rD. This way,
quantitative bounds on the growth behavior of the image f (rD)have been established,
leading to several distortion theorems. Examples of such euclidean geometric and
potential theoretic quantities are the diameter, nth diameter, logarithmic capacity,
inner radius, and total curvature (see [2, 3, 5, 11]).

Even more recently, starting with the work of Betsakos [4], many of these euclidean
geometric Schwarz-type lemmas have been carried over to the hyperbolic setting. For
instance, in [4], results are proved concerning the hyperbolic area radius of f (rD)
and its hyperbolic capacity. Furthermore, the notion of hyperbolic convexity has
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Geometric versions of Schwarz’s lemma for spherically convex functions 1781

led to corresponding monotonicity theorems regarding total hyperbolic curvature,
hyperbolic length, and area (see [12]).

The purpose of the present work is to establish sharp estimates and monotonicity
results for geometric quantities such as spherical length, spherical area, and total
spherical curvature for spherically convex functions on the unit disk. Spherically
convex functions have been investigated by many authors, including Wirths, Kühnau,
Ma, Minda, Mejía, Pommerenke, and others (see [13–16, 25] and the references
therein). In studying spherical analogs of the aforementioned euclidean and hyper-
bolic monotonicity results and geometric Schwarz’s lemmas, one faces a number of
difficulties caused by effects of positive curvature as well as several phenomena which
are not present at all in the euclidean and hyperbolic situation, and hence a different
approach and different tools are required. This paper addresses these issues.

In order to state our results, we first need to recall some basic concepts from
spherical geometry. For more details, the reader might consult Section 2 and also
[17, 18], for instance. We equip the Riemann sphere Ĉ = C ∪ {∞} with the spherical
metric

λ
Ĉ
(z) ∣dz∣ = ∣dz∣

1 + ∣z∣2 ,

the canonical conformal Riemannian metric on Ĉ with constant Gaussian curva-
ture+4. For two points a, b ∈ Ĉwhich are not antipodal, the unique spherical geodesic
joining a and b is the smaller arc of the great circle through a and b. The meromorphic
spherical isometries form the group of rotations of Ĉ which is explicitly given by

Rot(Ĉ) ∶= {e iθ z − a
1 + za

∶ a ∈ C, θ ∈ R} ∪ { e iθ

z
∶ θ ∈ R}.

For a meromorphic function f ∶ D→ Ĉ, the spherical derivative

f ♯(z) ∶= ∣ f ′(z)∣
1 + ∣ f (z)∣2

is invariant under postcomposition with any T ∈ Rot(Ĉ), that is, (T ○ f )♯(z) = f ♯(z).
A domain Ω on the Riemann sphere Ĉ is called spherically convex if for any two

points a, b ∈ Ω that are not antipodal, the spherical geodesic joining a and b lies
entirely in Ω. A meromorphic univalent map f ∶ D→ Ĉ is called spherically convex
if f (D) is a spherically convex domain in Ĉ.

Our first result provides a sharp upper bound for the spherical area

As( f (rD)) = ∬
rD

f ♯(z)2 dA(z)

of the image f (rD) of any spherically convex function f ∶ D→ Ĉ in terms of

As(rD) ∶= ∬
rD

dA(z)
(1 + ∣z∣2)2 =

πr2

1 + r2 ,

the spherical area of the disk rD.
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1782 M. Kourou and O. Roth

Theorem 1.1 (Area Schwarz’s lemma for spherically convex functions) Let f ∶ D→ Ĉ

be spherically convex. Then

As( f (rD)) ≤ As(rD) for every 0 < r < 1.

Moreover, equality holds for some 0 < r < 1 if and only if f is a spherical isometry.

Theorem 1.1 raises the problem whether there exists a corresponding lower bound
for the ratio

As(r) ∶= As( f (rD))
As(rD) , r ∈ (0, 1).(1.3)

Note that (1.3) is the spherical analog of the euclidean quantity (1.2). Since

lim
r→0+

As(r) = f ♯(0)2 ,

a lower bound for As(r) would follow, provided one could prove that As(r) is
increasing as a function of r.

Theorem 1.2 Let f ∶ D→ Ĉ be spherically convex. Then As(r) is a strictly increasing
function of r ∈ (0, 1), unless f is a spherical isometry in which case As(r) ≡ 1.

Theorem 1.2 is a spherical analog of the previously known monotonicity results for
euclidean and hyperbolic area [1, 5, 12] mentioned at the beginning.

Corollary 1.1 Let f ∶ D→ Ĉ be a spherically convex function. Then

As( f (rD)) ≥ As(rD) f ♯(0)2 for every 0 < r < 1.(1.4)

Moreover, equality holds in (1.4) for some 0 < r < 1 if and only if f is a spherical isometry.

Remark 1.1 (Theorem 1.2 vs. Theorem 1.1) Clearly, As( f (rD)) ≤ π/2 for any spheri-
cally convex function f ∶ D→ Ĉ, so Theorem 1.2 easily implies

As( f (rD))
As(rD) = As(r) ≤ lim sup

ρ→1−
As(ρ) ≤ lim

ρ→1−

π/2
As(ρD) = lim

ρ→1−

1 + ρ2

2ρ2 = 1,

for every 0 < r < 1. In this sense, Theorem 1.1 appears as an easy corollary of
Theorem 1.2. However, the proof of Theorem 1.2 we give below depends in an essential
way on Theorem 1.1, so the apparently stronger statement of Theorem 1.2 is in fact
equivalent to Theorem 1.1.

