EVERY AF-ALGEBRA IS MORITA EQUIVALENT TO A GRAPH ALGEBRA

JASON TYLER

We show how to modify any Bratteli diagram E for an AF-algebra A to obtain a Bratteli diagram KE for A whose graph algebra $C^*(KE)$ contains both A and $C^*(E)$ as full corners.

An elegant theorem of Drinen says that every AF-algebra A is isomorphic to a corner in a graph algebra [3, Theorem 1], and hence is Morita equivalent to the graph algebra. The graph in question is a Bratteli diagram for A, but it needs to be a carefully chosen one; two constructions of such a diagram were described in [3], one attributed to Kumjian. Here we show that applying Kumjian's construction to an arbitrary Bratteli diagram E for A gives a graph KE whose C^* -algebra contains both A and $C^*(E)$ as full corners, so that A is Morita equivalent to the C^* -algebra $C^*(E)$ of the original Bratteli diagram E.

A directed graph E consists of countable sets E^0 of vertices and E^1 of edges, along with functions $r,s:E^1\to E^0$ which map edges to their range and source vertices. The graph is row-finite if each vertex emits at most finitely many edges. Given a row-finit graph E, a Cuntz-Krieger E-family in a C^* -algebra consists of a set of mutually orthogonal projections $\{p_v:v\in E^0\}$ and a set of partial isometries $\{s_e:e\in E^1\}$ satisfying the Cuntz-Krieger relations:

$$s_e^* s_e = p_{r(e)}$$
 for $e \in E^1$ and $p_v = \sum_{e \in s^{-1}(v)} s_e s_e^*$ whenever $s^{-1}(v) \neq \emptyset$.

The graph algebra $C^*(E)$ is the universal C^* -algebra generated by a Cuntz-Krieger E-family $\{s_e, p_v\}$ ([4, Theorem 1.2]). We denote by E^* the set of all finite paths in E; that is, sequences of edges $\mu_1\mu_2\ldots\mu_n$ such that $r(\mu_i)=s(\mu_{i+1})$ for $1\leqslant i< n$. We include the vertices as paths of length zero. Given $\mu=\mu_1\mu_2\ldots\mu_n\in E^*$, define $s_\mu:=s_{\mu_1}s_{\mu_2}\ldots s_{\mu_n}$. It follows from [4, Lemma 1.1] that

$$C^*(E) = \overline{\operatorname{span}} \big\{ s_{\mu} s_{\nu}^* : \mu, \, \nu \in E^*, \, r(\mu) = r(\nu) \big\}.$$

Received 15th July, 2003

The author gives his thanks to his indefatigable supervisor Iain Raeburn for guidance throughout this work.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

A Bratteli diagram is a directed graph E such that:

- 1. E^0 is the disjoint union of finite sets $\{V_n\}$,
- 2. every edge with source in V_n has range in V_{n+1} , and
- 3. each $v \in E^0$ is labelled with a positive integer d_v which satisfies

$$d_v \geqslant \sum_{e \in r^{-1}(v)} d_{s(e)}.$$

We say that E is a Bratteli diagram for a sequence of C^* -algebras $A_1 \subset A_2 \subset \ldots$ if each A_n is isomorphic to $\bigoplus_{v \in V_n} M_{d_v}(\mathbb{C})$ and the embedding of each $M_{d_v}(\mathbb{C}) \subset A_n$ in each $M_{d_w}(\mathbb{C}) \subset A_{n+1}$ scales the trace by $\#(s^{-1}(v) \cap r^{-1}(w))$. We say that E is a Bratteli diagram for an AF-algebra A if there exists a sequence of C^* -subalgebras $\{A_n\}$ of A such that $A = \overline{\cup A_n}$ and E is a Bratteli diagram for $\{A_n\}$.

THEOREM 1. Let E be a Bratteli diagram for an AF-algebra A. Then there exists a Bratteli diagram KE for A such that $C^*(KE)$ contains A and $C^*(E)$ as complementary full corners.