In passing, we note that the proof of Theorem 1.2 leads to another sharp lower
bound for the spherical area As( f (rD)), which is more precise than the one provided
by the sharp inequality (1.4), but geometrically less pleasing.

Corollary 1.2 Let f ∶ D→ Ĉ be a spherically convex function. Then

As( f (rD)) ≥ πr2

1 + r2 f ♯(0)2 f ♯(0)2 for every 0 < r < 1.

Moreover, equality holds for any 0 < r < 1 if f has the form f (z) = T(ηz) with
T ∈ Rot(Ĉ) and 0 < ∣η∣ ≤ 1.
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Our next results deal with the spherical length

Ls( f (rT)) ∶= ∫
rT

f ♯(z) ∣dz∣

of the image f (rT) of the circle rT under a meromorphic map f ∶ D→ Ĉ. We
denote by

Ls(rT) ∶= ∫
rT

∣dz∣
1 + ∣z∣2 =

2πr
1 + r2

the spherical length of the circle rT.

Theorem 1.3 (Length Schwarz’s lemma for spherically convex functions) Let f ∶D→ Ĉ

be a spherically convex function. Then

Ls( f (rT)) ≥ Ls(rT) f ♯(0) for every 0 < r < 1.

Moreover, equality holds for some 0 < r < 1 if and only if f is a spherical isometry.

Remark 1.2 An upper bound for Ls( f (rT)) for spherically convex functions
f ∶ D→ Ĉ is

Ls( f (rT)) ≤ 2πr
1 − r2 f ♯(0) for every 0 < r < 1.

Similar to Corollary 1.2, there is also a more precise, but geometrically less natural
lower bound for spherical length, which follows from Corollary 1.2 in conjunction
with the isoperimetric inequality.

Theorem 1.4 Let f ∶ D→ Ĉ be spherically convex. Then

Ls( f (rT)) ≥ 2πr f ♯(0)
1 + r2 f ♯(0)2 for every 0 < r < 1.

Moreover, equality holds for any 0 < r < 1 if f has the form f (z) = T(ηz) with
T ∈ Rot(Ĉ) and 0 < ∣η∣ ≤ 1.

Theorem 1.2 raises the question whether the ratio

Ls(r) ∶= Ls( f (rT))
Ls(rT)(1.5)

is monotonically increasing as a function of r. Note that (1.5) is the spherical analog
of the quantity (1.1). While we cannot offer a full answer, we shall now show that such
a monotonicity result does hold for spherically convex functions f ∶ D→ Ĉ which are
centrally normalized:

f (z) = αz + a3z3 + ⋅ ⋅ ⋅ , z ∈ D,

where

α = max
z∈D

(1 − ∣z∣2) f ♯(z).

https://doi.org/10.4153/S0008414X22000529 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000529


1784 M. Kourou and O. Roth

The important additional assumption is that f ′′(0) = 0. The notion of central
normalization and the insight of its relevance in the study of spherically convex
function is due to Mejía and Pommerenke [16] building on earlier work of Minda and
Wright [19], Chuaqui and Osgood [6], and Chuaqui, Osgood, and Pommerenke [7].
According to [16, Theorem 4], for any spherically convex function f, there is always a
unit disk automorphism ψ and a rotation T ∈ Rot(Ĉ) such that T ○ f ○ ψ is centrally
normalized.

Theorem 1.5 Let f ∶ D→ Ĉ be a centrally normalized spherically convex function.
Then Ls(r) is a strictly increasing function of r ∈ (0, 1), unless f is a spherical isometry
in which case Ls(r) ≡ 1.

Theorem 1.5 is a spherical analog of the previously known monotonicity results for
euclidean and hyperbolic length [12, 21].

In addition to spherical length and spherical area, another important geometric
quantity in spherical geometry is the total spherical curvature

∫
γ

κs(w , γ)λ
Ĉ
(w) ∣dw∣

of a curve γ (see Section 2 and [18]). Roughly speaking, total spherical curvature
measures how much the curve γ diverges from being a spherical geodesic. We consider
the ratio

Φs(r) ∶=

∫
f (rT)

κs(w , f (rT)) ∣dw∣

∫
rT

κs(z, rT) ∣dz∣

and prove the following monotonicity property.

Theorem 1.6 Let f ∶ D→ Ĉ be a centrally normalized spherically convex function.
Then Φs(r) is a strictly increasing function of r ∈ (0, 1), unless f is a spherical isometry
in which case Φs(r) ≡ 1.

One of the crucial ingredients of the proofs of the above theorems is a basic result
from [14, Theorem 4] which guarantees that a meromorphic univalent function f in
D is spherically convex if and only if the auxiliary function

h f (z) ∶= Re{1 + z f ′′(z)
f ′(z) − 2z f ′(z) f (z)

1 + ∣ f (z)∣ 2 }(1.6)

has the property that

h f (z) ≥ 0 for every z ∈ D.

This characterization of spherical convexity has an elegant geometric interpretation
in terms of the spherical curvature κs( f (z), f (rT)) of the curve f (rT) at the point
f (z), ∣z∣ = r, since

h f (z) = κs( f (z), f (rT)) f ♯(z)∣z∣
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(see (2.4)), so a meromorphic univalent function f in D is spherically convex if and
only if

κs( f (z), f (rT)) ≥ 0 for all ∣z∣ = r and all 0 < r < 1.

For further information on spherical convexity and spherically convex functions,
we refer to Section 2 and also [10, 14–16, 18, 24], as well as the recent work [9],
where monotonicity results are proved regarding the elliptic area radius of f (rD) and
condenser capacity. Other variants of the Schwarz lemma for meromorphic functions
can be found, e.g., in [8, 22].

The paper is structured in the following way. In Section 2, we recall a number of
basic facts about spherical geometry and spherical convexity which are necessary for
our investigations, including the spherical Gauss–Bonnet theorem and the spherical
isoperimetric inequality. In Section 3, we study the auxiliary function h f defined
in (1.6) and give a new characterization of spherical convexity as well as establish a
sharp lower bound for the integral means of h f . A corresponding pointwise sharp
lower estimate for h f has been given by Mejía and Pommerenke in their important
work [16] on the Schwarzian derivative for spherically convex functions. While the
estimate of Mejía and Pommerenke is valid only for centrally normalized functions,
our “integrated” version does hold for any spherically convex function and possesses
a natural geometric significance in terms of total geodesic curvature. The spherical
Schwarz-type lemmas, Theorems 1.1 and 1.3, and Remark 1.2 are proved in Section 4.
Then attention shifts to monotonicity results for spherically convex functions. In
Section 5, we consider spherical area and prove Theorem 1.2 as well as Corollary 1.2 and
Theorem 1.4. The monotonicity of spherical length (Theorem 1.5) and of total spherical
curvature (Theorem 1.6) for centrally normalized spherically convex functions is
established in Section 6. In a final Section 7, we illustrate by examples that spherical
convexity is a basic requirement for Theorems 1.2, 1.5, and 1.6 and that central
normalization is a necessary hypothesis for Theorem 1.6.

2 Spherical convexity—Gauss–Bonnet formula—isoperimetric
inequality

Suppose f ∶ D→ Ĉ is a meromorphic univalent function and f (D) is a hyperbolic
domain in Ĉ.

Lemma 2.1 [10, Theorem 1] The spherical density (1 − ∣z∣2) f ♯(z) is a superharmonic
function on D if and only if f (D) is a spherically convex domain.

Lemma 2.2 [10, p. 288] If f is spherically convex on D, then (1 − ∣z∣2) f ♯(z) ≤ 1 for
every z ∈ D. Equality holds for some z ∈ D if and only if f maps D onto a hemisphere and
f (z) is the spherical center of the hemisphere.

Proposition 2.1 [14, Theorem 4] Let f ∶ D→ Ĉ be a meromorphic univalent function.
Then f is spherically convex if and only if

h f (z) = Re{1 + z f ′′(z)
f ′(z) − 2 z f ′(z) f (z)

1 + ∣ f (z)∣2 } ≥ 0, z ∈ D.
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Mejía and Pommerenke (see [16, equation (3.14)]) have proved that for any centrally
normalized spherically convex function f,

h f (z) ≥ 1 − ∣z∣2
1 + ∣z∣2 .(2.1)

In fact, it is not difficult for the reader to convince himself that equality can hold in
(2.1) for some z ∈ D if and only if f is a spherical isometry.

For a geometric interpretation of spherical convexity, we briefly discuss the notion
of spherical curvature. A curve γ on Ĉ is said to have spherical curvatureκs(z, γ) equal
to 0 at any of its points if and only if it is a spherical geodesic.

Let γ ∶ z = z(t) be a C2 curve on Ĉ with everywhere nonvanishing tangent. The
spherical curvature of γ at z(t) is

κs(z(t), γ)λ
Ĉ
(z(t)) = κ(z(t), γ) − Im{ 2z(t)z′(t)

(1 + ∣z(t)∣2) ∣z′(t)∣},

where κ(z(t), γ) is the euclidean curvature of γ at z(t).
It can easily be calculated that the spherical curvature of rT at a point z ∈ rT is

equal to

κs(z, rT) = 1 − r2

r
.(2.2)

Proposition 2.2 [14, Theorem 3] If Ω ⊂ Ĉ has C2 smooth boundary and Ω is spheri-
cally convex, then for all z ∈ ∂Ω, κs(z, ∂Ω) ≥ 0.

Proposition 2.3 [14, Theorem 2] Suppose f ∶ D→ Ĉ is a meromorphic univalent
function and γ ∶ z = z(t) is a C2 curve in D. Then

κs( f (z), f ○ γ) (1 − ∣z∣2) f ♯(z)(2.3)

= κh(z, γ) − (1 − ∣z∣2) Im{(2 z̄
1 − ∣z∣2 −

f ′′(z)
f ′(z) +

2 f ′(z) f (z)
1 + ∣ f (z)∣2 )

z′(t)
∣z′(t)∣},

where κh denotes the hyperbolic curvature and

κh(z, γ) = (1 − ∣z∣2)κ(z, γ) + 2 Im{ z(t)z′(t)
∣z′(t)∣ }.