The projection p defining the corner is the sum $p = \sum_{\nu \in S} p_{\nu}$ where $S \subset KE^0$; this sum converges strictly to a projection in $M(C^*(KE))$ by [1, Lemma 1.1]. Crucial for us is the observation that for $\mu, \nu \in KE^*$,

$$ps_{\mu}s_{\nu}^{*} = \begin{cases} s_{\mu}s_{\nu}^{*} & \text{if } s(\mu) \in S \\ 0 & \text{otherwise} \end{cases}$$

so that

$$pC^*(KE)p = \overline{\operatorname{span}} \big\{ s_{\mu} s_{\nu}^* : s(\mu), \, s(\nu) \in S, \, r(\mu) = r(\nu) \big\}.$$

PROOF OF THE THEOREM: For n>0, denote by V_n the set of vertices on the n^{th} level of E, and let $V_0=\emptyset$. For each $v\in E^0$, let d_v be the rank of the matrix algebra corresponding to v. For every vertex $v\in E^0$, calculate $\sigma_v:=d_v-\sum_{e\in r^{-1}(v)}d_{s(e)}$. We define $KE^0=\bigcup_{n=0}^\infty KV_n$, where

$$KV_n := \left\{ egin{array}{ll} V_n & ext{if } \sigma_v = 0 & ext{for all } v \in V_{n+1} \\ V_n \cup \{w_n\} & ext{if } \sigma_v > 0 & ext{for some } v \in V_{n+1}, \end{array}
ight.$$

and define KE^1 to be E^1 together with, for every w_n and $v \in V_{n+1}$, σ_v edges from w_n to v. Denote by S the set $KE^0 \setminus E^0 = \bigcup \{w_n\}$, and set $d_w = 1$ for all $w \in S$. Constructing KE in this fashion ensures that for all $v \in KE^0$, the number of paths beginning in S and ending at v is d_v .

Since E is a Bratteli diagram for A, there is an increasing sequence of C^* -subalgebras F_n of A such that $A = \overline{\cup F_n}$ and E is a Bratteli diagram for the sequence $\{F_n\}$. For those n where $KV_n \neq V_n$, we define a subalgebra F'_n of A by $F'_0 := \mathbb{C}1$ and

$$F_n':=F_n\oplus \mathbb{C}\big(1_{F_{n+1}}-1_{F_n}\big)\cong \bigoplus_{v\in V_n} M_{d_v}(\mathbb{C})\oplus \mathbb{C} \ \text{ for } \ n>0.$$

For all other n, define $F'_n = F_n$. The graph KE is then a Bratteli diagram for the sequence $\{F'_n\}$. Since $F_n \subseteq F'_n \subseteq F_{n+1}$ for all n, we have $\overline{\cup F'_n} = \overline{\cup F_n} = A$; thus KE is a Bratteli diagram for A.

Let $\{s_e, p_v\}$ be the universal Cuntz-Krieger KE-family generating $C^*(KE)$. Define a projection $p \in M(C^*(KE))$ by $p := \sum_{v \in S} p_v$. We aim to show that the corner $pC^*(KE)p$ is isomorphic to A. Since two algebras with the same Bratteli diagram are isomorphic ([2, Proposition III.2.7]), we can achieve this by identifying a sequence of subalgebras of $pC^*(KE)p$ for which E is a Bratteli diagram and whose union is dense in $pC^*(KE)p$. For each n > 0 define $D_n := \operatorname{span}\{D^v : v \in V_n\}$, where

$$D^{v} := \operatorname{span} \{ s_{\mu} s_{\nu}^{*} : \mu, \ \nu \in KE^{*}, \ s(\mu), \ s(\nu) \in S, \ r(\mu) = r(\nu) = v \}$$

for each $v \in KE^0$. Note that

$$pC^*(KE)p = \overline{\operatorname{span}} \big\{ s_{\mu} s_{\nu}^* : \mu, \ \nu \in KE^*, \ s(\mu), \ s(\nu) \in S, \ r(\mu) = r(\nu) \big\} = \overline{\cup D_n}.$$

Given $v \in E^0$ and paths μ, ν, α, β with source in S and range v, observe that none of μ, ν, α, β can extend any other since KE contains no loops; [4, Lemma 1.1] then gives

$$s_{\mu}s_{\nu}^{*}s_{\alpha}s_{\beta}^{*} = \begin{cases} s_{\mu}s_{\beta}^{*} & \text{if } \nu = \alpha \\ 0 & \text{otherwise } . \end{cases}$$