Let f ∶ D→ Ĉ be a meromorphic univalent function. For the definition of the
function Φs(r), as stated in the Introduction, we will need the spherical curvature
of f (rT). Therefore, according to (2.3),

κs( f (z), f (rT)) (1 − r2) f ♯(z)

= 1 + r2

r
− 1 − r2

r
Im{i [2 r2

1 − r2 −
z f ′′(z)

f ′(z) + 2z f ′(z) f (z)
1 + ∣ f (z)∣2 ]}
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= 1 − r2

r
+ 1 − r2

r
Re{ z f ′′(z)

f ′(z) − 2z f ′(z) f (z)
1 + ∣ f (z)∣2 }

= 1 − r2

r
h f (z),

for z = re i t , r ∈ (0, 1), t ∈ [0, 2π], and κ(z, rT) = 1
r . Hence,

κs ( f (z), f (rT)) =
h f (z)
∣z∣ f ♯(z) ,(2.4)

where z ∈ rT. The total spherical curvature is a geometric quantity that measures how
much a curve diverges from being spherically convex. From (2.2), the total spherical
curvature of rT is equal to

∫
rT

κs(z, rT)λ
Ĉ
(z) ∣dz∣ = 2π 1 − r2

1 + r2 ,(2.5)

and from (2.4), the total spherical curvature of f (rT) is

∫
f (rT)

κs(w , f (rT)λ
Ĉ
(w) ∣dw∣ = ∫

rT

κs( f (z), f (rT)) f ♯(z) ∣dz∣ =
(2.4)

2π

∫
0

h f (re i t) dt.

(2.6)

For more information on spherical convexity and spherical curvature, the reader
may refer to [14, 15, 18].

In the proof of Theorem 1.6, we will use the Gauss–Bonnet formula in the following
form (see [23, Theorem 6.5]). Let M be an oriented two-dimensional Riemannian
manifold with Gaussian curvature K and volume element dA. Let N ⊂ M be a compact
two-dimensional manifold with boundary which is diffeomorphic to a subset of R2

and whose boundary is connected. Let ds be the volume element of ∂N , and let κ be
the signed geodesic curvature of ∂N . Then

∫
N

K dA+ ∫
∂N

κ ds = 2π.(2.7)

The Riemann sphere Ĉ endowed with the spherical metric is a two-dimensional
Riemannian manifold of constant Gaussian curvature equal to 4. If Ω is a hyperbolic
domain in Ĉ, the Gauss–Bonnet formula (2.7) takes the form

4As(Ω) + ∫
γ

κs(z, γ)λ
Ĉ
(z) ∣dz∣ = 2π,(2.8)

where γ is the boundary of Ω assuming that it is a smooth, simple, and closed curve
in Ĉ.
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Applying the Gauss–Bonnet formula (2.8) to f (rD) viewed as a two-dimensional
manifold with boundary on the Riemann surface of f, we obtain

2π

∫
0

h f (re i t) dt = 2π − 4As( f (rD)),(2.9)

where As( f (rD)) is the spherical area of f (rD).
Last but not least, in order to prove lower bounds for the spherical length, we use

the isoperimetric inequality of spherical geometry (see [20]). Suppose D is a simply
connected smooth subdomain of Ĉ. Then

Ls(∂D)2 ≥ 4πAs(D) − 4As(D)2 .(2.10)

3 The function h f

For our purposes, the following characterization of spherically convex functions in
terms of the function

h f (z) = Re{1 + z f ′′(z)
f ′(z) −

2z f (z) f ′(z)
1 + ∣ f (z)∣2 }

turns out to be useful.

Theorem 3.1 Let f ∶ D→ Ĉ be a meromorphic univalent function. Then

Δ h f (z) = −8 f ♯(z)2 h f (z).(3.1)

In particular, f is spherically convex if and only if h f is superharmonic on D. In this case,
h f is strictly superharmonic, so Δh f < 0 in D.

Proof Let u(z) ∶= log f ♯(z), so f ♯(z) = eu(z). Taking the derivative of u with respect
to z, we obtain

∂zu(z) = 1
f ♯(z)∂z f ♯(z) = f ′′(z)

2 f ′(z) −
f (z) f ′(z)
1 + ∣ f (z)∣2 .

This implies that the real part of v(z) ∶= 1 + 2z∂zu(z) is exactly h f . Now, u is a solution
of the Liouville equation

Δu(z) = −4e2u(z) .

Hence, the Laplacian of v is given by

Δ v(z) = 4∂z ∂z(1 + 2z∂zu(z)) = 8∂z(−ze2u(z))
= −8e2u(z) − 8ze2u(z) ⋅ (2∂zu(z)) = −8e2u(z)v(z).

Taking the real part gives (3.1). In particular, Δ h f (z) ≤ 0 if and only if h f (z) ≥ 0,
so f is a spherically convex function if and only if h f is superharmonic. Suppose
f is spherically convex. If h f (z0) = 0 for some z0 ∈ D, then h f would attain its
global minimum at z0 and hence would be constant 0 by the minimum principle for
superharmonic functions. However, h f (0) = 1. This contradiction shows that h f is
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strictly positive on D. Since f is univalent, f ♯ never vanishes, and hence h f is strictly
superharmonic. ∎

Theorem 3.1 implies that for any spherically convex function f ∶ D→ Ĉ, the integral
means

1
2π

2π

∫
0

h f (re i t) dt

are strictly decreasing and log-concave. The following result provides the sharp lower
bound for these integral means.

Theorem 3.2 Let f ∶ D→ Ĉ be spherically convex. Then, for any r ∈ (0, 1),

1
2π

2π

∫
0

h f (re i t) dt ≥ 1 − r2

1 + r2 .(3.2)

For fixed r ∈ (0, 1), equality holds in (3.2) if and only if f is a spherical isometry.

Theorem 3.2 is an integrated version of the Mejía–Pommerenke inequality (2.1), but
with the additional benefit that we do not need to assume central normalization. The
estimate (3.2) has a natural geometric interpretation by observing that the integral
expression is precisely the normalized total spherical curvature of f (rT), whereas
the right-hand side is the normalized total spherical curvature of the circle rT (see
Section 2).

Proof Since hT○ f = h f for any T ∈ Rot(Ĉ), we may assume f (0) = 0. Fix t ∈ [0, 2π].
We apply a beautiful idea from [16, Theorem 1 and equation (3.13)], namely that the
function

pt(z) ∶= 1 + z f ′′(z)
f ′(z) − 2 z f ′(z) f (e2i t z̄)

1 + f (z) f (e2i t z̄)
belongs to the Carathéodory class

P ∶= {p ∶ D→ C holomorphic ∶ p(0) = 1, Re p > 0},

since Re pt(re i t) = h f (re i t). Hence, pt(e i tz) also belongs to P. In view of the
convexity and compactness of P, the function

P(z) ∶= 1
2π

2π

∫
0

pt(e i tz) dt = 1 + c1z + c2z2 + ⋅ ⋅ ⋅

also lies in P. We claim that c1 = 0. In order to see this, recall that by assumption
f (0) = 0, so f is holomorphic in D with f ′ /= 0. Then zw f ′′(zw)/ f ′(zw) is a holo-
morphic function of w in a neighborhood of the closed unit disk, so the mean value
property implies

1
2π

2π

∫
0

e i tz f ′′(e i tz)
f ′(e i tz) dt = zw f ′′(zw)

f ′(zw) ∣
w=0

= 0.
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Hence,

P(z) = 1 − 1
π

2π

∫
0

e i tz f ′(e i tz) f (e i t z̄)
1 + f (e i tz) f (e i t z̄)

dt = 1 − 2 ∣ f ′(0)∣2z2 + O(z3),

using once more that f (0) = 0. Thus, the function (P − 1)/(P + 1) ∶ D→ D has a zero
of order at least 2 at z = 0, so the Schwarz lemma implies

∣P(z) − 1
P(z) + 1

∣ ≤ ∣z∣2 , z ∈ D,

with equality at one point if and only if P has the form

P(z) = 1 + ωz2

1 − ωz2 = 1 + 2ωz2 + ⋅ ⋅ ⋅

for some ∣ω∣ = 1. We conclude that

1 − r2

1 + r2 ≤ Re P(r) ≤ 1 + r2

1 − r2 for any r ∈ (0, 1).

Equality for the left inequality holds if and only if ω = −1 (resp. ∣ f ′(0)∣ = 1). By
Lemma 2.2, this is the case if and only if f (z) = ηz for some ∣η∣ = 1. ∎

The Gauss–Bonnet formula (2.9) provides us with the following result.

Proposition 3.1 Let f ∶ D→ Ĉ be a meromorphic univalent function. Then
2π

∫
0

f ♯(re i t)2 dt = 2
r2 ∬

rD

h f (z) f ♯(z)2 dA(z)(3.3)

for any r ∈ (0, 1).

Proof Taking the derivative w.r.t. r in the Gauss–Bonnet formula (2.9), we obtain

∂
∂r

⎛
⎜
⎝

2π

∫
0

h f (re i t) dt
⎞
⎟
⎠
= −4 ∂

∂r ∬
rD

f ♯(z)2 dA(z) = −4r
2π

∫
0

f ♯(re i t)2 dt.(3.4)

By Green’s formula, we also see that

∂
∂r

⎛
⎜
⎝

2π

∫
0

h f (re i t) dt
⎞
⎟
⎠
= 1

r ∬
rD

Δ h f (z) dA(z).

Together with (3.4), this yields

1
r ∬

rD

Δ h f (z) dA(z) = −4r
2π

∫
0

f ♯(re i t)2 dt.

Since Δh f = −8( f ♯)2h f by Theorem 3.1, we see that (3.3) holds. ∎
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4 Proofs of the spherical Schwarz lemmas

Proof of Theorem 1.1 Let f ∶ D→ Ĉ be a spherically convex function, and let
0 < r < 1. The Gauss–Bonnet formula (2.9) and Theorem 3.2 imply

4As( f (rD)) =
2π

∫
0

(1 − h f (re i t)) dt ≤ 2π − 2π 1 − r2

1 + r2 =
4πr2

1 + r2 = 4As(rD)

with equality for some r ∈ (0, 1) if and only if f ∈ Rot(Ĉ). ∎

For the proof of Theorem 1.3, we first derive an auxiliary lemma.

Lemma 4.1 Let f ∶ D→ Ĉ be a spherically convex function. Then the integral mean

1
2π

2π

∫
0

log [(1 + r2) f ♯(re i t)] dt

is strictly increasing as a function of r unless f ∈ Rot(Ĉ).

Proof It is easy to prove that

r ∂
∂r

log [(1 + r2) f ♯(re i t)] = h f (re i t) − 1 − r2

1 + r2 .