Also, $(s_{\mu}s_{\nu}^{*})^{*} = s_{\nu}s_{\mu}^{*}$, so

$$\{s_{\mu}s_{\nu}^*: \mu, \nu \in KE^*, s(\mu), s(\nu) \in S, r(\mu) = r(\nu) = v\}$$

is a family of matrix units. Since there are d_v paths μ with $s(\mu) \in S$ and $r(\mu) = v$, D^v is isomorphic to $M_{d_v}(\mathbb{C})$. Further, note that for distinct v, $w \in V_n$, no path ending at v may extend one ending at w, so $D^vD^w = 0$ and $D_n = \bigoplus_{v \in V_n} D^v \cong \bigoplus_{v \in V_n} M_{d_v}(\mathbb{C})$. It remains only to check that the embedding of each D_n in D_{n+1} matches that described by E; specifically, for $v \in V_n$ and $w \in V_{n+1}$ we need that D^v is embedded in D^w with multiplicity $\#(s^{-1}(v) \cap r^{-1}(w))$. This follows from the Cuntz-Krieger relations at v:

take paths μ, ν with source in S and range v, decompose the matrix unit $s_{\mu}s_{\nu}^* \in D^v$ as

$$s_{\mu}s_{\nu}^{*} = s_{\mu}p_{v}s_{\nu}^{*} = s_{\mu}\left(\sum_{e \in s^{-1}(v)} s_{e}s_{e}^{*}\right)s_{\nu}^{*} = \sum_{e \in s^{-1}(v)} s_{\mu e}s_{\nu e}^{*}$$

and note that $s_{\mu e}s_{\nu e}^*$ is a matrix unit in D^w precisely when $e \in r^{-1}(w)$.

Consider now the complementary corner

$$(1-p)C^*(KE)(1-p) = \overline{\operatorname{span}} \{ s_{\mu} s_{\nu}^* : \mu, \ \nu \in KE^*, \ s(\mu), \ s(\nu) \in E^0, \ r(\mu) = r(\nu) \}.$$

Since $KE^1 \setminus E^1$ contains only edges from S to E^0 , paths beginning in E^0 never leave E^0 . Thus $(1-p)C^*(KE)(1-p)$ is generated by the Cuntz-Krieger E-family

$${s_e, p_v : e \in E^1, v \in E^0}.$$

Further, E contains no loops, so the Cuntz-Krieger uniqueness theorem [1, Theorem 3.1] implies that $(1-p)C^*(KE)(1-p)$ is isomorphic to $C^*(E)$.

Finally, we must show that p and 1-p are full. Note that for every $v \in KE^0$ there is a path beginning in S and ending at v. Suppose that I is an ideal in $C^*(KE)$ containing $pC^*(KE)p$; then I certainly contains the projections $\{p_w: w \in S\}$. Given a vertex v in E^0 , choose a path α beginning at some $w \in S$ and ending at v. Then $s_\alpha = p_w s_\alpha \in I$, so $p_v = s_\alpha^* s_\alpha \in I$, every generator $\{s_e, p_v\}$ of $C^*(KE)$ is in I, and $I = C^*(KE)$. Now suppose that J is an ideal in $C^*(KE)$ containing $(1-p)C^*(KE)(1-p)$, so for every $v \in E^0$ we have $p_v \in J$. Given a vertex $v \in S$, note that every edge e with s(e) = v satisfies $r(e) \in E^0$; so for all $e \in s^{-1}(v)$, we know that $p_{r(e)} = s_e^* s_e \in J$, implying $s_e = s_e s_e^* s_e \in J$ and $s_e s_e^* \in J$. Thus $p_v = \sum_{e \in s^{-1}(v)} s_e s_e^* \in J$,

the universal KE-family $\{s_e, p_v\}$ is contained in J, and $J = C^*(KE)$.

REFERENCES

- T. Bates. D. Pask, I. Raeburn and W. Szymański, 'The C*-algebras of row-finite graphs', New York J. Math. 6 (2000), 307-324.
- [2] K. Davidson, C*-algebras by example (American Mathematical Society, Providence R.I., 1996).
- [3] D. Drinen, 'Viewing AF-algebras as graph algebras', Proc. Amer. Math. Soc. 128 (1999), 1991-2000.
- [4] A. Kumjian, D. Pask and I. Raeburn, 'Cuntz-Krieger algebras of directed graphs', Pacific J. Math 184 (1998), 161-174.

School of Mathematical and Physical Sciences
University of Newcastle
New South Wales 2308
Australia
e-mail: jason.tyler@studentmail.newcastle.edu.au