The result therefore follows from Theorem 3.2. ∎

Proof of Theorem 1.3 Let f ∶ D→ Ĉ be a spherically convex function, and let
0 < r < 1. Then

1
2π

Ls( f (rT))(1 + r2) = r (1 + r2) 1
2π

2π

∫
0

f ♯(re i t) dt

= r
2π

2π

∫
0

exp (log [(1 + r2) f ♯(re i t)]) dt

≥ r ⋅ exp
⎛
⎜
⎝

1
2π

2π

∫
0

log [(1 + r2) f ♯(re i t)] dt
⎞
⎟
⎠

≥ r ⋅ exp
⎛
⎜
⎝

1
2π

2π

∫
0

log [ f ♯(0)] dt
⎞
⎟
⎠

= r f ♯(0),

where we have first used Jensen’s inequality and then Lemma 4.1. Equality holds if and
only if f ∈ Rot(Ĉ). Hence,

Ls( f (rT)) ≥ 2πr
1 + r2 f ♯(0) = Ls(rT) f ♯(0),

and equality holds if and only if f ∈ Rot(Ĉ). ∎
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Proof of Remark 1.2 We apply Lemma 2.1. Let us denote by Lh the length of a curve
in D with respect to the hyperbolic metric

∣dz∣
1 − ∣z∣2

of the unit disk. Set

L(r) ∶= Ls( f (rT))
Lh(rT) = 1 − r2

2π

2π

∫
0

f ♯(re i t) dt = 1
2π ∫

rT

(1 − ∣z∣2) f ♯(z) ∣dz∣.

According to Lemma 2.1, (1 − ∣z∣2) f ♯(z) is a superharmonic function onD if and only
if f (D) is a spherically convex domain. Since f is a spherically convex function, L(r)
is the mean value of a superharmonic function and hence decreasing. Therefore,

L(r) ≤ lim
r→0+

L(r) = f ♯(0),

and hence

Ls( f (rT)) ≤ 2πr
1 − r2 f ♯(0)

for all r ∈ (0, 1). ∎

5 Monotonicity of spherical area and length

Suppose f ∶ D→ Ĉ is a spherically convex function.

Proof of Theorem 1.2 With the use of the Cauchy–Schwarz inequality, we obtain a
lower bound for the derivative

∂
∂r

As( f (rD)) = r
2π

∫
0

f ♯(re i t)2dt ≥ r
2π

⎛
⎜
⎝

2π

∫
0

f ♯(re i t)dt
⎞
⎟
⎠

2

= 1
2πr

Ls( f (rT))2 .

Utilizing the isoperimetric inequality (2.10), it follows

∂
∂r

As( f (rD)) ≥ 2
πr

(πAs( f (rD)) −As( f (rD))2).(5.1)

We aim to find a lower bound of the derivative of the functionAs(r) = 1+r2

πr2 As( f (rD))
in order to prove its monotonicity. Accordingly, we compute with the help of (5.1)

A′s(r) = − 2
πr3 As( f (rD)) + 1 + r2

πr2
∂
∂r

As( f (rD))

≥ 2
πr3 As( f (rD))(−1 + 1 + r2

π
(π −As( f (rD))))

= 2
πr

As( f (rD))(1 − 1 + r2

πr2 As( f (rD))) ≥ 0

(5.2)
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due to Theorem 1.1. As a result, As(r) is increasing in (0, 1). Now, let us assume that
A′s(ξ) = 0 for some ξ ∈ (0, 1). Then

As( f (ξD)) = πξ2

1 + ξ2 = As(ξD),

and according to Theorem 1.1, f is a spherical isometry. On the contrary, if f is a
spherical isometry, then As( f (rD)) = As(rD) = πr2/(1 + r2) for all r ∈ (0, 1). Hence,
As(r) is constant and equal to 1. In summary, As(r) is a strictly increasing function
of r ∈ (0, 1), unless f is a spherical isometry in which case As(r) ≡ 1. ∎

Proof of Corollary 1.2 If f ∈ Rot(Ĉ), then there is nothing to prove in view of
Corollary 1.1. Suppose that f ∶ D→ Ĉ is not a spherical isometry. As we see from (5.2),
the function x(r) ∶= As(r) satisfies the differential inequality

x′(r) ≥ 2r
1 + r2 x(r) (1 − x(r)).

Since we assume f /∈ Rot(Ĉ), we have x(r) < 1 for any 0 ≤ r < 1 by Theorem 1.2, and
hence

R

∫
0

x′(r)
x(r) (1 − x(r)) dR ≥

R

∫
0

2r
1 + r2 dR.

By elementary integration and reorganization of terms, we are led to

x(R) ≥ 1 + R2

1 + x(0)R2 x(0),

for every R ∈ (0, 1). However, x(0) = lim
r→0

As(r) = f ♯(0)2, and thus, replacing R by r,

As(r) ≥ 1 + r2

1 + r2 f ♯(0)2 f ♯(0)2 ,

which is equivalent to

As( f (rD)) ≥ πr2

1 + r2 f ♯(0)2 f ♯(0)2 .

If f has the form f (z) = T(ηz) for some T ∈ Rot(Ĉ) and 0 < ∣η∣ ≤ 1, then writing
fη(z) ∶= ηz, we have f ♯(0) = ∣η∣ and

As( f (rD)) = As( fη(rD)) = As(r∣η∣D) = πr2

1 + r2 f ♯(0)2 f ♯(0)2 . ∎

Proof of Theorem 1.4 Suppose that f ∶ D→ Ĉ is a spherically convex function. It is
then clear that As( f (D)) ≤ π/2. According to the isoperimetric inequality (2.10), we
have

Ls( f (rT))2 ≥ 4πAs( f (rD)) − 4As( f (rD))2 .
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The expression 4πAs( f (rD)) − 4As( f (rD))2 is increasing with respect to As( f (rD))
on the interval (0, π/2), and we obtain from Corollary 1.1 that

Ls( f (rT))2 ≥ 4π2r2

1 + r2 f ♯(0)2 f ♯(0)2 (1 − r2

1 + r2 f ♯(0)2 f ♯(0)2) = 4π2r2

(1 + r2 f ♯(0)2)2 f ♯(0)2

for all r ∈ (0, 1). The proof of the equality statement is identical to the corresponding
proof for Corollary 1.2 and will be omitted. ∎
Remark 5.1 The same proof as for Theorem 1.4 but using Theorem 1.1 instead of
Corollary 1.1 produces the inequality

Ls( f (rT)) ≥ Ls(rT) f ♯(0) (1 + r2 (1 − f ♯(0)2)) for every 0 < r < 1(5.3)

with equality for some 0 < r < 1 if and only if f is a spherical isometry. Since f ♯(0) ≤ 1
with equality if and only if f ∈ Rot(Ĉ), the estimate (5.3) is slightly more precise than
Theorem 1.3.

6 Monotonicity for length and total curvature

Proof of Theorem 1.5 Let f ∶ D→ Ĉ be a centrally normalized spherically convex
function. Then

L′s(r) = ∂
∂r

⎛
⎜
⎝

1 + r2

2π

2π

∫
0

f ♯(re i t) dt
⎞
⎟
⎠
= 1

2π

2π

∫
0

∂
∂r
[(1 + r2) f ♯(re i t)] dt.

Now, it is easy to see (cf. also [16, p. 169]) that

∂
∂r
((1 + r2) f ♯(re i t)) = f ♯(re i t)

r
[(1 + r2) h f (re i t) − (1 − r2)].

As a result,

L′s(r) = 1
2πr

2π

∫
0

f ♯(re i t) [(1 + r2) h f (re i t) − (1 − r2)] dt ≥ 0,(6.1)

in view of (2.1) with equality if and only if f is a spherical isometry, in which case
f ♯(z) = 1/(1 + ∣z∣2) and Ls( f (rT)) = Ls(rT), so Ls(r) ≡ 1. ∎

Proof of Theorem 1.6 Let f ∶ D→ Ĉ be a spherically convex function which is
centrally normalized. Following the calculations in (2.5) and (2.6), the ratio of total
curvature of f (rT) to the total curvature of rT is defined as

Φs(r) = 1 + r2

2π (1 − r2)

2π

∫
0

h f (re i t) dt.

If f is a spherical isometry, then clearly Φs(r) ≡ 1, so we assume from now on that f is
not a rotation. Taking the derivative of Φs and using (3.4), we deduce

π
2r
(1 − r2)2 Φ′s(r) =

2π

∫
0

h f (re i t) dt − (1 − r4)
2π

∫
0

f ♯(re i t)2 dt.
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Note that from (3.4) and
∂
∂r
( f ♯(re i t)2) = 2

r
f ♯(re i t)2 (h f (re i t) − 1),

we find by a straightforward computation

∂
∂r
( π

2r
(1 − r2)2Φ′s(r)) = ∂

∂r

2π

∫
0

(h f (re i t) − (1 − r4) f ♯(re i t)2) dt

= 2
(1 − r2) (1 + r2)

r

2π

∫
0

f ♯(re i t)2 [ 1 − r2

1 + r2 − h f (re i t)] dt.

Since f is not a spherical isometry, we deduce from (2.1) that [. . .] < 0. Therefore,

r ↦ π (1 − r2)2 Φ′s(r)/(2r)

is strictly decreasing, and hence
π
2r
(1 − r2)2 Φ′s(r) > lim

r→1−
π
2r
(1 − r2)2 Φ′s(r)

= lim
r→1−

2π

∫
0

h f (re i t)dt − (1 − r4)
2π

∫
0

f ♯(re i t)2 dt

= lim
r→1−

2π

∫
0

h f (re i t) dt ≥ 0, 0 < r < 1.

Thus, Φ′s(r) > 0, so Φs is a strictly increasing function of r. The proof of Theorem 1.6
is complete. ∎

7 Examples

In this final section, we illustrate the monotonic behavior of the functions Ls, As,
and Φs for various exemplary univalent meromorphic functions that are spherically
convex and centrally normalized, spherically convex but not centrally normalized,
and not spherically convex. The computations have been carried out with use of
Mathematica software.

A classic example of a spherically convex function that is also centrally normalized
(see [16]) is

f1(z) =
√

1 + z −
√

1 − z√
1 + z +

√
1 − z

, z ∈ D.

Its spherical derivative is

f ♯1 (z) = 1
∣1 − z2∣ ⋅

∣1 −
√

1 − z2∣
∣z∣2 + ∣1 −

√
1 − z2∣2

, z ∈ D.

In Figures 1 and 2, one can see that the functions Ls, As, and Φs are increasing
functions of r ∈ (0, 1), for f1.
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Figure 1: Graphs of Ls and As for f1(z).

Figure 2: Graph of Φs for f1(z).

In the case where central normalization is omitted, the monotonicity of Φs is
disrupted. More specifically, let us define the function

f2(z) = ez , z ∈ D.

Then

h f2(z) = 1 + 1 − e2 Re z

1 + e2 Re z Re z

and hence

h f2(re i t) = 1 + 1 − e2r cos t

1 + e2r cos t r cos t = 1 − r cos t tanh(r cos t) > 0,

for all t ∈ [0, 2π] and r ∈ (0, 1), as we can see in Figure 3. Hence, f2 is spherically
convex, but Φs is not increasing (see Figure 4).
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Figure 3: Graph of h f2(re i t).

Figure 4: Graphs of Ls ,As , and Φs for ez .

Figure 5: Graph of h f3(re i t).

Let us define the function f3(z) = z2ez , for z ∈ D. This is not a spherically convex
function, since

h f3(z) = 1 + Re{z + 2}(1 − 2
∣z + 2∣2 − 2 ∣z∣4e2 Re z

1 + ∣z∣4e2 Re z ) ,

and as we see in Figures 5 and 6, for r = ∣z∣ ≥ 0.8, it attains negative values.
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Figure 6: h f3(re i t), for r = 0.8.

Figure 7: Graphs of Ls and As for z2 ez .

Figure 8: Graph of Φs for z2 ez .

Calculating its spherical derivative and producing the graphs of Ls, As, and Φs for
f3(z), we obtain Figures 7 and 8.

In view of those, the significance of spherical convexity in Theorems 1.2, 1.5, and
1.6 is straightforward. It is a necessary property that a function is spherically convex,
so that the functions Ls(r),As(r), and Φs(r) are increasing functions of r ∈ (0, 1).

https://doi.org/10.4153/S0008414X22000529 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000529


Geometric versions of Schwarz’s lemma for spherically convex functions 1799

References

[1] R. Aulaskari and H. Chen, Area inequality and Qp norm. J. Funct. Anal. 221(2005), no. 1, 1–24.
[2] D. Betsakos, Geometric versions of Schwarz’s lemma for quasiregular mappings. Proc. Amer. Math.

Soc. 139(2011), no. 4, 1397–1407.
[3] D. Betsakos, Multi-point variations of the Schwarz lemma with diameter and width conditions.

Proc. Amer. Math. Soc. 139(2011), no. 11, 4041–4052.
[4] D. Betsakos, Hyperbolic geometric versions of Schwarz’s lemma. Conform. Geom. Dyn. 17(2013),

119–132.
[5] R. B. Burckel, D. E. Marshall, D. Minda, P. Poggi-Corradini, and T. J. Ransford, Area, capacity

and diameter versions of Schwarz’s lemma. Conform. Geom. Dyn. 12(2008), 133–152.
[6] M. Chuaqui and B. Osgood, Sharp distortion theorems associated with the Schwarzian derivative.

J. London Math. Soc. 2(1993), no. 48, 289–298.
[7] M. Chuaqui, B. Osgood, and C. Pommerenke, John domains, quasidisks, and the Nehari class.

J. Reine Angew. Math. 471(1996), 77–114.
[8] V. N. Dubinin, Geometric versions of Schwarz’s lemma and symmetrization. J. Math. Sci.

178(2011), 150.
[9] G. Kelgiannis, Equality case for an elliptic area condenser inequality and a related Schwarz type

lemma. Proc. Edinb. Math. Soc. (2) 63(2020), no. 1, 91–104.
[10] S.-A. Kim and D. Minda, The hyperbolic metric and spherically convex regions. J. Math. Kyoto

Univ. 41(2001), no. 2, 285–302.
[11] M. Kourou, Conformal mapping, convexity and total absolute curvature. Conform. Geom. Dyn.

22(2018), 15–32.
[12] M. Kourou, Length and area estimates for (hyperbolically) convex conformal mappings. Comput.

Methods Funct. Theory 18(2018), no. 4, 723–750.
[13] R. Kühnau, Geometrie der konformen Abbildung auf der projektiven Ebene. Wiss. Z.

Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe. 12(1963), 5–19.
[14] W. Ma and D. Minda, Spherical linear invariance and uniform local spherical convexity. In:

Current topics in analytic function theory, World Scientific, River Edge, NJ, 1992, pp. 148–170.
[15] W. Ma, D. Minda, and D. Mejía, Distortion theorems for hyperbolically and spherically k-convex

functions. In: New trends in geometric function theory and applications (Madras, 1990), World
Scientific, Singapore, 1991, pp. 46–54.

[16] D. Mejía and C. Pommerenke, On spherically convex univalent functions. Michigan Math. J.
47(2000), no. 1, 163–172.

[17] D. Minda, The hyperbolic metric and Bloch constants for spherically convex regions. Complex
Variables Theory Appl. 5(1986), nos. 2–4, 127–140.

[18] D. Minda, Applications of hyperbolic convexity to Euclidean and spherical convexity. J. Analyse
Math. 49(1987), 90–105.

[19] D. Minda and D. J. Wright, Univalence criteria and the hyperbolic metric. Rocky Mountain
J. Math. 12(1982), 471–479.

[20] R. Osserman, The isoperimetric inequality. Bull. Amer. Math. Soc. 84(1978), no. 6, 1182–1238.
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